HOW TO USE THIS CATALOG

Three easy ways to find the information you need

FOR COMPLETE
APPLICATION \& SALES INFORMATION Gall
Rudy Poucher your NEELY area manager
HEWLETT PACKARD NEELY Sales Division
2591 CARLSEADAVE. 482-1463

1. Check headings on opposite page for broad categories of instrumentation,
2. Use complete numerical index beginning on page 396 to locate specific equipment by model number (example - 3400A RMS Voltmeter).
3. Use alphabetical index on pages 391-395 to locate equipment by name, title or type (exampledigital volimeter).

Other important information

This catalog provides detailed information on instraments available from Hewlett-Packard, including products of the Boonton, Dymec, Harrison, Moseley and Sanborn Divisions.

Detailed listings of general-purpose equipment grouspd by functional categories begin on page 25. In addition, you will find abbreviated information on pages 15 through 24 describing certain special-purpose equipment manufactured by the various Hewlett-Packard divisions.

Placing your order

Page 2 contsins time-saving suggestions for ordering.

Other information on Hewlett-Packard products

In addition to data in this catalog, information about application and operation of hp equipment is available in bp data sheets, Application Notes, the Hewletr-Packard journal and Measurement News. Data sheets and Application Notes are available on request. Both the HewletcPackard Journal (a monthly publication of the hp research and development laboratories) and Measurement News (a
bi-monthly newsletter from your hp field office) are mailed regularly to anyone interested in keeping abreast of the latest developments in electronic test and measurement instrumentation. See pages 3.12 for more details.

Keeping up-to-date on Hewlett-Packard products

New Hewlett-Packard products, introduced after publication of this catalog, are described in the hp Journal and in Measurement News, advertised in the major trade publications, exhibited in major trade shows and demonstrated of hp field engineers. Data sheets on these new products will be sent promptly on request.

How to communicate with Hewlett-Packard

Hewlett-Packard products are manufactured in more than a dozen factories throughout the world. The Hewlett. Packard feld sales office in your areat is equipped to handle all your needs for information on any hp product, and for parts or service on the hp products you are already using. A complete listing of Hewlett-Packard field offices is just inside the back cover of this catalog. If there is no field office in your area, please concact:

United Stakes

Hewlett-Packard

1501 Page Mill Road
Palo Atto, Californla 94304
Telephone: (415) 326-7000
TWX: 910-373.1267
Telex: 033811

Canada and Latin America
Howltt-Packard
inter-Amoricas
1501 Page Mill Rosd
Palo Alto, California, U.S.A.
Yalephone: (415) 326-7000
TWX: 910-373-1267
Telex: 033811
Cable: HEWPACK

Europe

Hewlett-Packard S.A.
54 Route des Acacias
Geneva, Swltzerland
Telephone: (022) 42.81 .50
Telex: 224.86
Cable: HEWPACKSA

Elsewhere
International Marketing Department Howlet-Packard
1501 Page Mill Road
Pafo Alto, Callforila, U.S.A.
Telephoné: (415) 326-7000
TWX: 910-373.1267
Telex: 033811
Cable: HEWPACK

All data in this catalog subject to change without notice. Prices f.o.b. factory in United States.

Instruments in this catalog are grouped by type or function. Most major groupings are preceded by technical information pages which summarize the measuring techniques involved and provide helpful information for selecting instruments best suited for specific jobs.

HEWLETT hp PACKARD

CATALOG LISTINGS FOR HEWLETT-PACKARD PRODUCTS, INCLUDING DYMEC, BOONTON, HARRISON, MECHROLAB, mOSELEY AND SANBORN DIVISIONS, HP ASSOCIATES.

Major instrument groups are listed below. Complete model number and descriptive in-dexes are at the end of the catalog as indicated by the thumb index positions.
Page
About Hewlett-Packard la
Ordering Information 2
Parts and Service 3
Cabinets, Mounting Arrangements 13
Miscellaneous Products including medical and scientifc instruments, transducers, temperature measuring system, semiconductor products 15
Amplifiers 25
Wave and Distortion Analyzers 36
Counters including electronic counters for measuring frequency, time interval, ratio. period; preset counters; scintillation counting systems: digital recorders: scanners 41
Data Acqulsition Systems 80
Frequency and Time Standards including frequency synthesizers, quartz oscillators, clocks, power supplies and vif receivers 89
Impodance Bridges and Meters including Q and nx meters, phase meters, impedance-measuring accessories 105
Meters, Analog for measuring voltage, current, resistance 113
Meters, Digital and Differential including de standards, ac-to-ds converters, voltage-to.frequency converters 14.
Microwava Test Equipment 159
Equipment rables by frequency band 163
Signal sources 175
Spectrum analyzers 214
Power measurement equipment 218
Noise figure measurement equipment 228
Microwave impedance measurement equipment 230
Osclllators and Audio Signal Generators 247
Oseilloscopes 265
Power Supplies 307
Pulse, Square Wave, Digltal Dolay Generators 333
Recorders including x-y, continuous thermal-writing and optical, tape, single- and multi-channel systems. 341
Descriptive Index 391
Numerical Index 396
Fleld Offices 400b

ABOUT HEWLETT-PACKARD

Since its founding in Palo Alto, California, in 1939, Hewlett-Packard has grown from a two-man operation into a world-wide organization of more than 7000 people, with an annual sales volume exceeding $\$ 125$ million.

The company and its affiliates now have more than a dozen manufacturing plants, including two in Western Europe and one in Japan. Sales and service offices are 10 cated in nearly every major city in the free world.

Although Hewlett-Packard's growth has been dynamic and far-reaching, the company has never altered its original objective - to make significant contributions to the special. ized field of electronic instrumentation. To this end, it has concentrated its energies and resources on developing instruments which provide the greatest possible usefulness, accuracy, convenience, dependability and dollar value.

Among the principle categories of Hewlett-Packard instrumentation are oscillators, volemeters, oscilloscopes, pulse generators, graphic recorders, datr acquisition systems. waveguide test equipment, signal generators, electronic counters, frequency and time standards, impedance measur. ing instruments, power supplies, solid-state components, medical diagnostic equipment and instruments for chemical and nuclear measurement.

The market for the company's instruments covers a broad spectrum of science, business and industry. From electronic development laboratories to radio and TV studios, from chemical research facilities to aircraft plants, from banks to medical laboratories, from steel mills to space vehicle installations - Hewlett-Packard equipment is found in a wide variety of applications.

Now in its second quarter century of growth and prog. ress, Hewlett-Packard intends to continue providing instruments which represent the utmost in fine craftsmanship a standard of quality unmatched in the electronic test equipment field.

Hewlett-Packard Divisions and Aftiliates

To provide the full advantage of specialized engineering and manufacturing knowhow for each product, HewlettPackard operates through product-oriented divisions, each responsible for one or more rypes of instrumentation. The general manager of each division administers all aspects of engineering, manufacturing and marketing for a given product group.

Hewlett-Packard sales divisions, each responsible for local service in a defined geographic territory, are listed at the end of this catalog.

Two Hewlett-Packard divisions are at 1501 Page Mill Road in Palo Alto, California. Products of the Frequency and Time Division include electronic counters and precise frequency and time standards. The Microwave Division produces signal generators, waveguide and other special. ized rest equipment for use at microwave frequencies.

The Loveland (Colorado) Division manufactures voltmeters, oscillators, distortion analyzers and other generalpurpose test equipment.

The Colorado Springs (Colorado) Division makes os. cilloscopes, pulse generators and allied products.

Dymec Division, 395 Page Mill Road, Palo Alto, California, produces instruments and systems for acquiring and processing digital data, as weell as specialized test equipment for other uses. Dymec was established in 1956 and acquired by hp in 1959.

Boonton Division, Green Pond Road, Rockaway, New Jersey, was founded in 1935 and acquired by hp in 1959. Products include impedance-measuring equipment. and special-purpose signal generators and test sets.

HP Associaces, 620 Page Mill Road, Palo Alto, California was formed by hp in 1961 to conduct solid-state research and development and to market advanced semi-conductor components.

Harrison Division, 100 Locust Avenue, Berkeley Heights, New Jersey, was founded in 1954 and acquired by hp in 1961. Harrison Division produces highly regulated de power supplies and related items.

Moseley Division, founded in 1951 as the F. L. Mose. ley Co., became affliated with hp in 1958, and a division in 1964. Moseley Autograf X.Y Recorders and a broad line of laboratory and industrial strip-chart recorders are widely used throughout the world. Moseley Division is at 433 North Fair Oaks Avenue in Pasadena, California.

Sanborn Division, 175 Wyman Street, Waltham, Mas sachusetts, has been affiliated with Hewlett-Packard since 1961. Sanborn's medical group is a leading source of medical diagnostic apparatus; the industrial group produces a broad line of instruments and systems for measuring and recording physical phenomena.

Mechrolab, an hp affiliate since 1964 , produces a prothrombin (blood-clot) cimer, as well as a number of osmometers and other specialized instruments for measuring molecular weights of complex polymer chemicals. Mechrolab is located at 1062 Linda Vista Avenue, Mountain View, California.

Hewletc-Packard Inter-Americas, headquartered in Palo Alto, provides sales and service to Canada (through Hew. lett-Packard (Canada) Lid.), and to all of Latin America.

Hewletr-Packard S.A., in Geneva, Switzerland, is responsible for all hp activities in Western Eucope. Factories in Bedford, England, and in Böeblingen, Germany, manufacture many of the individual instruments sold in Europe. Sales companies in each major country assure European castomers of the same high level of applications assistance and service as in the United Stares.

SUGGESTIONS FOR ORDERING

Order by model number

When you order, please specify the catalog model number and name of instnment desired. For example, 'Model 400D Vacuum Tube Voltmeter." To prevent misunderstanding, include significant specifications and specific instructions in your order whenever you desire special options or fearures such as special color, non-standard power line voltage, etc.
Many Hewlett-Packard instruments are supplied in cabinets along with easily attached hardware for direct mounting in $19^{\prime \prime}$ equipment racks. Other Hewlett-Packard instruments are available in cabinets for bench use or with 19 " panels for rack mounting. For example, "400DR." Catalog listings indicate availability of cabinet or rack mounting arrangements. Please be sure your order indicates which you desire.

Price and delivery information

Prices in effect at date of publication are listed in this caralog. All prices and other data are subject to change without notice, Prices are l.o.b. factory. Contact your near. est field sales office to confirm prices and to obtain current delivery information.

Where to send your order

Your order should be made out to the Hewlett-Packard Company and sent to the Hewlett-Packard field office in your area (see inside of back cover). Each field office has special communication channels to the Hewlett-Packard factories to assure prompt and efficient handling of your order. See additional information below if you are located outside the United States.

Local technical assistance
Technical assistance in selecting equipment and prepar.
ing orders is available, without charge, from field engineers at Hewlett.Packard sales offices in the United States and in principal areas throughout the world (see inside back cover for names and addresses).

Shipping methods

Shipments to destinations within the United States and Western Europe are made directly from local factories or warehouses. Unless specifically requested otherwise, express or truck transportation is used, whicherer is cheaper and most serviceable to you. Small items are sent via parcel post. If rapid delivery is needed, we will gladly ship by the more expensive methods of air freight, air express or air parcel post when specified on your order. In many parts of the United States a consolidated air freight service provides the speed of air transfort at surface cates. Ask your field engineer for details.

Terms

U.S. terms are 30 days net. Unless credit has already been established, shipments will be made C.O.D., or on receipt of cash in advance. See additional information below if you are located outside the United States.

Quotations

Upon request, quotations will be furnished to you by your local Hewlett.Packard sales office or the HewlettPackard Company. Prices will be specified on an f.o.b. factory basis unless otherwise requested. See addjitional information below if gou are not in the United States.

Repairs and repair parts
See pages 3 through 12.

Additional information for customers outside the United States

Where to send your order

In many countries, your order can be placed directly on your local Hewlett-Packard discribucor or representative (see inside back cover). Alternatively, your order can be made our to Hew-lett-Packard Company, (Hewlett-Packard S. A. if you are in Western Europe or Hewlett-Packard Inter-Americas if you are in Latin America) and sent to the appropriate Hewlett-Packard office, either directly or through your local hp authorized sales office.

If no Hewlett-Packard representative of distributor has, as yet, been appointed for your area, your order should be placed directly on the offices listed above.

Shipping methods

Shipments to customers outside the United States or Western Europe are made from the appropriate Hewlett-Packard facility by either surface or air, as requested. Sea shipments generally require commercial export packaging at a nominal extra charge.
Terms
Terms for orders from countries outside the United States which are placed on the HewlettPackard Company, Herwlett-Packard S. A., or Hewlett-Packard Inter-Americas are irrevocable lettec of credit or cash in advance, unless other terms have been arranged previously. Terms for orders placed on authorized Hewlett-Packard distributors are mutually determined berween the customer and the distributor.

Quotations and pro forma invoices

FAS, CIF, C \& F, etc., quotations or pro forma invoices, as well as exportation and importation assistance, are available on request from your local authorized Hewlett-Packard sales office, Hewlett-Packard, Palo Aito, Califomia; Hewlett-Packard S. A., Geneva, Switzerland, or HewlettPackard Inter-Americas, Palo Alto, California.

SERVICE IN DEPTH-PROVIDED WITH EVERY HEWLETT-PACKARD INSTRUMENT

With electronic instrumentation, as with other products, the user expects service with his purchases, and he expects the manufacturer to stand behind its products after the sale. Satisfying this expectation is one of the manufacturer's primary responsibilities, and it is a responsibility which Hewlett-Packard long has recognized.

Even more than with consumer products, electronic measuring instrumentation demands this service. Purchase of equipment to check out a multi-million-dollar missile before launch or for monitoring critical physiological reactions of a patient during surgery must carry with it an assurance of accuracy and reliability. Not only must the manufacturer build qualiry and reliability into his product, but he also
must have a service organization which can respond quickly and completely to the customer's needs.

Over the years, Hewlett-Packard has built such an organization. When the buyer of Hewlett-Packard equipment needs repair service, replacement parts or technical assistance, he need not correspond with a factory that may be several thousand miles away. More than 75 field offices located throughout the free world provide local service for the instruments manufactured by the Hewlett-Packard companies.

Many of the services offered by these hp field offices are discussed on the following pages. You will read about the depth of service you can expect from hp. Then check inside the back cover of this catalog to locate the Hewlett-Packard field office nearest you.

LOOK FOR THESE BEFORE-THE-SALE SERVICES

In addition to the usual (and some not so usual) after-the-sale services, your Hewlett-Packard Field Office also offers many services you may find helpful before you decide which piece of equipment to purchase.

Demonstration instruments

For many purposes, a data sheet giving complere technical specifications is all you require. There are, however, cccasions when you like to have an instrument put through irs paces have a chance to see for yourself. Your hp field engineer will be happy to arrange a demonstration of Hewlett-Packard instruments for you. Also ask your field engineer when an hp demonstration van will be in your area. These vans offec you a chance to see and evaluate instruments from all of the Hewlett-Packard divisions in working displays.

Specials

With such a broad product base, hp is capabie of modifying standard instruments to meet a wide variety of special applications. Divisionalization of the product groups permits a fexibility in our manufacturing methods, and provides potentials unequaled in the industry. If you have a unique application and cannot find a standard instrumene to do the job, check with your hp feld engineer. He is always ready to work with you in any way possible.

Staff engineers

When you pick up your telephone, the quickest, most efficient source of rechnical assistance and application information is your hp field office staff engineer. To ensure that there is always someone available who taiks your language, your staff engineer spends all of his time in the office. ready to answer your call. He is the in-office counterpart of your feld engineer and directly assists him in giving you the finest possible service. If you have an application ques. tion or if you need technical information on hp products, just give him a call.

APPLICATIONS AND MAINTENANCE TRAINING FOR YOUR TECHNICAL PERSONNEL

When purchasing test equipment, ease of maintenance is always a consideration. Many purchasers, of course, have repair and calibration facilities and prefer to maintain their hp equipment at their plant. By taking advantage of HewlettPackard's product training program, you can have factory trained technicians in your service department.

Two types of training are offered for your supervisory and key electronic maintenance personnel - field service seminars and factory seminars.

Field service seminars

Generally held at the local field office, field service seminars cover a given product area such as oscilloscopes, signal generators, voltmeters, etc., and last for one or two days.

These seminars are usually conducted by engineers from the Hewlett. Packard product training group who are thoroughly trained in the instruments to be covered and experienced in instructional techniques.

Factory seminars

Factory seminars offer broader coverage of groups of instruments and are held at the Hewlect-Packard factory. Older instruments, as well as the newer models, are covered and, where possible, a portion of the training is tailored to individual needs. Repair and calibration techniques are discussed during the one-or two-week seminar.

Seminar schedule and cost

Due to the program's popularity and the limited number of trainees that can be accommodated at any one time, there is often a waiting list. Your hp field office will be glad to provide you with a schedule of upcoming seminars and make the necessary reservations.

Both the field seminars and the factory seminars are offered at no charge to you. Your only cost is for transporta. tion, lodging and meals.

Field service seminars offer your service techniclans the opportunity to recelve maintenance training from factory enginears.

Mere intensive coverage of a group of instruments is avallable through the factory semingrs.

A VARIETY OF TECHNICAL PUBLICATIONS-YOURS FOR THE ASKING

Hewlett-Packard willingly incurs the obligation to keep you informed of new measurement techniques, applications, new instroments, maintenance and service procedures. To do this, your hp Geld office offers a number of publications, each designed for a specific purpose.

If you are interested in receiving any of the following publications, simply contact the field office rearest you.

Operating and Service Manuals

Operating and Service Manuals provide operating instructions, theory of operation, maintenance and calibration information, schematics and a table of replaceable parts. Al. though they are supplied with each nev $h p$ instrument, you may wish to purchase extra copies or replace your original copy if it has been misplaced. Manuals for current instruments are always available, and copies for many older instruments are quite often still in print.

When ordering a replacement manual (usually $\$ 2.50$ to $\$ 10$), please give the instroment model number and complete serial number.

Bench Briefs

This newsletter briefly reviews new hp service information as it becomes available. Typical subjects include new modifications, service short cuts and parts information. Distributed by mail, Bench Briefs is sent to individuals directly concerned with repair and maintenance of hp instruments.

Hewlett-Packard Journal

A monthly rechnical publication from the hp laboratories, the Journal brings you new measuring techniques and describes advances in the state of the-art for measuring instruments. To receive your copy of the Journal each month, just ask that your name be added to the Journal mailing list.

Service Notes

This series of technical publications is available for distribution to customers' facilities where hp instruments are repaired and maintained. Service Note topics include new or special calibration techniques, modifications and special repair procedures - all witten in a detailed manner. Ask your hp field engineer for a copy of the Service Note Index.

Application Publications

As the name implies, Application Publications deal primatily with uses of hp equipment. Because of their specialized nature, these Publications are distributed by individual request only rather than on a mailing list. Ask for the complete Application Publications Index so you may order those which are of interest to you.

Measurement News

Announcements of new instruments and Application Publications as they become available, as well as articles of local interest, are brought to you by your hp field office in this bi-monthly publication.

OFF-THE-SHELF DELIVERY FOR YOUR HP REPLACEMENT PARTS

Replacement parts play a key role in Hewlett-Packard's service-in-depth program. Prompt instrument maintenance, whether it's done in your shop or by one of the hp field offices, depends on the immediate availability of the necessary ceplacement parts. For this reason, extensive parts inventories are maintained throughout the field. Over 90% of the orders for hp replacement parts are shipped the same day they are received. To back up these inventories, Hewlett. Packard has developed a fast drop-ship procedure from regional centers to assure you of immediate response to your replacement parts needs.

Accessories and operating supplies

In addition to the usual individual seplacement parts, accessories and operating supplies are also in stock ready for immediate delivery for the instruments manufactured by the Hewlett-Packard companies.

Modification kits

Like replacement parts, modification kits may be ordered by hp stock number from your nearby field office. Two publications from hp customer service, Service Notes and Bench Briefs (see preceding pages), keep you abreast of modifications which are available.

A complete inventory of replacement parts. accessories and operating supplies is malntained at your local hp field olfice.

These items make up an "Isolated Service Kit' for the Model 4108 Vacuum Tube Voltmeter.

Proper parts identification means faster de. livery to you. Ca!l your hp field office when. ever you need assistance.

Spare parts kits

Several types of parts kits are available to assure continuous operation from your hp instruments when they are being used in an isolated area, or where loss of the instrument use would be extremely critical. "Running Spares" and "Isolated Service" kits offer varying degrees of completeness, and you can pick the kit that most nearly satisfies your requirements.

Ordering replacement parts

When ordering replacement parts or operating supplies, please specify the following information to assure your getting the right part in the shortest possible time.
L. hp stock number for the part
2. a complete description of the part

This information is listed in the "Table of Replaceable Parts" in the Operating and Service Manual you received with your instrument.

If for some reason the hp stock number is unknown, please include the instrument model number and serial number, a complete description of the part, its function and its location within the instrument.

INSTRUMENT SERVICES WHEN YOU NEED THEM

The Hewlett-Packard field office is not just a point of contact, a mere passer of messages. The service departments located at more than 40 of the field offices have fully equipped, factory-trained repair and maintenance groups prepared to offer you immediate assistance on your HewlettPackard instruments.

Instrument recalibration

To insure continued reliability, the proper operation of any electronic instrument should be routinely verified from time to time. The Operating and Service Manual for each hp instrument provides the information required for field recalibration. If it is not convenient for you to recalibrate your hp instrument, contact your nearest hp feld office.

Standards calibration and traceability to NBS

Special "standards calioration" services also are available. These services are in addition to the precision recalibration services mentioned above, and include a calibration report on each equipment item calibrated. The report contains (1) a description of measorement conditions, (2) the measurements made and accuracy, and (3) demonstration of traceability to the National Bureau of Standards (where applicable).

Repair and maintenance

When your hp instrument is not functioning properly, you usually need service fast. Whether it is routine maintenance or emergency repair, the field service department is staffed and equipped to do the job quickiy.

Factory-trained senior technicians offer fast, de. pendable service for in- or out-of-warranty repalrs.

Instrument overhaul

Older hp instruments that have been in operation for a number of years can be brought up to meet the specifications of the current production instruments of the same model. If your particular model is no longer being manufactured, overhaul will put it in a condition equivalent to when it was originally purchased.

Modification

The characteristics of your standard hp instrument can occasionally be modified to satisfy special requirements, on an older instrument that has been in the field for some time can be up-dated by one of many modifications available through the field service department. Most modifications can be easily performed in your plant by your technicians (see Modification Kits, page 8).

Other instrument services available

Hewlett-Packard instrument services, of course, go beyond the usual repair and calibration. Service contracts are available through your hp field office, and systems installation is provided wheo needed.

Returning your instrument for service

When returning an hp instrument to your hp field office for service, following the three suggestions listed will help get it back to you in the shortest possible time:

1. Send complete instructions telling what you would like done to the instrument (repair, overhaw, certify - with NBS traceability, etc.).
2. If the instrument needs to be repaired, include complete information about the "symptoms."
3. Indicate the address to which the instrument is to be retumed, plus the addresses to use for correspondence and billing purposes.

AN ORGANIZATION DESIGNED TO SERVE YOU

Publications, replacement parts, training, staff engineers, instrument maintenance and calibration, demonstrations, "specials"-all offered by your hp field office. This would not be possible, of course, without some solid back-up. Hewlett-Packard's service organization backs up the field office with regional service centers, and it backs up the regional service centers with service engineers in the manufac turing divisions.

Regional service centers

Regional service centers are now located in Rockarway, New Jersey, and Palo Alto, Califonia, with more expected in the near future. In addition to the usual repair and replacement parts back-up, the xegional service centers maintain highly specialized equipment not available at all local service deparments for repairs and calibration. These centers also stock the seldom-called-for replacement parts for older hp instruments. In this way, you are guaranteed the same fast service for all your replacement pars.

Stafed by people with many years of eactory and feld office experience, the regional service centers provide technical back-up, as well. A complere microfilm library is maintained at each service center for the instruments produced by the hp divisions, with parts lists, production changes (and the serial numbers involved), modifications and serv. ice techniques included.

Manufacturing divisions

An important member of each manufacturing division's marketing group is the service engineer. It is his function to see that new insrruments developed by his division have service considerations built in, to keep abreast of the latest modifications available and repair techniques used and to see that this information is passed to the cegional service centers and the feld offices. A specialist in his particular group of instruments, he also provides additional technical back-up.

Warranty

The Hewlett-Packard warranty not only guarantees you an instrument which will perform to published specifications, but also expresses our pride and confidence in the materials and workmanship which have gone into that instrument. It is a warranty backed by over 25 years of experience in the electronics industry and an organization designed to serve you.
"All Hewlett-Packard products are wracranted against defects in materials and workmanship. This warranty applies for one year from date of delivery, or in the case of certain major components listed in the operating manual, for the specified period. We will repair or replace products which prove to be defective during the warranty period. No other warranty is expressed or implied. We are not liable for consequential damages."

Figure 1. Fult rack width cabinets stack one atod the other.

Figure 2. Standard configurations mclude cobinets one-third and one-half tull rack width. Accessory hande 11057 A is shown on half-width instrument.

Figure 3. Hewlett-Packard 1051A Combining Caso.

Figure 4 Here one hp instruinent, one Karrison Division instrument and two Dymec Division instruments are mounted in an ho rack adapter frama.

HEWLETT-PACKARD MODULAR ENCLOSURE SYSTEM

Versatile instrument packaging

The Hewlett-Packard modular enclosure system provides a complete solution to instrument packaging and mounting problems. The system is in accord with EIA standard rack and panel dimensions, yet each enclosure is equally well suited to bench or field use.

The matching enclosures offer an enviable combination of economy, strength and appearance. They are rugged enough to meet many of the stringent military require. ments and present a rich. professional appearance which enhances the value of the instrument.

Two types of instruments

Basically, instruments enclosed in the modular system fall into two classes:

1. Those units which require the full EIA rack width. This class of instruments mounts directly in racks with the two brackets and fillerstrip included with the instrument. Extension slides are available for use in rack mounting these instruments to provide complete accessibility for quick, convenient servicing. Feet and tilt stand also are provided with full-module instruments for bench use, and the instruments can be stacked conveniently for maximum utilization of avait. able space. For semi-permanent stacking, joining brackets are available which effectively combine iwo instruments into a single physical unit. Control panel covers are also available for these instruments to prorect them when they are transported.
2. Those units which do not need the full rack width. These instruments are standardized at one-half or one-third the width of the full module. Because of their size, they are easily portable and can be used readily in the feld, as well as on the bench. Acces. sory handles (1056A (one-third module) and 11057A (one-half module) are attached easily to chese instruments for added handling convenience. In addition, adapter frames are avarlable to mount these units in the standard EIA racks. The hp 1051A, 1052A Combining Cases also can be used for a multi-instrument package that is both portable and easily rack mounted with the hardware provided. Both combining cases and rack adapter frames use biank panels to fill areas not used by instruments and accept one-third width dravers for convenient storage of leads, probes, etc. Model 1052A Combining Cases also accept cooling kits to maintain proper ambient temperature.

Characteristic of both classes of modular instruments is ease of maintenance. Top and bottom covers, as well as side panels, are remorable to provide access to all adjust. ments and test points within the instruments.

Part Number	Control panel covers EIA panel height (in.) (mm)		Price
5060.0826	3.15/32	88	522.50
5050.0827	5-7/32	133	\$25.00
$5060.082^{2}{ }^{\circ}$	6.31/32	177	527.50
5060-0829	8.23 .32	222	\$28.50
5060.0830	10.15/32	266	330.00
5060.0831	12.7/32	310	\$32.50

* Alse fits ho losia and 2052A

Extension slides (see Figure 6)

0403.0050 Slides, closed length $16.7 / 32^{\prime \prime}$ (412 mm), maximum travel $203 / 4^{\prime \prime}$ ($\$ 27 \mathrm{~mm}$), $\$ 50$.
0403-0051 Slides, closed length 22.7/32" (564 mm). maximum travel $263 / 4^{\prime \prime}$ (680 mm), 555 .
0403-0052 Adapters and Brackets for full-module instruments over $31 / 2^{\prime \prime}$ high (89 mm). $\$ 20$.
0403-0054 Adapters and Brackets for full-module instruments $31 / 2^{\prime \prime}$ high (89 mm). 515 .

Joining brackets (see Figure 8)
$5060-0215$ Joining Bracket Kit for semi-permanently joining any two full-module instruments $111 / 4^{\prime \prime}$ (286 mm) deep behind the front panel, S 20 .
5060.0216 joining Bracker Kit for semi-permanently joining any two full-module instruments $163 / \mathrm{g}^{\prime \prime}$ (416 mm) deep behind the front panel, $\$ 20$.

Accessory handles (see Figure 2)

11056 A Handle for any one-third module instrument, $\$ 5$. 11057A Handle for any one-half module instrument, $\$ 5$.

Figure 5. Instrument covers quickly convert fult-wideh cab. inets to eastly carried portable units.

Figure 6. Expension slides permit easy access to rack mounted instruments.

Figura 7. Combining case accossorles.

Figure 8 . Joining brackets elfectlvely weld instruments into a single physical unit.

HEWLETT-PACKARD INSTRUMENTS FOR SCIENCE \& INDUSTRY

New instruments ase constantly emerging from the expansion of technology in Hewlett. Packard's growing family of affiliates and divisions. These are not only for traditional electronic applications, but increasingly are contributions toward better instrumentation for science and industry at large. Representative of hp developments beyond those purely electronic are the chemical instruments described here. For further details on these and other such products, contact your Hewlett-Packard field engineer.

Measure molecular weights rapidly, precisely, 100 to 5,000,000

Mechrolab 300 Serie: Vapor Pressure Osmometers. Number a verage molecular weighrs between 100 and 20,000 are precisely determined in 20 minutes or less with 300 Series Vapor Pressure Osmometers. Operating on the principle of vapor pressure lowering of solvent by solute, these instruments automatically provide 2 -minute readings at progressively changing osmotic concentrations. Excellent results can be obtained using microliter volumes of sample. Thermostats and probes are available for operation at $25,37.50$ and $65^{\circ} \mathrm{C}$ (upper limit). The Mechrolab Auxiliary Sample Chamber, which can easily be connected to all new and existing 300 Series instruments, effectively doubles the work capacity and lexibility of each instrument. Prices: Mechrolab 301A (25 ta $65^{\circ} \mathrm{C}$), $\$ 2690$; Mechrolab 302 (25 to $130^{\circ} \mathrm{C}$), $\$ 3150$; Mechrolab 300 Auxiliary Sample Chamber, \$1275.
Mechrolab 500 Series Higb-Speed Membrane Osmometers. These instruments provide precise osmotic and oncotic measurements of high molecular weight polymers and proteins, capable of measuring osmoric pressures to $\pm 0.01 \mathrm{~cm}$ of solvent. The 500 Series instruments automate manual methods of membrane osmometry and allow complete determination of molecular weights in one hour or less. Three models permit work at high or low temperatures-from $5^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$. Prices: Mechrolab 501 (ambient to $65^{\circ} \mathrm{C}$). $\$ 4225$: Mechrolab 502 (ambient to $130^{\circ} \mathrm{C}$), $\$ 4975$: Mechrolab 503 (s to $65^{\circ} \mathrm{C}$), $\$ 5550$.
Mechrolab Model 801 Auto.Viscometer. This instrument
automates intrinsic viscosity measurements for the first time and increases precision of measurement by a factor of 10. The 801 provides automatic influxing and timing, four channels for sequential operation and digital display of effux times. Most sypes of capillary U-tube viscometers can be used with the Model 801. An extremely precise constant temperarure bath, Model 805 , holds remperature uniform within $\pm 0.005^{\circ} \mathrm{C}$. It is included with the 801 Auro. Viscometer, bur also may be ordered separately for use in other applications. Prices: Mechrolab 801 Auto-Viscometer, on request; Mechrolab 805 Constant Temperature Bath, on request.

8400A Microwave Spectrometer

Idenify molecular species. determine compounds in mixtures quantintively. The hp Model 8400A Microwave Spectrometer, by measuring absorption frequencies in X-band, will yield molecular structure information such as the determination of bond angles. internuclear bond distances, dipole moments of molecules and intra-molecular effects such as nuclear quadrupole interactions and hindered rotations. From application of new microwave techniques, Model 8400 A makes it possible to determine precisely the intensiry coefficient-both peak and integrated-of the absorption curve. With this information, the precise amount of sample in the Stark cell can be calculated. Features of the fully-integrated spectrometer

Rapid absolute intensity coefficient measurements
Microwave power at the Stark cell is leveled
automatically throughour spectrum sweep
Frequency-calibrared recorder chart
Direct counter readour of microwave frequency
Modular construction
Each Microwave Spectrometer System consists of three related consoles. Onc contains the vacuum equipment, which exhauses the Stark cel! prior to sample injection; the second includes sample chamber and most microwave circuitry: the electronics, control and recording equipment is in the third console. For full details contact Microwave Division, HewlettPackard, 1501 Page Mill Road, Palo A!to, California 94304.

hp 8400A

5259A Frequency Converter

The hp Model 5259A Frequency Converter converts your 5243 L or 5245L Electronic Counter (see page 46) to a 1012 me frequency counter. Jt retains the stability and accuracy of the basic counter by using a multiple of the 10 mc signal from the counter time base to beat with the unknown signal. The 5259 A operates from 458 to 1012 mc . With 5259 A installed, basic measurement ranges of the counter are setained. Measurements to 20 mc (5243 L) or 50 mc (5245 L) are obtained by moving counter sensitivity control of "piug-in" position, connecting measured signal directly to counter input.

Specifications, 5259A
Input voltage range: 100 mv to 1 v rms .
Input Impedance: approximately 50 obms.
Weight: net $5 \mathrm{lbs}(2,3 \mathrm{~kg})$; shipping $9 \mathrm{lbs}(4 \mathrm{~kg})$.
Accessory furnished: 10503 A Cable, 4 fr . (1220 mm) long, male BNC Connectors.
Price: hp 5258A, \$5s0.

525D Frequency Converter

The hp Model 525D Frequency Converter converts your 524B, C or D Electronic Counter (pages 64, 65) to a 1010 mc frequency counter. It retains the stability and accuracy of basic counter by using a multiple of the 10 mc signal from the counter time base to beat with the unknown signal. The 525D operates from 460 to 1010 mc and also retains 524 basic measurement ranges and functions as an amplifier, increasing $\$ 24$ sensitivity to 20 mv from 50 kc to 10.1 mc .

Specifications, 525D
Input voltage: 20 mv sms min., 50 kc to $10.1 \mathrm{mc}, 200 \mathrm{mv} \mathrm{mms}$ $\mathrm{min}, 460$ to 10 t 0 mc .
Resolution: 0.1 cycle to 1000 cps , depending on gate time.
Input Impedance: approximately 700 ohms 50 kc to 10.1 mc ; approximately 50 ohms 460 to 1010 mc .
Weight: net $3 \mathrm{lbs}(2,3 \mathrm{~kg})$; shipping $91 / 2 \mathrm{lbs}(4,3 \mathrm{~kg})$. Price: hp 523D. 8550.

4260A Universal Bridge

Fast, accurate measurements of R, C, L, D and Q are easy with the hp 4260 A . In-line readout, automatic decimal indication and simplified controls make the A260A especially suitable for production testing and general measurement uses. New electronic orthogonal null eliminates repetitive operations, temoves ambiguity from D and Q measurements.

Specifications, 4260A

Seven ranges: C, R, L, 1 pf to 1000μ, 10 milliohms to 10 meg, I $\mu \mathrm{h}$ to $1000 \mathrm{~h}: \mathrm{D}$ (dissipation factor) of series C , 0.001 to $0.1 ; \mathrm{D}$ of parallel $\mathrm{C}, 0.05$ to $50: Q$ of series $L, 0.02$ to 20 ; Q of parallel $\mathrm{L}, 10$ to 1000 .
Accuracy: $\mathrm{C}, \pm 1 \% \pm 1 \mathrm{pf}, 1 \mathrm{pf}$ to $100 \mu \mathrm{f} ; \pm 2 \%, 100 \mu \mathrm{f}$ to $1000 \mu \mathrm{f} ; \mathrm{R}, \pm 1 \% \pm 10$ milliohm, 10 milliohm to 100 K ; $\pm 2 \%$. 100 K to $1 \mathrm{meg} ; \pm 5 \%, 1 \mathrm{meg}$ to $10 \mathrm{meg} ; \mathrm{L}, \pm 1 \%$ $\pm 1 \mu \mathrm{~h}, 1 \mu \mathrm{~h}$ to $100 \mathrm{~h} ; \pm 2 \%, 100 \mathrm{~h}$ to 1000 h ; D of series C, $\pm 7 \% \pm 0.001 ; 1 / \mathrm{D}$ of parallel $\mathrm{C}, \pm 7 \% \pm 0.02 ; \mathrm{Q}$ of series $\mathrm{L}, \pm 7 \% \pm 0.02 ; \mathrm{l} / \mathrm{Q}$ of parallei $\mathrm{L}, \pm 7 \% \pm 0.001$,
Measurement frequency: I kc for L and $\mathrm{C} ; 20 \mathrm{cps}$ to 10 kc ap plicable with external oscillator; dc only for R measurement.
Oscllator, internal, i kc $\pm 2 \%$. 10 v rms max.
DC supply: internal, $40 \mathrm{v}, 20$ ma max.
Detector: internal, tuned at 1 kc (flat amplifier used with external oscillator).
Electronic orthogonal null: eliminates D, Q adjustments in series L and parailel C measurements; accuracy equals normal operating condition $\pm 0.5 \%$.
Dimensions: $61 / 2^{\prime \prime}$ high, $73 / 4^{\prime \prime}$ wide, $12^{\prime \prime}$ deep ($165 \times 197 \times$ 305 mm).
Welght: net 12 lbs ($5,4 \mathrm{~kg}$); shipping $16 \mathrm{lbs}(7,2 \mathrm{~kg}$).
Price: hp 4260A, on request.

525D

5259A

MEDICAL INSTRUMENTS FOR CARDIAC, BLOOD, METABOLISM ANALYSIS

 Simplify the acquisition of reliable diagnostic information

 Simplify the acquisition of reliable diagnostic information}

500 Viso-Cardiette Electrocardiograph

Provides simpler recording of clear cardiograms in the presence of moderately high interference levels and abnormally high skin resistances. Offers two speeds (25 and $50 \mathrm{~mm} / \mathrm{sec}$), three sensitivities ($1 / 2,1$ and 2 X normal), automatic stylus stabilization during lead switching, standard 5 cm lined chart and easy paper loading. Improved circuit provides better discrimination of heart signals from ac interference, a more stable baseline and better patient protection without fuses. Controls are functionally grouped and electrode cable tips are color-coded to a patient diagram on panel. Sanborn 500, \$695; with matching 500-1100 Mobile Cart, $\$ 820$.

75 Cell Counter

Accurate red or white blood-cell counts in less than 25 seconds. Pour sample, press lever and read meter calibrated in cells/cu.mm. Unique optical-electronic design samples 50 times number of cells sampled by manual methods. Sanborn $75, \$ 1800$.

202 Clot Timer

Sanborn/Mechrolab Clot Timer replaces human fallibility in blood coagulation end-point detection with precise, reproducible electronic determinations accurate to 0.3 sec ond. Clotting time appears on numerical readout. Two tests can be run simultaneously. Sanborn/Mechrolab 202, \$685.

74A,R,W Hemo-Diluter ${ }^{\text {Bit }}$

Semi-automatically provides proper dilutions of whole blood for the 75 Cell Counter, using separate fluid-handling systems for red cell and white cell dilutions. Sanborn Model 74A,R,W; Prices on request.

S-1000 Blood Analyzer

Sanborn / BMI Blood Analyzer measures cholesterol, hemoglobin, glucose inexpensively and with exceptional reproducibility and minimized possibility of operator erroc. Easy, non-technical operation. Simple procedures use one reagent and precalibrated disposable pipettes and cuvettes; Sanborn/BMI 3-test Analyzer, \$380; 2 -test, $\$ 340$; single-test, $\$ 205$ (hemoglobin, $\$ 179$); plus cost of accessory kits.

10 Metabolism Tester

For fast determination of basal metabolic rate, the metabulator offers simple controls, continuous chart supply, easily changed CO_{2} absorbent, and quick BMR calculation. All accessories can be stored in mobile cabinet. Sanborm Model 10, \$642.50.

280 Acoustic Stethoscape

Extremely high acoustic efficiency clearly transmits lowand high-pitched beart sounds which are often faint or inaudible with other instruments. With adult diaphragm and $13 / \mathrm{g}^{\prime \prime}$ open-belt, 19.75 ; with five chest pieces and three sets of ear pieces, $\$ 25$.

780 SERIES PATIENT MONITORING AND RESUSCITATION MODULES

Flexible, compatible units for reliable bedside monitoring with remote option

Continuous, automatic monitoring can significantly augment staff care of patients in critical condition: more complete attention can be given all recovery room, intensive care and emergency room patients - with special care for those in most critical condition without lessening the attention to others . . . immediate visual and/or audible notification of distress conditions, or departure of conditions from preselected limits, enables prompt application of corrective or resuscitative procedures... and in certain cases, continuous monitoring with ECG recording can reveal cardiac irregularities now thought to be the precursors of ventricular fibrillation. Electronic monitoring, in short, lends vital aid to complete, continuous patient care and the speed wich which distress symptoms are discovered.

To meet the need for comprehensive, reliable instrumentation for a wide variety of monitoring requirements, Sanborn 780 equipment is designed as individual, separately usable modules, typically combined to form a system. Together, they offer the widest choice of different combinations of the conditions to be monitored at each bed and the number of beds . . . in compact shelf or mobile cart mounting . . . in optional alarm, display or recording at a remote central station. Modular units also provide the economy of buying only the specific units nesded, with the freedom to change or expand capabilities later as experience may indicate... and the simpler servicing resulting from down-time restricted to a single module.

The design and operating characteristics of 780 instruments also reflects careful attention to patient comfort, safety and equipment protection. Continuous monitoring can be accomplished with minimum patient discomfort, freedom of movement within practical limits, and with audible alarms at remote central station only. Pacemaker and deffbrillator employ fail-safe circuits and protective devices for patient and operator alike. All units are protected against electrical damage from defibrillator currents.

Hewlett-Packard Sanborn Division medical application engineers will be glad to supply detailed systems data and recommendations to meet the needs of your present or pro. posed parient monitoring facility.

Prices: 780A Viso Monitor, $\$ 1975$; 780.800A Remote Indicator $\$ 250$; 780-1 Resuscitation Cart, $\$ 345$; 780-10 Mobile Cart, $\$ 195$; 780-2A Defibrillator-Synchronizer, $\$ 1100 ; 780-33^{\prime \prime}$ Viso-Scope, \$495; 780-4 Pacemaker, \$275; 780.5 Signal Delay, $\$ 450$; 780.7 Patient Monitor (ECG, heart rate, pacing), $\$ 820 ; 780-8$ Patient Monitor (respiration rate, temperature), $\$ 675 ; 780-9$ Patient Monitor (sys. tolic, diastolic pressures), $\$ 675$.
Not shown: 780.6 5" Viso-Scope, 780.11 Patient Selector, 780-12 Remote Alarm Indicator, 780-14 Respiration Transducer, 780.15 Wall-mount Bracket, 780.16 Ear Plethysmograph and 780.17 Remote Automatic Switching Unir.

780.800A

780A

780.3

780.2 A

$780 \cdot 4$

MEDICAL RESEARCH INSTRUMENTATION

Simple operation, clear data presentation aid investigative techniques

4568 Poly-Beam Recording System

The Sanborn 4568 is a 6 - or 8 -channel optical oscillograph capable of bigh deffnition recording on 200^{\prime} rolls of $6^{\prime \prime}$ or 6 cm white photographic chart paper, with traces across entire chart width or on a common zero line if desired. Wide adaptability is offered to handle many types of de to 500 eps physiological variables, by the user's choice of specialized plug-in preamplifiers for each channel. Opeional rapid developer for dry, completely developed records; ECG input panel for up to 4 channels of ECG recording, and oscilloscope, electronic switch and vector rimer for vectorcardiography or other visual monitoring, per. mit wide usefulness of this single system. The 4568 may be purchased for 6 channels, larer expanded to 7 or 8 channels. Price: Sanborn 4568 Basic Assembly without preamps, for 8 channels, $\$ 5060$; preamps (one per channel required), $\$ 325$ to $\$ 710$ each.

764-1,-2 Recording Systems

The Sanborn 764-1, 2 are parricularly useful in cardiac cath. eterization studies, for visual monitoring of up to 4 waveforms on a $17^{\prime \prime}$ oscilloscope and simultaneous heated stylus record. ing (764.1) or phorographic recording (764-2) to provide a permanent record for later srudy. Wide choice of miniaturized 760 Series plug.in preamplifiers equip the system for user's individual monitoring/recording requirements. System design assures accurate recording of exactly what is seen on scope screen, preserving uniform ratios between waveform amplirudes. Traces on both scope and chart may be positioned for best clarity and comparison. Price: Sanborn 764.1 Basic As. sembly, $\$ 4550$: Sanborn 764.2 Basic Assembly, $\$ 4580$; preamps (one per channel). $\$ 135$ to $\$ 500$ each.

130 Cardiac Output Computer

The Sanborn 130 automatically computes area of primary circulation curve when used wirh indicator dilution techniques, provides data in lighted numeral form in a matter of seconds, allows surgeon, diagnostician or researcher to make immediate decisions regarding further measurements while the procedure is in progress. Simple, rapid three-step operation yields numerical values which, by simple division, equal cardiac output in likers/min. Readable from 30'; Start and Reset controls operable remotely: $B C D$ output for printer, analog/digital computers: baseline sensing circuit eliminates need for zeroing at start of each test. Price: Sanborn 130, $\$ 1550$.

5601A Numerical Readout

The Sanborn 5601A displays four channels of physiological data, with three digits and decimal point per channel. Inrerchangeable modules and identifying plaques for each channel equip unit for temperature, pressure, heart rate, respication rate and other slowly changing phenomena. Lighted decimal point in any channel can be made to flash in synchronism with occurrence rate of signal (e.g., heart or resp. rate). Brilliant numerals $0.6^{\prime \prime}$ high clearly visible and readable up to 30^{\prime} away. Numeral ' 1 '" can be supplied in left channel as most significant figure, for remperature in ${ }^{\circ} \mathrm{F}$. Standard hp full-module case facilitates stack or rack mounting. Output is available for digital recorders. Price: Sanborn 5601A, with any four 000.300 range plug-ins, $\$ 2100$ (remperature channel, $\$ 100$ additional).

769A Viso-Scope

The Sanborn 769A Oscilloscope has $17^{\prime \prime}$ ($131 / 2^{\prime \prime}$ high) long. persistence screen and provision for up to 8 plug.in gating amplifiers, for clear presentation of up to 8 waveforms simul. taneously. Amplifier controls for trace positioning, gain and amplitude. Optional plug-ins are available for $x-y$ or vector. cardiograph display, slave operation of a second 760 A scope. Polaroid filter and scope face tiltable forward 20° minimize reflections, assure best viewing angle. Automatic sweep speeds 3, 6 and 12 sec , manual 3, 6, 12 and 30 sec . Mounts on shelf or table, or on mobiie carr, in rack or in ceiling swivel yoke with optional accessories. Price: Sanborn Standard 769A in cabinet with 8 gating amplifiers, $\$ 2125$.

Sanborn Transducers

These devices for converting physiological data into anal. ogous electrical signals include 267 A and $\mathrm{B}, 268 \mathrm{~A}$ and B single-ended or differential fluid pressure units for -40 to +40 mm Hg and -400 to +400 mm Hg ranges $(\$ 225, \$ 250$): 270 for bi-directional gas pressures from -100 to +400 mm HO (\$295): 350-1700-Cio Contact Crysta! Microphone for reproducing all heart sounds up to 1000 cps (\$55): FTA Microforce units for sensing $\pm 1 \mathrm{gm}$ to $\pm 100 \mathrm{gm}$ forces with displacements up to $0.020^{\prime \prime}(\$ 200)$, plus many other types for measuring linear displacement, velocity and acceleration, minute surface and internal temperature variations, external meas. urement of internal membrane pressures, chest expansion and contraction, fingertip blood pressure pulse, disc, needle, fluid column and esophageal electrodes.

Nore: For precision magnetic tape recording, see pages $384-389$ for data on Sanborn 7 - and 14 -channel 3900 series system.

LINEAR MOTION, FORCE, PRESSURE TRANSDUCERS

Accurate, sensitive sensors, easy to use

Sanborn's extensive line of stock electromagnetic transiducers on these pages and for medical application on page 19. offer designers of instrumentation and control systems a truly broad selection of accurate, refiable sensors for measuring linear displacentent. Low pressure, low force, linear velocity and other phenomena in both simple and complex applications.

Linear velocity

LVsyn@ Linear Velocity Transducers are remarkably simple to set up and use for sensitive measurements of relative velocity. The basic $L V$ syn design eliminates the need for external exciration, DC voltages are generared by moving a high fux density permanent magnet in the bore of differentially wound coils. The voltage amplitude is proportional to core velocity. Resolution of an LVsyn output is unlimited-sensitivity over the rated stroke range is constant within 5%-temperature range berween $-50^{\circ} \mathrm{F}$ to $+200^{\circ} \mathrm{F}$. They can be operated single ended or push-pull; while immersed in noncorrosive fluids; without end stops or displacement limits. Each transducer is supplied with a calibration record.

Linear displacements

Linearsyn (IVDT) Transducers produce an electerical output proportional to any physical parameter which is capable of conversion to a relative displacement between the transducer's core and coil assembly. Thirteen models, seven stroke ranges, various excitation frequency ranges and two diameter sizes offer designers an excellent stock selection for a variety of industrial and laboratory applications. When used with Sanborn or equivalent carrier amplifiers. linear displacements to $0.000001^{1 "}$ may be resolved. Non-linearity error will not exceed 0.5% of total stroke: temperature range, $-50^{\circ} 10250^{\circ} \mathrm{F}$. Linearsyns are shielded. immersible in non-corrosive fluids without damage, resistant 10 shock and vibration and void of friction and mechanical hysteresis.

7DCDT and 24DCDT Series (DC LVDT) ds excited, dc output linear displacement ($\pm 0.05^{\prime \prime}$ to 士3") transducers are extremely convenient to use for measuring, monitoring or controlling mechanical displacements. No external carrier system is required, and phase shift and balancing adjustments are not necessary. Each DCDT has a built-in carrier oscillator and phase-sensitive demodulator which produces a high-level de outpur voltage proportional to the linear displacement of the core. Both series have extremely high resolution. zero hysteresis and non-linearity less than $\pm 0.5 \%$ of total stroke. The 24DCDT's have approximately three times the sensitivity of the 7DCDT's and operating temperature to $250^{\circ} \mathrm{F}$ (7DCDT, $140^{\circ} \mathrm{F}$). Nominal excitation is $6 \mathrm{vdc}, 20$ mililiamps for the 7DCDT series and 24 volt dc, 38 milliamps for the 24DCDT series. Thes should be energized from a low-impedance, well regulated power sousce such as Sanborn $115 \mathrm{v}, 60$ cycle 6 . and 24 v de power supply Models TPS. 11 (6 v dc) and TPS-12 (24 vdc). Each power supply is capable of exciting up to five DCDT's when used with Sanborn

T41-11 Multiple DCDT Power Supply Adapter. Battery powered TPS-10 is available for 7DCDT's.

Dimensional gaging

GT Dimensional Gaging Transducers can be quiekly set up to gage. classify or profile single or multiple-point machined dimensions in seconds. Pieces can be gaged to millionths repeatedly with these precision Sanborn miniature differential transformer transducers that feature zero hersteresis, high resolution and linearity. Rugged GT's meer AGD mounting dimensions for dial indicators and operate from $-50^{\circ} 10+170^{\circ} \mathrm{F}$. Non-linearity is less than 0.5% of total stroke; contact pressure is 602 and nominal carrier excitation is 6 volts at 2.4 kc. These miniature GT gages bave $3 / /^{\prime \prime}$ diamerer stainless steel casing, replaceable contactor, precision bearings-terminations which will match Sanborn carrier amplifers (GT-3-030-1), multiple gaging systems (GT-3.030-2); or with tinned leads only (GT-3.030).

Low-level forces

FTA low-level tension and compression sensing transducers (± 1 $10 \pm 100 \mathrm{gm}$) are ideal for measuring buoyancy, discrete weights, small bearing torques, displacements and angles, as well as muscle contractions and other physiological motion (see page 19). These miniature "Microforce" transducers provide an economical way to measure uni- or bi-directional forces with infinite resolution, linearity $t 00.2 \%$ of full scale and hysteresis as low as 0.1% of applied force. FTA's have 400% overload capacity. low tracking force (no bearing friction) and excellent thermal stability over 0° to $+170^{\circ} \mathrm{F}$. Nominal excitation is s volts at 2.4 kc .

Gas pressure

The 270 is a highly sensitive and stable instrument for measuring low gas pressures. It was originally developed and is used in medical pulmonary studies (see page 19) but now also is replacing the 14 inch water manometer in many industrial and laboratory applications such as missile and airborne poeumatic control testing, and leak detection in vacuum and pressurized systems. The 270 has the same inherent advantages as other Sanborn differential transformer transducers (LVDT's), in addition to a relatively bigh natural frequency, low volumetric displacement (0.003 cu in full scale), high sensitivity ($28 \mathrm{mv} / \mathrm{vex}$), temperature operating range between 32° and $120^{\circ} \mathrm{F}$ and ability to measure either siagle-ended or differential pressures. Ratiags âre based on carriec excitation of 3 volts at 2.4 kc .

Optlonal accessory equipment

Sanborn S92-300, 115 y, 60 cps excitation source and demod for LVDT transducers, \$150; Sanborn 311A Transducer Amplifier Indicator, $\$ 425$; DCDT porver supplies: Sanbom TPS-10, 6.5 v dc (w/battery), \$42: Sanborn TPS-11, 115 v ac input, 6 v dc autput (7DCDT), \$190; Sanborn TPS.12, i1s v ac input, 24 v de oulpur (24DCDT), \$17s; Sanborn T4I-11, Multiple DCDT Power Supply Adapter (7 and 24DCDT), \$175.

Specifications, DCDT Transducers

Model	8anborn 7DCDT/24DCDT					
	. 050	. 500	-260	-6¢0	-1000	-3000
Stroke (range) (in)	± 0.05	± 0.1	± 0.25	± 0.5	± 1	$\pm \overline{3}$
$\begin{aligned} & \text { Output. volts i.s. } \\ & 7 \mathrm{DCDT} \\ & 24 \mathrm{DCDT} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.8 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.8 \\ 18.0 \\ \hline \end{array}$	$\begin{array}{r} 5.0 \\ 13.0 \\ \hline \end{array}$
Output impedance 7 DCDT 24 DCDT	$\begin{aligned} & 2.2 \mathrm{~K} \\ & 2.5 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 3.0 \mathrm{~K} \\ & 3.5 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~K} \\ & 5.2 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 5.3 \mathrm{~K} \\ & 5.5 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 5.5 \mathrm{~K} \\ & 5.6 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 5.0 \mathrm{~K} \\ & 5.6 \mathrm{~K} \end{aligned}$
Excitation 7 DCDT ($v d c$) 24 DCDT	$\begin{gathered} \text { max. } 7, \text { min. } 5 \\ \text { max. } 28, \min .20 \end{gathered}$					
Dimensions, inches (mm)diameter $\begin{array}{l}7 \mathrm{DCDT} \\ 24 \mathrm{DCDT}\end{array}$	0.75 (19.2)					
7 DCDT length 24 DCDT	$\begin{array}{r} 0.81 \\ (20.6) \\ 0.87 \\ (22.2) \end{array}$	$\begin{gathered} 1.06 \\ (27.0) \\ 1.12 \\ (28.5) \end{gathered}$	$\begin{array}{r} 3.00 \\ (76.2) \\ 3.21 \\ (81.8) \\ \hline \end{array}$	$\begin{array}{r} 3.50 \\ (89.2) \\ 3.71 \\ (94.2) \end{array}$	$\begin{array}{r} 4.50 \\ (115) \\ 4.71 \\ (120) \\ \hline \end{array}$	$\begin{aligned} & 10.50 \\ & (267) \\ & 10.52 \\ & (268) \end{aligned}$
Weight (gm) nel shipping	$\begin{aligned} & 23 \\ & 84 \end{aligned}$	$\begin{aligned} & 28 \\ & 34 \\ & \hline \end{aligned}$	$\begin{array}{r} 68 \\ 168 \\ \hline \end{array}$	78 168	$\begin{aligned} & 100 \\ & 198 \end{aligned}$	210 308
 Price: 70 DOT 24 DCOT	$\begin{array}{r} \$ 99 \\ \$ 146 \end{array}$	$\begin{aligned} & \$ 104 \\ & \$ 151 \end{aligned}$	$\begin{aligned} & \$ 119 \\ & \$ 164 \end{aligned}$	$\begin{aligned} & \$ 132 \\ & \$ 177 \end{aligned}$	$\begin{aligned} & \$ 141 \\ & \$ 186 \end{aligned}$	$\begin{aligned} & \$ 162 \\ & \$ 207 \end{aligned}$

Specifications, Dimensional Gaging
Transducers

Sanborn model	CT.3-030	GT-3-030-1	0T-3-030-2
Displacement range" (in)	± 0.03	± 0.03	$=0.03$
Sensitivity (mv/0.03 in/vex at 2.4 kc)	70	$3 \pm 10 \%$	$2.6 \pm 1 \%$
Impedance (ohms): input output	$\begin{aligned} & 180+j 280 \\ & 260+j 260 \end{aligned}$	$\underset{50}{180}+\mathrm{j} 220$	$\underset{50}{180}+j 280$
Phase shift (al 2.4 kc)	20°	0°	$0{ }^{\circ}$
Dimensions	$2.34^{\circ \prime} \mathrm{lg}, 0.375^{\prime \prime} \mathrm{dia}(59 \times 10 \mathrm{~mm})$		
Weight net (gm) shipping	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	$\begin{aligned} & 300 \\ & 800 \end{aligned}$	$\begin{aligned} & 300 \\ & 800 \end{aligned}$
Price	\$115	\$140	\$170

-Workling range $=0.04 \%$ accuracy 2%; total machanical stroke

Specifications, Linearsyn Transducers

8anborn modal	Sanbom 58507**					Samborn 586DT					Sambarn 596DT**		
	-060	-100	-250	-500	-1000	- 060	-100	-250	. 600	F-500	. 006	-026	-100
Excitation trequency std: range:	$\begin{gathered} 2.4 \mathrm{kc} \\ 400 \mathrm{cps}-10 \mathrm{kc} \end{gathered}$					$\begin{gathered} 60 \mathrm{cps} \\ 50 \mathrm{cps}-400 \mathrm{cps} \end{gathered}$					$\begin{gathered} 2.4 \mathrm{kc} \\ 400 \mathrm{cps}-20 \mathrm{kc} \end{gathered}$		
Stroke range (inches)	0.05	0.1	0.25	0.5	1	0.05	0.1	0.25	0.5	1	0.005	0.025	0.1
$\begin{gathered} \hline \text { Sensitivity* } \\ \text { (v/in/vex) } \end{gathered}$	4.8	3.1	1.2	0.95	0.75	1.2	1.2	1.5	1.1	0.8	2.2	3.4	2.7
Impedance* (0hms) primary: secondary:	$\begin{aligned} & 163 \\ & 213 \end{aligned}$	$\begin{aligned} & 160 \\ & 780 \\ & \hline \end{aligned}$	$\begin{aligned} & I 19 \\ & 880 \end{aligned}$	$\begin{aligned} & 415 \\ & 302 \end{aligned}$	$\begin{aligned} & 668 \\ & 600 \end{aligned}$	$\begin{array}{r} 110 \\ 2340 \end{array}$	81 820	$\begin{array}{r} 90 \\ 890 \end{array}$	47 2020	$\begin{array}{r} 110 \\ 1800 \end{array}$	$\begin{array}{r}93 \\ 154 \\ \hline\end{array}$	$\begin{aligned} & 303 \\ & 365 \end{aligned}$	330 365
Vex* (max)	21	17	27	25	30	9	8	18	7	11	5	11.5	13
Dimensions Inches (mm) diameter: length:	$\begin{aligned} & 0.75 \\ & (19) \\ & 1.63 \\ & (41) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19) \\ & 1.94 \\ & (49) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19) \\ & 3.31 \\ & (84) \\ & \hline \end{aligned}$	$\begin{array}{r} 0.75 \\ (19) \\ 4.88 \\ (124) \\ \hline \end{array}$	$\begin{array}{\|l} 0.75 \\ (19) \\ 6.88 \\ (174) \\ \hline \end{array}$	$\begin{aligned} & 0.75 \\ & (19) \\ & 1,63 \\ & (41) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \\ & (1.9) \\ & 1.94 \\ & (49) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19) \\ & 3.31 \\ & (84) \\ & \hline \end{aligned}$	$\begin{array}{\|c} 0.75 \\ (19) \\ 4.88 \\ (124) \\ \hline \end{array}$	$\begin{aligned} & 0.75 \\ & (19) \\ & 6.88 \\ & (174) \\ & \hline \end{aligned}$	$\begin{gathered} 0.375 \\ (10) \\ 0.90 \\ (23) \\ \hline \end{gathered}$	$\begin{gathered} 0.375 \\ (10) \\ 1.09 \\ (28) \\ \hline \end{gathered}$	$\begin{gathered} 0.375 \\ (10) \\ 1.09 \\ (28) \end{gathered}$
$\begin{aligned} & \text { Weight (gm) } \\ & \text { net } \\ & \text { shipping } \end{aligned}$	$\begin{array}{r} 47 \\ 227 \\ \hline \end{array}$	56 227	$\begin{aligned} & 104 \\ & 227 \\ & \hline \end{aligned}$	$\begin{aligned} & 132 \\ & 227 \\ & \hline \end{aligned}$	$\begin{array}{r} 178 \\ 227 \\ \hline \end{array}$	47 227	$\begin{array}{r} 57 \\ 227 \\ \hline \end{array}$	$\begin{aligned} & 105 \\ & 227 \\ & \hline \end{aligned}$	132 227	178 227	7.1 84	$\begin{array}{r} 7.9 \\ 84 \\ \hline \end{array}$	$\begin{array}{r}7.9 \\ 84 \\ \hline 8 .\end{array}$
Price	\$25	\$35	\$41	\$50	\$60	\$25	\$35	\$41	\$50	$\$ 60$	\$30	\$27.50	\$35

- At standard carrier frequency.
- For units suppilled with 8^{\prime} cesole (w/connector and phasing unit) for diract operation with sanborn 2.4 ke carrier amplifiers, add -BM to model number and $\$ 30$ to orice.

Specifications, Microforce
Transducers

Santorn model	FTA-1-1	FTA-10.1	FTA-100-1
Force (range, gm)	± 1	± 10	± 100
Displacement (full scale, in)	± 0.01	± 0.01	± 0.01
Sensitivity (full scale, mv/vex)	8	8	8
Natural frea (cps)	65	130	390
Sensitivity (g) (\% of f. 5. /g) radial: axial:	21	0 5	${ }_{0.6}^{0}$
Dimensions inches (mm)	$1.37 \mathrm{Ig}, 0.75 \mathrm{dia}(35 \times 19)$		
Weight net (gm) shipping	$\underset{760}{ }{ }_{7 \text { FTA-X* }} \text {,90; FTA-X-1, } 153$		
Price	FTA-X*. \$175; FTA-X-1, \$200		

FTA transducers without adspter for operation with Sanborn carrief systems; sensltivity ranges from 70 to $83 \mathrm{mv} / \mathrm{vex}$ at $2.4 \mathrm{kc}: \mathrm{X}=$ range In grams.

Specifications, LVsyn Transducers

Sanbarn model	3LVA5	3LV1	6LV1	6LV?	BLV3	BLV4	ILV6	LV9	7L
Sensilivity ($\mathrm{mv} / \mathrm{in} / \mathrm{sec}$)	40°	35^{*}	$\begin{aligned} & 500 \\ & 250 \end{aligned}$	$\begin{aligned} & 500 \\ & 250^{*} \end{aligned}$	$\begin{aligned} & 500 \\ & 250^{*} \end{aligned}$	$\begin{aligned} & 500 \\ & 250^{\circ} \end{aligned}$	$\begin{aligned} & 350 \\ & 150^{*} \end{aligned}$	$\begin{array}{r} 350 \\ 150^{-} \end{array}$	$\stackrel{20}{7 *}$
$\begin{gathered} \text { Resistance } \\ \text { (X ohms) } \\ \hline \end{gathered}$	2	2.5	13	19	25	32	11.5	17	3
$\begin{gathered} \text { Inductance } \\ \text { (henrys) } \end{gathered}$	0.085	0,065	1.6	2.4	3.2	4	1.9	2.8	0.035
$\begin{aligned} & \text { Stroke range } \\ & \text { inches } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{array}{r} 0.5 \\ (13) \\ \hline \end{array}$	(25)	(25)	$\stackrel{2}{(51)}$	${ }_{(76)}^{3}$	$\begin{gathered} 4 \\ (101) \end{gathered}$	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ (229) \end{gathered}$	$\begin{gathered} 20 \\ (508) \\ \hline \end{gathered}$
Dimensions inches (mm) diameter: length:	$\begin{aligned} & 0.37 \\ & (10) \\ & 3.16 \\ & (80) \\ & \hline \end{aligned}$	$\begin{array}{r} 0.37 \\ (10) \\ 4.22 \\ (108) \\ \hline \end{array}$	$\begin{gathered} 0.62 \\ (16) \\ 5 \\ (128) \\ \hline \end{gathered}$	$\begin{gathered} 0.62 \\ (16) \\ 7 \\ (178) \\ \hline \end{gathered}$	$\begin{gathered} 0.62 \\ (16) \\ 9 \\ (230) \\ \hline \end{gathered}$	$\begin{aligned} & 0.62 \\ & (16) \\ & 11.25 \\ & (286) \\ & (286) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19) \\ & 15.75 \\ & (400) \\ & \hline \end{aligned}$	$\begin{gathered} 0.75 \\ (19) \\ 22.75 \\ (580) \\ \hline \end{gathered}$	$\begin{gathered} 0.75 \\ (19) \\ 30 \\ (760) \end{gathered}$
Weight net coil (grams) core shipping	$\begin{aligned} & 20 \\ & 3.5 \\ & 84 \end{aligned}$	$\begin{aligned} & 25 \\ & 4.5 \\ & 84 \end{aligned}$	$\begin{aligned} & 110 \\ & 11 \\ & 224 \end{aligned}$	$\begin{array}{r} 150 \\ 15 \\ 252 \end{array}$	$\begin{gathered} 200 \\ 17 \\ 308 \end{gathered}$	$\begin{array}{r} 240 \\ 22 \\ 336 \end{array}$	$\begin{gathered} 420 \\ 54 \\ 505 \end{gathered}$	$\begin{array}{r} 610 \\ 69 \\ 756 \end{array}$	$\begin{aligned} & 800 \\ & 40 \\ & 900 \end{aligned}$
Price	\$40	\$45	850	\$55	860	\$65	\$85	\$100	$\$ 120$

output with non-breakable megret cores (- N models) to order add suffix . N to basle model
number, e.8., 3LVA5-N, 3LV1-N, etc. Prices same as standard models.

Specifications, Pressure (Gas) Transducer

Santorn model	270
$\begin{aligned} & \text { Differentizl pressure range } \\ & \text { psi }\left(\mathrm{mm} \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$	$\pm 0.5(\pm 350)$
Common mode pressure $\mathrm{psi}\left(\mathrm{mm} \mathrm{H}_{2} \mathrm{O}\right)$	3(2000)
Sensitivity (tull scale)* mv/0.5 psi/vex at 2.4 kc	28 mv/vex
Linearity error (full scale)	less than 1\%
Hysteresis (appliod pressure)	lass than 1\%
Differential performance, (applied pres., equal inputs)	output less than 0.01 \%
Acceleration sensitivity	$0.005 \mathrm{psi}\left(3.5 \mathrm{~mm} \mathrm{H}_{2} \mathrm{O}\right) / \mathrm{g}$
Dynamic response: square wave: sine weve: amplitude ratios: diff, balance:	rise time, 5 ms ; overshoot, 10% $\left\{\begin{array}{l}0-20 \mathrm{cps} \text {, ilat to } 1 \% \\ 0-40 \mathrm{cps} \text { flat to } 5 \%\end{array}\right.$ $0-20 \mathrm{cps}$, within $\mathrm{J} \%$
Dimensions: $\quad 2.63^{* *}$ high, $2.75{ }^{*}$ dia ($67 \times 70 \mathrm{~mm}$)	
nel $1 \mathrm{lb}(0,45 \mathrm{~kg})$, shipping $2 \mathrm{lbs}(0,9 \mathrm{Kg})$	
Price: Sanborn 270, with 8-ft cable/adplo/conn, \$295	

SOLID-STATE DEVICES

Components from HP Associates - diodes, photon-coupled devices

Step recovery diodes

Step recovery diodes offer the advantages of high-order, efficient, single-stage frequency multiplication and pulse sharpening to provide picosecond rise time.

High-order, efficient, single-stage harmonic generation is now possible with extremeiy simple circuitry, using step recovery diodes. The traditional vacacror multistage chain problems resulting from the use of idlers are eliminated. The step recovery diode allows highly efficient generation of millinatts of power at frequencies to X -band. It also allows an exceptionally lownoise, stable signal source, through using a crystal osciliator as a driving source. Typical results include the generation of hundreds of milliwatts at S -band to tens of milliwatts at X-band.

Step recovery diodes, while conducting in the formard direction, store charge. When the applied volrage is reversed, the diode conducts for a brief period in the reverse direction, until the stored charge is cemoved, and then abruptly ceases conduction. This is shown in Figure 1, with the very rich harmonic content of the picosecond transition shown in Figure 2.

Figure 1.
Figure 2.
Typical device specifications

Charas. teristio	LIfa-	$\begin{aligned} & \text { Tran. } \\ & \text { sition } \\ & \text { time } \end{aligned}$	Ca- pact- bane	Braakdown vollage	Lakk. aq! ourren	Forward current	Induo.	$\begin{gathered} \hline \text { Price } \\ 1.99 \\ 100-899 \end{gathered}$
hot 0112 Min. Typ. Max	$\begin{aligned} & 50 \\ & 130 \end{aligned}$	$\begin{aligned} & 200 \\ & 300 \\ & \hline \end{aligned}$	3.0	35	50	150	4.0	$\begin{aligned} & \$ 18.75 \\ & \$ 14 \end{aligned}$
$\begin{gathered} \text { hoa } 0114 \\ \text { Min. } \\ \text { Tyo. } \\ \text { Max. } \end{gathered}$	$\begin{aligned} & 125 \\ & 300 \end{aligned}$	$\begin{aligned} & 600 \\ & 750 \\ & \hline \end{aligned}$	10	35	50	200	4.0	$\begin{aligned} & \$ 18.75 \\ & \$ 14 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { hpa 0251 } \\ & \text { Min. } \\ & \text { Typ. } \\ & \text { Max. } \end{aligned}$	$\begin{aligned} & 10 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.8 \end{aligned}$	15	10	25	0.5	$\begin{array}{r} \$ 75 \\ \$ 50 \\ \hline \end{array}$
$\begin{aligned} & \hline \text { hpa } 0253 \\ & \text { Min. } \\ & \text { Typ. } \\ & \text { Max. } \end{aligned}$	10 60	$\begin{aligned} & 100 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.1 \end{aligned}$	25	10	25	0.5	$\begin{aligned} & \$ 125 \\ & \$ 85 \end{aligned}$
Units	nsec	psec	pf	\checkmark	na	ma	nh	

PIN diodes

The advantages of a new method of modulating/switching microwave signals and improved stability and reliability through surface passivation are offered by PIN diodes.
These devices make possible a new method of modulating microwave signals (Figure 3). When placed across a transmission line, the device acts as an absorption-type attenuator and allows sine-wave, square-wave and pulse modulation with no frequency-pulling of the signal source.

Turn-on times of less than 20 nsec for an on-off ratio of greater than 30 db are possible. Planar passivation insures longterm stability and reliability. The hpa PIN diodes are specially useful where the lowest possible residual series resistance and junction capacitances-are required for high on-to-off switching ratios.

Figure 3. Thls oscillograph shows a 1 ge 100 mv re carrier modulated by PIN diodes. It is shown turning on in less than 20 nsec. Sweep speed is 5 nsec/cm.

	hpa 3001	hpa 3002
Minority carrier lifetime, \%	100 nsec min.	100 nsec
Breakdown voltage, BV_{R} at $\mathrm{I}_{\mathrm{R}}=-10 \mu \mathrm{a}$	$150 \vee \mathrm{~min}$.	200 v
Capacitance, C at $\mathrm{V}_{\mathrm{R}}=-50 \mathrm{~V}$	0.25 pi max.	0.30 pt
Forward current. If at $V_{R}=1 \mathrm{~V}$	$100 \mathrm{ma} \mathrm{min}$.	150 ma
Residual resistance, RS	2.5Ω max.	2.5Ω
Package	small glass	small glass
Price:	$\begin{gathered} 1-99 \$ 15 \\ 100-999 \$ 10 \end{gathered}$	$\begin{aligned} & \$ 17.50 \\ & \$ 11.75 \end{aligned}$

Microwave switch/variable attenuator

A 500 mc to 12.4 gc frequency range and high isolation, extremely low insertion loss are features of the microwave switch/variable attenuator.
The hpa 3501 Microwave Switch is ideal for such applications as ECM receiver switching and low-power antenna switching in phased arrays. Completely solid stare, this singlepole, single-throw switch features a switching speed of 300 nsec open to closed, 100 nsec closed to open. As a variable atrenuator the hpa 3501 can be used for power leveling and signal modulation applications. Size is $1.1 / 16^{\prime \prime} \times 1$ " $\times 3 / 4^{\prime \prime}$ (25 $\times 25 \times 19 \mathrm{~mm}$). Price: $\$ 275$.

Figure 4. Microwave characterlstics of hpa 3501.

Microwave mixer diodes

Offered by the microwave mixer diodes are the advantages of improved receiver sensitivity through lower noise characteristic and higher reliability and wider dynamic cange.

These solid-state devices offer improvements in lower noise figure, higher reliability and wider dynamic range over normal microwave diodes (Figure 5). Conversion loss and noise figure at S-band are 1 to 2 db lower than corresponding paramerers of the best available microwave diodes. Wide dynamic range is achieved because conversion loss and noise figure are rela. tively insensitive to local oscillator power variations over the range of 0.5 to 50 milliwatts. Product uniformity for both noise and conversion loss results from controlled junction sur. face and is extremely tight. This also results in the ability to accurately correlate microwave mixer performance with dc forward current measurements. For the first time, mixer performance can be predicted and desired performance easily selected.

Specifications, hpa 2150

Test frequency: 2000 mc ,
Conversion loss $L_{0}: 6 \mathrm{db}$ max. (IF impedance, 100 ohms; RF load impedance, 50 ohms).
Output noise ratio, t: 1 max.
Local oscillator drlve power, Po: - I to $\pm 5 \mathrm{dbm}$ (zero de bias'); -10 to $\pm 20 \mathrm{dbm}$ ($20 \mu_{\mathrm{a}}^{\mathrm{dc}} \mathrm{dc}$ bias).
IF impedance: 50 ohm minimum, 200 ohm maximum (impedance controllable by local oscillator drive power withous degradation of noise).
RF impedance: 1.5 max. (vswr),
Forward current, IF: 50 ma max., $\mathrm{V}_{1}=1$ volt.
Capacitance, C_{0} : I pf max., $f=1 \mathrm{mc}, \mathrm{V}_{\mathrm{R}}=0$.
Breakdown voltage, $B_{v a}$: 5 volts minimum.
Price: 1.99, 522; 100.999, \$14.70.

Figure 5. Microwave eharacteristics of hpa 2150 at 2 gc .

Opto-electronic devices

A new family of optoelectronic components has been de. veloped that allows highly efficient circuit coupling with no electrical contact. These devices use photons as the signal carrier and employ a fiber optic light pipe to couple the signal, with the photon stream proportional to the signal current. Input and output circuits are separate, and the resistance between the light source and detector can exceed 10^{13} ohms.
Individual units also are available which use a fiber optic light pipe to couple the signa! from/to the semiconductor chip to a 0.02 inch diameter circle on the surface of the glass. The configuration minimizes the need for external lenses, thereby providing great flexibility to the designer. The new components are intended for use as a fast strobe in the photographic and
semiconductor industry, ultra fast laser detectors, opto-mechanical couplers, displacement sensors, as well as card and tape readers.
hpa 4104 Gallium Arsenide Infrared Sources, $\$ 75$.
lipa 4201 PIN Photodiodes, $\$ 55$.
hpa 4202 Photorransistors, 8125.
hpa 4301 Wideband Phoron-Coupled Isolators, $\$ 145$.
hpa 4302 Photon Coupled Amplifiers, $\$ 250$.

Hot carrier diodes

Hot carrier diodes feature improved resolution in high-speed sampling nerworks and lower noise uhf mixer and detector.

These diodes utilize a closely controlled metal semiconductor junction which provides vierual elimination of charge storage. The resula is extremely fast turn-on and turn-off times ($\%<100$ psec) with excellent diode fortiard and reverse characteristics. This process results in lower noise characteristics and wider dynamic range (conversion loss and noise figure are relatively insensitive to local oscillator power variations over the range of 0.5 mw to 20 mw). Especially useful for mixer and detector applications to improve receiver sensitivity. Improved resolution in ultra-high speed sampling and switching networks is possible by combining the picosecond liferimes, low capacitance and excellent forward to reverse characteristics of the device.

Flgure 6. Comparison of recovery time with a conventional high speed 1 nsec switching diode (upper trace). Sweep speed, 10 nsec/am; vertical sensitivity, 20 ma/cm; applied signal. 30 mc sine wave.

Typical device specifications

Charanleristio	$\begin{array}{\|l\|} \hline \text { For- } \\ \text { ward } \\ \text { aur. } \\ \text { rest } \\ \text { tr } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { For- } \\ \text { ward } \\ \text { our- } \\ \text { rent } \\ \text { IF } \\ \hline \end{array}$	Break. down vollage 日r	$\begin{gathered} \hline \text { Leak- } \\ \text { ase } \\ \text { our- } \\ \text { rent } \\ \text { In } \\ \hline \end{gathered}$	Capacttange C_{0}	EHecthy minerlity carrlep Mrotlmo r (PS)	$\begin{gathered} \text { Priod } \\ 1 \text { to } 99 \\ 100 \text { to } 989 \end{gathered}$
hpa 220 Min. Max	50	1	30	300	1	200	$\$ 9.60$ each $\$ 6.40$ each
hida 2202 Min. Max.	50	1	20	500	1	200	$\begin{aligned} & \$ 9.30 \text { each } \\ & \$ 6.20 \text { each } \end{aligned}$
ира 2203 Min. Max.	50	1	20	500	1.2	200	$\begin{aligned} & \$ 8.70 \text { each } \\ & \$ 5.80 \text { each } \end{aligned}$
Units	ma	$\mu \mathrm{a}$	v	na	pf	ps	
Test conditions	$\begin{gathered} v_{f}= \\ j v \end{gathered}$	$\begin{aligned} & V_{F}= \\ & 0.4 \mathrm{v} \end{aligned}$	$\begin{gathered} I_{R}= \\ 10 \mu 8 \end{gathered}$	$\begin{gathered} V_{\mathrm{R}}= \\ 3 \mathrm{~V} \end{gathered}$	$\begin{gathered} V_{R}= \\ 0 \end{gathered}$		

[^0]
DY-2800A, DY-2801A QUARTZ THERMOMETERS

Accurate, high-resolution temperature measurements with readout directly in degrees C or F

Operation of the DY-2800A and DY-2801A Quartz Ther. mometers is based on a new quartz crystal resonator which has a precisely linear frequency-to-temperature relationship. This frequency is measured digitally, using conventional electronic counter techniques.
The remperature range of the quartz thermometer is -40 to $+230^{\circ} \mathrm{C}$. Accuracy is equal to that previously found in highqualiry platinum resistance thermometers, yer the instruments possess advantages common to digital devices: easy-to-read display directly in degrees C or F with simultaneous recorder electrical ourputs. No bridge balancing is required, nor is reference to temperature conversion tables or curves.
The input has high immunity to electrical noise and cable resistance effects; sensing probes can be placed up to 1000 feet from the measuring instrument with full integrity of data: no reference junctions are required, and scanning devices are available to time-sinare multiple sensing probes. Two models are available. The DY. 2800 A is equipped with one probe, measures over a fixed sample time and provides a 4 -digit readout (optional 5) and recording outpur. Resolution is $0.1^{\circ} \mathrm{C}$ or F (optronally $0.01^{\prime \prime}$).

The DY-2801A is equipped with two sensing probes for measuring temperature at either probe or the difference between the two. A 6 -digit visual readout and recording outpur with a choice of pushbutton-controlied sample times provides resolution of $0.01,0.001$ or $0.0001^{\circ} \mathrm{C}$ or F. Signal polatity indication is provided. The 2801 A includes the capability for operation as a 300 kc electronic counter.

Specifications, DY-2800A, DY-2801A

Temperature range: -40 to $+230^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+450^{\circ} \mathrm{F}\right)$.
Accuracy: determined by linearity and short-term stability.
LInearity (absolute): better than $\pm 0.15^{\circ} \mathrm{C}\left(0.27^{\circ} \mathrm{F}\right)$ from -40 to $+230^{\circ} \mathrm{C}$, referred to straight line through 0 and $200^{\circ} \mathrm{C}$.
Stability: short term: max. variation at constant temperature, $< \pm 0.0001^{\circ} \mathrm{C}\left(0.0002^{\circ} \mathrm{F}\right)$; long term: zero drift $< \pm 0.01^{\circ} \mathrm{C}$ $\left(0.02^{\circ} \mathrm{F}\right)$ at constant probe temperature for 30 days: rem. perature cycling: from -40 to $+230^{\circ} \mathrm{C}$, reading at $0^{\circ} \mathrm{C}$ will not change by more than $\pm 0.05^{\circ} \mathrm{C}\left(0.09^{\circ} \mathrm{F}\right)$; instrument ambient temperature: reading changes $<0.001^{\circ} \mathrm{C}$ per ${ }^{\circ} \mathrm{C}$ change in ambjent temperature 0 to $55^{\circ} \mathrm{C}$.
Response time: response to step function of remperature, measured by inserting probe into water at dissimilar temperature flowing at $2 \mathrm{ft} . / \mathrm{sec}: 63.2 \%$ of final value in <1 sec, 99% of final value in $<4.6 \mathrm{sec}, 99.9 \%$ of final value in <6.9 sec: figures apply to both DY-2850B and C probes.
Salf-haating: $<10 \mu$ wa; contributes $<0.01^{\circ} \mathrm{C}$ error.
Sample rate: interval between readings, adjusted at front panel from approximately 0.2 to 5 sec .
Dlsplay: DY-2800A: 4-digit in-line readout (optional S-digir), decimal point and ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$; DY-2801A: 6 digit in-line readout, decimal point, ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$, and polarity indication.
Digital recorder output: $\mathrm{BCD}, 4 \cdot 2^{\prime} \cdot 2 \cdot 1$, positive-true, for each digit, decimal point and polarity: compatible with hp 562 A Digital Recorder (see page 76) and Dymec couplers (see page 83).
External programming: measurement initiation, circuit closure to ground; ($D Y$-2801A only) probe selection, T_{1}, T_{2}, or $T_{1}-T_{2}$ and resolution, $0.01^{\circ}, 0.001^{\circ}$ and 0.0001° may be selected by external circuit closures to ground.
Counter operation (DY-2801A only): frequency range, 2 cps to 300 kc ; resolution 10,1 and 0.1 cps ; sensitivity, 0.1 to 10 v

rms; input impedance, 1 M , 50 pf shunt; gate time, $0.1,1$ and 10 sec .
Instrument environment: ambient temperatures from 0 to $+55^{\circ} \mathrm{C}\left(+32\right.$ to $\left.130^{\circ} \mathrm{F}\right)$, relative humidity to 95% at $40^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to $60 \mathrm{cps} ; \mathrm{DY}-2800 \mathrm{~A}, 20 \mathrm{w}$; DY-2801A, 30 w.
Dimensions: $31 / 2$ "high, $163 / 4$ " wide, $16.5 / 16^{\prime \prime}$ deep behind (ront panel ($88 \times 426 \times 4 i 4 \mathrm{~mm}$) ; adapter furnished for $19^{\prime \prime}$ rack mounting.
Weight: net 19 lbs ($8,6 \mathrm{~kg}$); shipping $24 \mathrm{lbs}(10,9 \mathrm{~kg}$).
Price: DY-2800A, with one Temperature Sensor (DY-2850B or C), 52250 ; DY. 2801 A, with two temperature sensors, $\$ 3250$.
Optlons: Polarity indication for DY-2800A (standard on DY. 2801 A), add $\$ 125$; analog output for strip-chart recorder, add $\$ 150$; S-digit readout for DY-2800A, add $\$ 150$.

DY-2850B,C Temperature Probes

Probe environment: Measurand, gases and liquids non-reactive with the following materials: DY-2850B,C; 304 stainless steel, epoxy; temperature, -50 to $-250^{\circ} \mathrm{C}$ (-60 to $+480^{\circ} \mathrm{F}$) ; pressure. 3000 psi max.; shock, to $10,000 \mathrm{~g}:$ vibration: to 1000 g at 1000 cps .
Dlmensions: DY-2850B: tubular, nominally 0.375" OD (9.5 mm) : standard insertion lengths of $2^{\prime \prime}$ and $6^{\prime \prime}$, special lengrhs to $24^{\prime \prime}$ at $\$ 50$ extas $9 / 16^{\prime \prime}$ hex mounting collar with $1 / 4^{\prime \prime}$ NPT: attaches to sensor oscillator by 12 long coax cable in Rexible full length 302 S.S. sheath. Mounting glands and thermowells a vailable; special probes made to order. DY-2850C: tubular, nominally $0.375^{\prime \prime}$ OD by $1^{\prime \prime}$ long ($9.5 \times 25,4 \mathrm{~mm}$); attached to oscillator by 12^{\prime} long, $0.110^{\prime \prime}$ dia. Tefion covered coax cable.
Welght (ircludes cable): DY-2850B, net 10 oz ($0,3 \mathrm{~kg}$); shipping $2 \mathrm{lbs}(1 \mathrm{~kg})$; DY-2850C, net 302 (90 g); shipping $1 \mathrm{ib}(0,5 \mathrm{~kg})$.

DY-2830A Sensor Oscillator

Environrnent: ambient temperatures from -20 to $+70^{\circ} \mathrm{C}(-4$ to $+158^{\circ} \mathrm{F}$), warertight case.
Dimensions: $3^{\prime \prime}$ long, less connectors each end, 1-3/16" square $(76,2 \times 30 \mathrm{~mm})$.

AMPLIFIERS

Amplifiers have tro basic funcrions in instrumentation: (1) to amplify signals that are too low in level for intended applications, and (2) to isolate signal sources from other circuits. In both cases, the amplifies supplies power under the control of the inpur signal and supplies that poser to the output as increased voltage and/or as increased currene.
No single amplifier has the bandwidth, gain, noise figure, stability and output capability required for every conceivable situation. Hewlett-Packard amplifers are designed with the maximum number of applications in mind, while minimizing cost; specialized designs are offered where necessary, as in carrier amplifiers for 2400 cycle carrier transducers, and loga. rithmic amplifiers.

For discussion purposes, the hp amplifiers are divided into two groups: (1) ac amplifiers and (2) de amplifiers. Actually, all dc amplifiers have some ac response; but they are classified separately due to the special techniques required to obtain stable de amplification.

AC amplifiers

$A C$ amplifiers are designed for applicarions requiring flat frequency response or short rise times. The hp pulse amplifiers (462A, 460BR) preserve pulse rise time and sag, while the $h p$ general-purpose amplifiers ($450 \mathrm{~A}, 461 \mathrm{~A}$. 465A, 466A and 467A) preserve magnitude and waveform relations.

A simplified schematic diagram of the hp 465A AC Amplifier is shown in Fig. ure 1. This amplifier has a large negative feedback factor, not only to reduce distortion and to broaden the frequency response, but also to insure gain stability.

Figure 1. Simplified schematic diagram. hp 4E5A Amplifier.

A stable amplification factor (gaio) is required when an amplifier is used to measure signals, and a large amount of feedback is necessary to reduce the effects of changes in transistor or tube param. eters. Feedback lowers the output impedance, so that the amplifier performs as a constant-voltage source that is unaffected by the amount of current drawn by the output load. In the case of the
hp 465 A , a 50.0 ohm resistor is in series with the output to provide a true $50-0 \mathrm{hm}$ source.

Wideband ac amplifiers

The bandwidth of cascaded amplifiers is inherently limited by internal capacitances, which bypass high frequency sig. nals. Wide bandwidths have been achieved by use of the distributed amplifier configuration.

The hp Models f61A and 462A Wideband Solid.State Amplifers are not disributed amplifiers. They use five cascaded stages, plus input and output emir-ter-followers to match 50 ohm coaxia! lines. The 461 A frequency-respanse exrends to 150 mc . The 462 A is rolled off along a Gaussian curve to preserve the wa veshapes of complex waveforms. Rise time of the 462A Amplifer is <1 nsec.

DC amplifiers

High amplification of ds volcage levels requires special considerations. While high feedback stabilizes the gain of an amplifier to the point that the gain is determined aimost entirely by the resistors in the feedback netuork, the de level of an amplifier is not so easily sta. bilized.

A widely used technique for circum. venting the drift problems of directcoupled amplifiers is to convert the dc to an equivalent ac (modulation). The as is amplified in a gain-stable ac amplj. fier and then reconverted to de (demodulation), During amplification, the signal is represented by the difference between the maximum and minimum excursions of the ac waveform and is not affected by drift in the absolute voltage levels within the amplifier.

One method to convert the de to ac is to switch the amplifier input alternately to both sides of a transformer, as shown in Figure 2. This periodically inverts the polarity of the signal applied to the amplifier. The switches illustrated may be mechanical, transistor or photo-conductive. Another pair of conracts at the output establishes the ground level for a storage capacitor in series with the output. The outpur srorage capacitor becomes charged to a leve! corresponding to the amplitude of the ourput square wave. Synchronous detecrion preserves the polarity of the input voltage and re-

Figure 2. Modulated amplifier.
covers both positive and negative volt. ages with the correct polarity.
DC amplifiers just described offer drift-free amplification of low-level sig. nals in the microvolt region. Another modulation technique uses two photo-conductors-one in series with, and one parallel to the amplifier input, shown in Figure 3.

Figure 3. Amplifier with photoconductive modulator.

Photoconductors' resistance is proportional to their illumination. By illuminating the photoconductors alternately, the amplifier inpur is connected to the signal and so ground. Photoconducrors perform well as modulators at microvolt levels. They can be isolated from the driving signal and designed with very low offser voltages.

Wideband de ampllfiers

Use of a modulator in a de amplifier limits its frequency response. A common modulation frequency is 400 cps for bandridths approaching 100 cps . Larger bandwidits become difficult to obtain when using the modulation technique, due to the practical concerns over inter. modularion of the sampling araveform and the signal.

Another technique used to obtain wide. band response with stable dc amplification is shown in Figure 4. The hp 467 A Poxer Amplifier uses two parallel amplifiers, onc for the do and low-frequency components, and one for high.frequency components. Appropriate networks separate the two frequency bands. Feedback is employed to assure uniform gain at all Erequencies from de to 1 mc .

Yer another rechnique to obrain de. stable, arideband response is to use a modulator-amplifier to correes for de drift

Figure 4. Simplifiod block ciagram, 467A Power Amplifier.
in a wideband direct-coupled amplifer, as in the DY-2460A. The amplified sig. nal is reduced in a divider network by the same amount it was amplified, then compared with the original input signal at the summing point. The difference, caused by drift, is amplifed through a modulated amplifier, then applied to the direct-coupled amplifier to cancel the drift. (This is sometimes called a "chop-per-stabilized" amplifier.)

Differential amplifiers

Differential amplifiers have two identical input channels that function in pushpull fashion. The output generally is single-ended and represents the amplified difference between the two input clannels. This arrangement cancels hum or other interference picked up on the signal leads which appear in phase to the amplifier inpurs (referred to as com-mon-mode signals).
Since a differential amplifer is sensitive only to the difference between the two input signals, the transducer or other signal source need not be grounded and is floating. Therefore, difierential amplifers allow a bridge-type transducer to be used with a grounded power supply.
The differential amplifier configuration also allows injection of a fixed de voltage into eicher channel to permit establishment of a new voltage-reference level at the output (zero suppression).

When the input is floating. cable shielding may be connected to chassis ground rather than to sigral ground. However, both ac and dc potentials can exist between two widely-separated earth grounds and common-mode currents and, consequently, may circulate through a loop composed of a transducer, the sig. nal leads and the internal capacitances shorin lumped as C_{a} in Figure 5a. A ground loop, therefore, may inject interference into the signal path. A guard shield (Figure 5), which provides an electrostatic shield around the input cir.

Figure 5. Guard reduces capacitance between signal leads and ground.
cuitry, breaks the stray capacitance into two series capacitances, C_{d} and C_{z}. A much higher impedance is then presented to the flow of common-mode signals. This type is termed a floaied and grarded amplifier.

DC amplifiers, which use choppers, are able to couple the signal information ouk of the guard shield by means of transformers. Consequently, no dc connection between the output and input grounds is necessary; and no ground loops are formed berween the input circuits and equipment connected to the output.

Amplifiers designed for use with guarded voltmeters or other guarded equipment (e.g., Dymec DY-2411A and Sanborn $860-4300$) continue the guard shield through the output.

Selecting an amplifier

An amplifier should be selected primarily for the intended appication. Stability, noise and input-output impedances, as well as cost, are basic considerations. If an amplifier is to be used for general-purpose applications, low distortion and preservation of magnitude rela. tions are essential. When selecting an amplifer for pulse applications, low rise
times and low sag are of prime importance. A differential amplifier is indicated for elimination of ground loops formed between input circuits and equipment connected to the output. The dif. ferential amplifer also is the most logical choice when interference from other connecting equipment is likely. To preserve guarding features of voltmeters or other connecting equipment, or to suppress common-mode noise, a guarded amplifer is essential.
All of Hewlett. Packard, Dymec* and Sanborn* amplifiers described have been designed with the requirements of a maximum number of applications in mind. Each category of amplifier uses a different method to maximize performance over a specific group of applications while minimizing cost. An hp amplifier is available to meer your specific requirement. Refer to Figures 6 and 7 for relative functions and features. The exrensive amplifier line of hp Sanborn Division is not included in the chart; comprising a wide variety of general-purpose and specialized rypes, it is described on pages 32. 33.

* Divisions of Hewlett-Packard

Modal	Gain	Frequamay respons	Noise	Dlstor. tlar	Inpul Im. pedanoe (ohms)	Output impedance (ohmis)	Appllas. tions	Refer to paga
450A	20 or 40 db	$\begin{aligned} & =0.5 \mathrm{db} 10 \\ & \mathrm{cps} \text { to } 1 \mathrm{mc}, \\ & \pm 1 \mathrm{db} 5 \mathrm{cos} \\ & 102 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 40 \mu v \\ & \text { max. } \end{aligned}$	<1\%	$\underset{\substack{1 \\ 15 \mathrm{pf} \\ 15}}{ }$	<150	general purpose	29
460AR	20 db	Gaussian curve 3 do Doint at 120 me	$<10 \mathrm{db}$	<5\%	200	300	$\begin{aligned} & \hline \text { fast } \\ & \text { pulse } \end{aligned}$	31
460BR	15 db	Gaussian curve, 3 db point at 120 me	$<6 d b$	<5\%	200	200	terminal ampli. fier gives maximum voltage or power output	31
451A	20 or 40 db	$\begin{aligned} & \pm 1 \mathrm{db}, 1 \mathrm{kc} \\ & 10150 \mathrm{mc} \\ & \hline \end{aligned}$	$<40 \mu \mathrm{~V}$	<5\%	50	50	general purpose	30
462A	20 or 40 db	Gaussian curve, rise time <4 nsec	<40 $\mu \mathrm{V}$	$<5 \%$	50	50	$\begin{aligned} & \text { last } \\ & \text { pulse } \end{aligned}$	30
465a	20 ar 40 db	$\begin{aligned} & <2 \mathrm{db} \\ & \text { down, } 5 \mathrm{cps} \\ & \text { to } 1 \mathrm{mc} \end{aligned}$	$<25 \mu v$	<1\%		50		28
466A	20 or 40 db	$=0.5 \mathrm{~d}, 10$ $\cos 101 \mathrm{mc}$	$35 \mu \mathrm{~V}$	<1\%	1 megohm	50	general purpose	29
467A	1,10	$\begin{aligned} & \pm 1 \% \mathrm{dc} 10 \\ & 100 \mathrm{kc}, \\ & \pm 10 \% \mathrm{gc} \\ & \text { to } 1 \mathrm{mc} \\ & \hline \end{aligned}$	$<5 \mathrm{mv}$	<0.01\%	$\begin{aligned} & 50 \mathrm{~K} / \\ & 100 \mathrm{pf} \end{aligned}$	5 milli	10 w peak power amplifier, -20 to +20 dc power supply	28

Figure 6. Hewlett-Packard ampliflers.

DY.2411A	$+1,+10$ progiam. mable	de	$\pm 2 \mu \mathrm{~V}$	not applicable	1010	<1.5	guarded de data amplifier for DY-24010 OVM	148, 149
DY-2460A	$\begin{aligned} & 1,10,100, \\ & 1000 \end{aligned}$	de	$<4 \mu \nu$	$\begin{aligned} & \text { not } \\ & \text { appli- } \\ & \text { cable } \end{aligned}$	10 K with variable gain plug. ins; 1010 with butier	50 milli	general purpose operational	34
DY-2470A	$\begin{aligned} & 10,30,100 \\ & 300,1000^{\prime} \end{aligned}$	$d c$	< 5 mv	$\begin{aligned} & \text { not } \\ & \text { appli- } \\ & \text { cable } \end{aligned}$	1010	0.1	wideband differential	35

Figure 7. Dymac amplifiers.

465A, 467A SOLID-STATE AMPLIFIERS

Precision general-purpose amplifiers

The hp Model 465A is general-purpose amplifer, and an ideal impedance converter (10 megohms to 50 ohms). This amplifier has extremely stable 20 db or 40 db gain over a continuous frequency range of 5 cps to 1 megacycle. Either gain may be selected quickly with a switch on the front paael.

This solid-state amplifier is ideal for increasing the power output of solid-state oscillators or amplifers (5×10^{8} power gain). The output stage provides low output impedance and wide dynamic range. The hp 465A is a three-terminal device isolated from chassis and may be floated up to 500 volts de above chassis ground.

467A Power Amplifier

The solid-state hp 467A Power Amplifier/Supply is a 10 watt peak power amplifier and -20 to +20 volt de power supply. The power amplifier has a wide bandwidth and low de drift, suitable for many applications wherever a power source is required. Unique features such as low distortion ($<0.01 \%$), low drift and high gain accuracy are obtained with bigh-tolerance components and multiple feedback techniques. The gain of the amplifier may be varied between one and ten by a front-panel switch which provides fixed gain steps accurate to $\pm 0.3 \%$. A variable gain control enables the user to set the gain anywhere between zero and ben with a resolution of 0.1% of full output. An output greater than ± 20 volts peak and 0.5 amp peak is available from do up to 1 mc . At full output the distortion of the 467 A is less than 3% up to 1 mc . The amplifer is a three-terminal device isolated from chassis and may be floated up to 200 volts de above chassis ground.

A front-panel switch converts the amplifier to a power supply that delivers ± 20 volts dc at currents up to 0.5 amp . The output level is controlled by a potentiometer which permits voltages to be set to 0.1% of full ourput. Full output ranges of $\pm 1, \pm 2, \pm 4, \pm 10$ and ± 20 volts are selected by a froat-panel range switch.

	Tentatue epeotionkiont, (es)	Cperforlions, 47A
Voltage giln	$20 \mathrm{db}(X) 0$ or $40 \mathrm{db}(X I D 0)$, open circuit	fixed steps: X1, X2, X5, XID; variabia: 0 (0 10, resolution better than 0.1% al outgul
Gain accuracy	-0.1 db ($=1 \%$) at 1000 cps	-0.3\%, dc to ld ke with losd of 40 ohms
Frequency response	- $0.1 \mathrm{db}, 100 \mathrm{cps}$ lo 50 hc ; <2 do down, 5 cos to 1 mc	土 1%, dc to 100 kc ; 10%, dc 101 me (fixad steps)
Output		- 20 v deak 810.5 amp peak
Distortion	1\%, 5 cps to $100 \mathrm{kc} ; 2 \%$, 100 kc to $\frac{\mathrm{mc}}{}$	$<0.01 \%$ al $1 \mathrm{kc} ;<1 \%$ at $100 \mathrm{kc} ;<3 \%$ at 1 mc
Input impedance	10 megohms shunted by less than 20 pf	50 K ohms shunted by <100 pt
Oulput Impedance	50 ohms	5 milliohmit in saries with l μ h (front-panel connector only)
Noise	<25 $\mu \mathrm{y}$ rms reterjed to inpul (wilh i megohm across input)	<2 murms referred to output (ingut apen circult)
DC power supply		voltage range: $=20 v_{1}=10 v, \pm 5 v_{1} \pm 2 v,=1 v$ with continuoualy variable vernier between ranges; resolution: better than 0.1% output; current: 0.5 amp; lime and load regulation: <10 mu change for $=10 \%$ line voltage change and 0 to 0.5 amp losd change; curent limit: approx. 800 ma ; capacitor losd: 0.01μ or lass does not causs instabilty; npple: < 5 mu prod
Tomperaturs range	0 ta $50{ }^{6}$	0 to $5 j^{\circ} \mathrm{C}$ emperature coeficient: $\left.<=.05 \%\right)^{\circ} \mathrm{C}$ or $2 \mathrm{mv} /^{\circ} \mathrm{C}$, whichever Ls greatsr
Power	115 or 250 ¢ $10 \% 50$ to 1000 cps I0 w it full foed	
Dimensions		
Wornt		net 10 los ($4,5 \mathrm{ng}$); shloping If ios (5.2 kg)
Price	$\$ 190$	\$575

450A, 466A AMPLIFIERS

Offer 20 or 40 db gain

450A Stabilized Amplifier

Model 450A is a general-purpose ac-powered amplifier offering a highly stable 20 or 40 db gain at any frequency from 10 cps to 1 mc . The instrument is resistance-coupled. avoiding peakíng or compensating networks. Optimum performance is obtained by clean, straightforward circuitry, plus inverse feedback. Phase shift is negligible; there are no spurious oscillations or resonances, and hum is minimized by a de filament supply for input amplifier cubes.

466A AC Amplifier

The h_{p} Model 466A AC Amplifier is a highly stable, low-distortion, wide-range amplifier offering 20 or 40 db gain to increase sensitivity of oscilloscopes or voltmeters by 10 or 100 . Flat frequency response renders the instrument appropriate for audio, ultrasonic or low of measuring.

The 466A is powered by ac line voltage, or by batteries providing approximately 150 hours of hum-free service. The light weight and small size recommend it for field use.

450A

Specifications, 450A
Galn: 20 db (X10) or $40 \mathrm{db}(\mathrm{X} 100) \pm 0.125$ at 1000 cps.
Frequency response: 40 db gain: $\pm 0.5 \mathrm{db}, 10 \mathrm{cps}$ to 1 mc ; $\pm 1 \mathrm{db}, 5 \mathrm{cps}$ to $2 \mathrm{mc} ; 20 \mathrm{db}$ gain: $\pm 0.5 \mathrm{db}, 5 \mathrm{cps}$ to 1 mc ; $\pm 1 \mathrm{db}, 2 \mathrm{cps}$ to 1.2 mc .
Stability: $\pm 2 \%$, includes line voltage variation 115 or 230 v $\pm 10 \%$.
impedance: input, 1 megohm, 15 pf shunt; outpuc, less than 150 ohms.
Distortion; less than $1 \%, 2 \mathrm{cps}$ to 100 kc at maximum output: approximately 2% above 100 kc .
Output: 10 v maximum into 3000 ohm or greater load.
Nolse referred to Input: 40 db gain, $40 \mu \mathrm{v} ; 20 \mathrm{db}$ gain, $250 \mu \mathrm{v}$.
Power: 115 or 230 volts $\pm 10 \%, 50$ to $1000 \mathrm{cps}, 50$ watts,
Dimensions: cabinet: $83 / 8^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $103 / 4^{\prime \prime}$ deep (219 x $140 \times 273 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $103 / 8^{\prime \prime}$ deep behind panel ($483 \times 133 \times 270 \mathrm{~mm}$).
Weight: net $10 \mathrm{lbs}(4,5 \mathrm{~kg}$), shipping $14 \mathrm{lbs}(6,3 \mathrm{~kg})$ (cabinet); net 11 lbs (5 kg), shipping $24 \mathrm{lbs}(10,8 \mathrm{~kg}$) ($5 a c \mathrm{ck}$ mount).
Price: hp 450A, $\$ 160$ (cabiner); hp $450 \mathrm{AR}, \$ 165$ (rack mount).

Specifications, 466A

Gain: 20 db (X10) or $40 \mathrm{db}(\mathrm{X} 100) \pm 0.2 \mathrm{db}$ at 1000 cps .
Frequency response: $\pm 0.5 \mathrm{db}, 10 \mathrm{cps}$ to 1 mc down 3 db ; or less at 5 cps and 2 mc .
Output voitage: 1.5 v rms across 1500 ohms.
Output current: 1 ma rms maximum.
Noise: $75 \mu \mathrm{~V}$ referred to input, 100,000 ohm source.
Impedance: input, 1 megohm, 25 pf shunt; output, approximately 50 ohms in series with $100 \mu \mathrm{f}$.
Distortion: less than $1 \%, 10 \mathrm{cps}$ to 100 kc ; less than 9% to 1 mc .
Power: 115 or 230 volts $\pm 10 \%$, 50 to 1000 cps , approximately I watt (supply normally furnished): battery operation op. tional: radio-type mercury batteries, TR234-316649 or equiv. alent, 3 required (hp \#1420-0006); battery life approximately 150 hours.
Dimensions: $61 / 4^{\prime \prime}$ wide, $4^{\prime \prime}$ high, $61 / 4^{\prime \prime}$ deep ($159 \times 102 \times 159$ mm).
Weight: net $3 \mathrm{lbs}(1,4 \mathrm{~kg}$): shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: $h p 466 \mathrm{~A}, \$ 165$, ac operation.
Option 01: Batteries in lier of ac supply, less $\$ 1$.

461A, 462A AMPLIFIERS

40 db wide-frequency range, solid-state amplifiers

The solid-state hp 461A and 462A Amplifiers are ideal wherever wide frequency range, low distortion and portability are desired.

Unique features such as exceptional stability, wide band. width and linear amplification are obtained through ultra-high-speed transistors and multiple feedback techniques.

The hp 461 A Amplifer is a general-purpose instrument designed to deliver stable gain over a wide frequency range. Either 20 db or 40 db gain may be selected with a frontpanel switch. Figure 1 illustrates the typical frequenç response of the 461A. Both input and output impedances are matched to 50 ohms. Maximum output is 0.5 volt rms .

Figure 1. Frequency response curve of hp 461 A markers shown Irom left to right are: $50,100,150$ and 200 mc . Gain control set in 20 or 40 db pasition.

The ability of the 462A to amplify very fast pulses can be seen in Figure 2. The upper trace (A), shows a 20 nsec pulse applied to the input of the 462A Amplifier. The lower trace shows the same pulse amplified 40 db , as vieu'ed on the hp 185B Sampling Oscilloscope.

This amplifier gives maximum usefulness for fast-pulse applications, television and vhf work. Used in conjunction with the hp 460 Wideband Amplifiers, the bandwidth of many oscilloscopes can be increased by direct coupling to the cathode-ray tube. The sensitivity of your voltmeter (true rms. average or peak) can be increased 40 db .

Figure 2. (A) input pulse to hp 462 A (5 mv pesk to peek). (B) out. put pulse of hp 462A (500 mu peak to peak); gain control set in 40 db position: sweep speed is $5 \mathrm{nsec} / \mathrm{cm}$.

Specifications, 461A
Frequency range: I ke to 150 onc.
Frequency response: $\pm 1 \mathrm{db}, 1$ ke to 150 mc , when operating into a $50-\mathrm{ohm}$ resistive load (500 kc reference).
Gain at $500 \mathrm{kc}: 40 \mathrm{db} \pm 0.5 \mathrm{db}$; or $20 \mathrm{db} \pm 1 \mathrm{db}$ selected by front-panel switch (inverting).
lnput impedance: nominal 50 ohms.
Output: 0.5 volt rms into 50 -ohm resistive load.
Equivalent wideband input noise level; less than $40 \mu \mathrm{v}$ in 40 db position.
Distortion: $<5 \%$ at maximum output and rated load.
Overload recovery: $<1 \mu \mathrm{sec}$ for 10 times overioad.

Specifications, 462A

Pulse response: leading edge and trailing edge: rise time, less than 4 nanoseconds: overshoot, less than 5%.
Pulse overload recovery: less than $1 \mu \mathrm{sec}$ for 10 times overload.
Pulse duration for 10% droop: $30 \mu \mathrm{sec}$.
Equivalent input noise level: less than $40 \mu \mathrm{v}$ in 40 db position. Input impedance: nominal 50 ohms.
Gain: 20 or 40 db selected by front-panel switch (inverting).
Output: 1 volt peak to peak into 50 -ohm resistive load.
Delay: nominally 12 to 14 nanoseconds.

General Specifications

Dimensions: $3 \cdot 14 / 32^{\prime \prime}$ high, $5 \frac{1}{\prime \prime \prime}$ wide, $11^{\prime \prime}$ deep ($87 \times 130 \mathrm{x}$ 279 mm).
Weight: net $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Power: 115 or 230 volts $\pm 10 \%, 50$ to 1000 cycles, 5 watts.
Connectors: BNC female.
Accessorjes available: 11038A 50. to 200-Ohrn Transformer, \$27.50; 11048B 50-Ohm Feed-thru Termination. \$10: Combining Cases: $1051, \$ 78$, or 1052, $\$ 82$ (each holds six 461A, 462A amplifiers).
Price: hp 461A, $\$ 325$; hp 462A, $\$ 325$.

460AR,BR WIDEBAND AMPLIFIERS

Wideband, distortion-free, fast-pulse amplifiers

The hp 460 Amplifers make it possible for you to obtain at moderate cost true amplification of fast pulses at power levels sufficient to operate scalers, counting meters and cathode ray tubes.

The 460 AR Wideband Amplifier is used fundamentally to provide voltage gain (approx. 20 db). Its companion equipment, hp 4608R, is designed as a terminal amplifier to give maximum voltage or power output. The amplifier's short rise time of 3 nsec, combined with zero overshoot, in. sures distortion-free amplification of pulses faster than 10
nsec. The 460 BR cascaded with the 460 AR provides linear amplification of 16 volts peak output and, with two 460BR's, pulse amplification of 110 volts open circuit.

This unusual combination gives maximum usefulness for fast-pulse nuclear radiation problems, television, vhf, uhf or shf work. It also means the bandwidth of your standard oscilloscope can be increased to over 100 mc and voltmeter sensitivity multiplied by 10 . In cascade or singly, the amplifiers offer further convenience as general-duty, wideband instruments for all types of laboratory problems.

Specifications, 460AR

Frequency response: high frequency: closely matches Gaussian curve when operating into a 200 - hm resistance load, 3 db point is 120 mc ; low frequency: off approx. 3 db at 20 kc when deiven by a 200 -ohm generator and operated into a 200 -ohm load; off approx. 3 db at 100 kc when driven by a 0 source impedance and operated into a 200 ohm load; off approx. 3 db at 3 kc when operating into an open circuit (i.e., crt plates); with 410 B and $11011 \mathrm{~A}, \pm 1 \mathrm{db}, 200 \mathrm{kc}$ to 200 mc .
Galn: nominally 20 db into 200 -ohm load; control range, 6 db .
Sinusoldal output: approx. \& v peak open circuit; approx. Sv peak into a 200 .ohm load ($<5 \%$ distortion when terminated into 200 obms).
Maximum pulse output, +8 v (+ input), -20 v (- input) unloaded; +3.2 v (+ input), $-8 \vee(-$ input) loaded.
Impedance: 200 ohms input, 300 obms output.
Noise figure: less than 10 db .
Delay characteristics: approximately 20 nsec .
Rise time: nominally 3 nsec (10% to 90%); no appreciable overshoor.
Power: 115 or 230 volts $\pm 10 \%$, 50 to 1000 cps, 50 watts.
Dlmensions: 19 " wide, $5.7 / 32^{\prime \prime}$ high, $7^{\prime \prime}$ deep ($483 \times 133 \times 178$ mm).
Welght: net $12 \mathrm{lbs}(5,4 \mathrm{~kg})$; shipping $18 \mathrm{lbs}(8 \mathrm{~kg})$.
PrIce: hp 460AR, \$225.
Accessorles available
11006A Patch Cord, 200 ohms, 2^{\prime} long, $\$ 27.50$ 11007 A Parch Cord, 200 ohms, 6 ' long, $\$ 31.50$. 11008A. Panel Jack for 200 -ohm cables, low capacitance, $\$ 10$.

11000A Cable Plug for 200 -ohm systems, 87.50 .
11010A 50 -ohm Adapter. Type N to 460,50 -ohm termination, $\$ 17.50$.
11011A Adapter, bayonet sleeve for connecting 410B vtvm to output of 460A amplifiers, $\$ 40$.
11012A Connector Sleeve joins two 11009A Cable Plugs, $\$ 7.50$
11013A Adapter for connecting to 5 XP crt, $\$ 11.50$.
11015A Adapter, Type N to 460 , 200 -ohm rermination, \$17.50.
11016A Adapter, Type N to 460, no termination, \$1s.
11017A Adapter 410 B vtvm to $460,200 \cdot 0 \mathrm{hm}$ termination, 835.

8120-0014 Cable, 200 ohms, specify length; per foot, $\$ 2.25$.

Specifications, 460BR

(Same as 460AR except as follows)
Gain: nominally 15 db into 200 -ohm load.
Sinusoidal output: approx. 8 v peak, 200 -ohm load; 16 v peak, open circuít.
Maximum pulse output: +16 v (- inpur), $-110 v(+$ input $)$ unloaded; +8 v (- input), -60 v (+ input) Joaded; (+8 v input requized for -110 v output) : linear: +16 v (- input).
-16 v (+ input) unloaded: +8 v (- input), -8 v (+ input) loaded.
Duty cycle: 5%.
Impedance: 200 ohms, input and output.
Delay characterlstics: approximateiy 16 nsec
Nolse figure: less than 6 db .
Price: hp 460BR, $\$ 275$.

860-4000, -4200, -4300 DATA AMPLIFIERS

For precision wideband, narrow-band or differential amplification

Advantages:

Floating operation or input, output isolation
High gain, low noise
Excellent overload recovery
Linearity to $\pm 0.01 \%$ of full scale

860.4000 FIFO Differential DC Amplifier

The Sanborn FIFO (floating input-floating output) Model $860-4000$ is a solid-state 10 kc bandwidth de amplifier designed especially to isolate and amplify high-frequency signals from wideband transducers. Because of its high gain (1000), it is particularly useful for extracting low-level signals from large amounts of common mode noise. A single FIFO used with an input scanner can amplify data from many transducers, or the outputs of any number of FIFO's may be sampled. Alternate Model $860-4000 \mathrm{P}$ features grounded output isolated from the input and has an output capability of ± 10 volts at $\pm 100 \mathrm{ma}$. It can drive high-frequency galvanometers. Both models have a high common mode rejection ratio and an exceptional recovery time,

860-4200 Floating Wideband DC Amplifier

Sanborn Model 860-4200 is a fully solid-state 3 -terminal potentiometric input dc amplifier featuring a dc to 50 kc bandwidth. The amplifier provides high precision data acquisition from thermocouples, strain gage bridges and other resistance bridge transducers.

860-4300 Narrow-Band Differential DC Amplifier

Model 860.4300 is designed to amplify low-level signals from thermocouples, strain gages and other resistance
bridge transducers. This completely solid-state, low noise amplifier successfully combines a floating input which allows measurement of low-level signals even though compl; cated by ground loops, high gain and zero stability; and a floatiog output (isolated from input) which eliminates ground loop problems with terminal equipment. Typical outputs for these data amplifiers include digital voltmeters, tape recorders, oscillographs, oscilloscopes and other readout devices.

These amplifiers also are offered in convenient 2-and 8 -unit modules for rack mounting, and as an individual amplifier in a portable case. Power supplies are included. Two-unit modules with individual power supplies are available in a $31 / 2^{\prime \prime}$ high, $19^{\prime \prime}$ wide ($89 \times 483 \mathrm{~mm}$) panel for rack mounting, or you can mount eight amplifiers in a $7^{\prime \prime}$ high, $19^{\prime \prime}$ wide ($178 \times 483 \mathrm{~mm}$) rack with a Sanborn eight-channel power supply in the rear. Sixty-four amplifiers, a blower unit and a master power panel take only $661 / 2^{\prime \prime}(1789 \mathrm{~mm})$ of fronc-panel space.

Specifications*, 860-4000

Galn: 1000, 500, 200, 100 and 50 (does not invert phase in standard model) with smooth gain control; stability: $\pm 0.05 \%$ at de for 40 hours, $\pm 0.01 \%$ change ${ }^{\circ} \mathrm{C}$; accuracy: $\pm 0.5 \%$ at $\mathrm{dc} ; \pm 0.2 \%$ available on special order; trim: any gain setting can be crimmed to within $\mathbf{i} 0.03 \%$.
input: isolated from ground and from output; impedance: 100 megohms min. at dc, $0.001 \mu f$ shunt.
Common mode rejection: (1000 ohms in either input lead): 160 db at $\mathrm{dc}, 120 \mathrm{db}$ at $60 \mathrm{cps}, 100 \mathrm{db}$ at 400 cps .
Common mode tolerance: $\pm \hat{\jmath} 00 \mathrm{v} d c$ or $p e a k$ ac.

Bandwidth: dc to $\pm 5 \%$ at $5 \mathrm{kc} ;-3 \mathrm{db}$ at 10 kc .
Rise time: for step inpur, $250 \mu \mathrm{sec}$ to 99.9% of steady state.
Output 860.4000 , isolated from input and ground; 860.4000 P , grounded output isolated from input: impedance: 860.4000 , 60 ohms; $860.4000 \mathrm{P}, 0.5$ ohm or less (power output is at ground potential).
Output capabllity: $860-4000: \pm 10 \mathrm{v}$ across 1000 -ohm load, $\pm 5 \%$ for specified gain; $860 \cdot 4000 \mathrm{P}: \pm 10 \mathrm{v}$ at 100 ma .
Linearlty: $\pm 0.1 \%$ of full scale at $d c$; full scale is 10 v .
Noise (referred to input at galn of 1000): 1 $\mu \mathrm{v}$ p-p, dc to 3 cps : $3 \mu_{\mathrm{v}} \mathrm{P} \cdot \mathrm{P}$, dc to $20 \mathrm{cps} ; 10 \mu \mathrm{v}$ p-p, de to $200 \mathrm{cps} ; 3 \mu_{\mathrm{v}} \mathrm{mms}$, dc to $1 \mathrm{kc} ; 5 \mu \mathrm{v} \mathrm{rms}$, de to $10 \mathrm{kc} ; 7 \mu \mathrm{v} \mathrm{rms}$, de to 30 kc .
Drift: $\pm 2 \mu \mathrm{v}$ referred to input, $\pm 0.01 \%$ of full scale at the output at a constant ambient temperature for 40 hours.
Temperature coefficient of drift: 860-4000: $\pm 1 \mu \mathrm{v} /{ }^{\circ} \mathrm{C}$ referred to input, $\pm 0.002 \%$ of full scale $/{ }^{\circ} \mathrm{C}$ at the output. $860-4000 \mathrm{P}$; $\pm 1 \mu \mathrm{v} /{ }^{\circ} \mathrm{C}$ referred to input, $\pm 0.01 \%$ of full scale $/{ }^{\circ} \mathrm{C}$ at output.
Overload recovery: for 500% overload, $300 \mu 5 e c$ to 1% of full scale output; for 20 v overload, $500 \mu \mathrm{sec}$ to 10% of full scale output, 1 msec to 1% of full scale output.

Specifications ${ }^{*}$, 860-4200

Gain: $1000,500,200,100,50,20$ and 10 (does not invert phase): accuracy: $\pm 0.25 \%$ at dc; stability: $\pm 0.01 \%$ at dc at constant ambient temperature for 40 hrs; trim: any gain step can be trimmed to at least $\pm 0.04 \%$ of correct value.
Input impedance: 100 megohms at $d c$ in parallel with no more than $0.001 \mu \mathrm{f}$.
Isolation between Input and case: 150 megohms at 60 cps .
Bandwidth: de to 50 kc within 3 db .
Output impedance: less than 0.2 ohms.
Output capabllity: ± 10 volts and $\pm 100 \mathrm{ma}$.
Noise: $7 \mu \mathrm{v}$ rms referred to the input, gain 1000 .
Drift $\pm 0.02 \%$ of full scale at the output at constant ambient temperature for 40 hours, $\pm 0.002 \%$ of full scale at the output $/{ }^{\circ} \mathrm{C}$.
Non-linearlity: no more than $\pm 0.01 \%$ of 10 volt output.
Zero trms: $\pm 50 \mathrm{mv}$ at the outpur.

Specifications *, 860-4300

Gain: $1000,500,200,100,50,20$ and 10 ; accuracy: $\pm 0.5 \%$ at dc ; stability: $\pm 0.03 \%$ at $d c$ with constant ambient temperature for 40 hours; $\pm 0.01 \%$ change $/{ }^{\circ} \mathrm{C}$; trim: any gain setting can be trimmed to within $\pm 0.02 \%$, covers $\pm 3 \%$ range.
Input: isolated from ground and from output; impedance: 1 megohm minimum, independent of gain.
Common mode rejection: (for 1000 ohms in either input lead) 130 db at $60 \mathrm{cps} ; 160 \mathrm{db}$ at dc .
Common mode tolerance: 220 v rms.
Bendwidth: de to $\pm 1 \%$ at 30 cps ; dc to 3 db down at 100 cps . Rise time: 20 msec to 0.1% of 6 nal value for a step input.
Output: isolated from input and from ground; impedance: 75 ohms.
Output capablilty: $\pm 5 \mathrm{v}$ at 2.9 ma .
Línearity: $\pm 0.05 \%$; $(\pm 0.03 \%$ for 0 to +5 v or 0 to $-5 \mathrm{v})$.

[^1]Drift: $\pm 2 \mu \mathrm{v}$ at constant ambient temperature for 40 hours: $\pm 0.2 \mu \mathrm{v} /{ }^{\circ} \mathrm{C}$ referred to input.
Zero trim: $\pm 30 \mathrm{mv}$ at output.
Overload recovery: 200 msec from $\pm 10 \mathrm{v}$ overload; differential input voltages of $\pm 60 \mathrm{v}$ peak will not damage input circuitry or chopper.
Noise: $3 \mu \mathrm{p}$-p referred to input for gain of 1000 (wideband).
Ripple: (peak, due to signal) 0.04% of signal.

General specifications, all models

Power: $11 \mathrm{~s} \mathrm{v} \pm 10 \%$, 50 to $400 \mathrm{cps} ; 860 \cdot 4200,860.4300$ approx. 5 watts; $860 \cdot 4000,14$ watts.
Dimensions: (all amplifiers): $7^{\prime \prime}$ high, $2^{\prime \prime}$ wide, $143 / 4^{\prime \prime}$ deep ($178 \times 51 \times 379 \mathrm{~mm}$) ; $8800002 \mathrm{~A}, 8800-04 \mathrm{~A}, 868-700$ (8. channel rack mounts and power supplies) $7^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $20.55 / 64^{\prime \prime}$ deep ($178 \times 483 \times 530 \mathrm{~mm}$); 860-200 (2-channel extended-front module) : $31 / 2^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $191 / \mathrm{g}^{\prime \prime}$ deep ($89 \times 484 \times 486 \mathrm{~mm}$); $860 \cdot 200$ A (2 channel flush front module) same as $860-200$ but depth is $20.55 / 64^{\prime \prime}$ (530 mm); 860.1400 (1-channel portable case) : $83 / 4^{\prime \prime}$ high, $31 / 4$ " wide, $217 / 8^{n}$ long ($222 \times 83 \times 556 \mathrm{~mm}$) .
Weight: $860.4000,860-4000 \mathrm{P}, 860-4200:$ net $6 \mathrm{lbs}(2,7 \mathrm{~kg})$, shipping $10 \mathrm{lbs}(4,5 \mathrm{~kg}) ; 860-4300:$ net $4 \mathrm{lbs}(1,8 \mathrm{~kg})$, shipping $6 \mathrm{lbs}(2.7 \mathrm{~kg}) ; 8800-02 \mathrm{~A}, 8800-04 \mathrm{~A}, 868.700$ (8 -channel rack mounts and power supplies) : net $30 \mathrm{lbs}(13,5 \mathrm{~kg})$, shipping $35 \mathrm{lbs}(15.8 \mathrm{~kg}$): $860 \cdot 200,860-200 \mathrm{~A}$ (2 -channel modules) : net $17 \mathrm{lbs}(7,7 \mathrm{~kg})$, shipping $20 \mathrm{lbs}(9,1 \mathrm{~kg})$; 860.1400 (1 -channel portable case): net 5 ibs ($2,3 \mathrm{~kg}$). shipping 7 lbs ($3,2 \mathrm{~kg}$).
Prices: Sanborn 860-4000, $\$ 825$ (Sanborn 860-4000P, \$900); Sanbora 8800-04A, $\$ 700$ (8 channel power supply and frame): Sanborn $860-500 \mathrm{AF}, \$ 273$ (1 -channel power sup. ply): Saaborn $860-4200, \$ 600$: Sanborn $868.700, \$ 360$ (8. channel transfer chassis). Sanborn $860-700, \$ 70$ (1-channel transfer chassis); Sanborn 860-4300, \$425: Sanborn $8800-$ 02A $\$ 630$ (8 -channel power supply); Sanborn 860-500A. \$225 (1-channel power supply).
For all amplifiers: Sanborn $860.1400,100$ (1-channel por table case): Sanborn $860-200, \$ 115$ (2-channel module, extended front); Sanborn 860.200 A , 3115 (2-channel module, flush front).

Other verstons of 860-4300

Narrower bandwidths, lower output impedance, higher outpur, lower drift and other added capabilities listed below are seadily available in other versions of Model $860-4300$. Prices are determined by the exact nature of the added performance requirements and the quantity required. Contact your HewlettPackard sales office for complere information.
Ou\&put Impedance: < 0.5 ohms; when used with Model 8800 02A power supply, the low output side of all channels are connected together but not to ground; output connection does not ordinarily introduce objectionable noise; when used with commutators, as in multi-channel data acquisition systems, the output noise introduced will be negligible.
Output capabilities: $\pm 5 \mathrm{v}$ at $\pm 5 \mathrm{ma}$ to $\pm 10 \mathrm{v}$ at $\pm 100 \mathrm{ma}$.
Dual-output provisions: two 5 ma , or one Sma and one 100 ma .
Frequency response; plug-in filters with $12 \mathrm{db} / 0 c t i v e$ roll-off provide cutoff frequencies to $4 \varsigma \mathrm{ps}$ (smooths out noisy sig. nals).
LInearlty: $\pm 0.03 \%$ of 9 v output (terminal).
Drift: $\pm 1 \mu \mathrm{~V}$ at constant ambient temperature for 40 hours.

DY-2460A SOLID-STATE OPERATIONAL AMPLIFIER, DY-2461A PLUG-INS

Wideband, high-gain amplifier with plug-in versatility

Advantages:

Photoconductive chopper, all-transistor circuitry for maximum reliability
Fast settling rime, rapid overload recovery for systems applications
Low zero drift-less than $1 \mu v$ per neek
Low noise-less than $4 \mu \mathrm{v}$ peak to peak
The Dymec solid-srate DY-2460A Amplifier, moderately priced for exceptional value, achieves extremely high reliabjility on low level measurements through a specially designed photoconductive chopper and all solid-state circuitry. Interchangeable plug-in units contain gain control circuits.

Specifications, DY-2460A

(without plug-in)
Open-loap galn (inverting): (minimum values with load impedance $>1 \mathrm{~K}$) $5 \times 10^{\top}$ at $\mathrm{dc} ; 7 \times 10^{3}$ at $40 \mathrm{cps} ; 1 \mathrm{at} 1 \mathrm{mc}$.
Open-loop input impedance: (minimum values; shunt capacitance 60 p f max.) 1 M at dc; 150 K at 1 kc .
Open-loop output Impedance: 10 ohms max., dc to 10 kc ; 50 ohms max.. 10 ks to 1 mc.
input noise: (referred to summing point, $<100 \mathrm{~K}$ to ground) $4 \mu \mathrm{v}$ p.p max. 0 to $1 \mathrm{cps} ; 10 \mu \mathrm{rms}$ max.. 0 to 1 kc .

Zero drift: 〈referred to sumaming point, $<100 \mathrm{~K}$ to ground. 2.hr. warm-up) constant temperature. i $\mu \mathrm{v} /$ week max.: temperature coefficient. $0.3 \mu v /{ }^{\circ} \mathrm{C}$ max.
Zero adjustment: (referred to summing point) $\pm s \mu \mathrm{~s}$.
DC output tapability: voltage. ± 10 r; current. ± 10 mas. de to 10 kc (6 db /octave decrease, 10 kc to 1 mc).
Overload: amplifier limiting, ± 11 to ± 12.5 v output: recovery, equal to rise time plus $20 \mu \mathrm{sec}$ (5 ma max. to sum point).
Output load: max. capacitive load for stability, 0.1μ for gain >10 : $0.01 \mu \mathrm{f}$ for gain <10; short circuit does not damage instrument.
Power: 115 or 230 volts $\pm 10 \%$. So to 1000 cps , 4 watts approx.
Dimensions: $3^{\prime \prime}$ high, $5^{\prime \prime}$ wide. $17^{\prime \prime}$ deep ($76 \times 130 \times 406 \mathrm{~mm}$).
Welght: (includes a plug-in): net $6 \mathrm{lbs}(2.7 \mathrm{~kg}$) : shipping 12 lbs (9.9 kg).
Accessories available: hp 5060.1938 Combining Case. holds 6 amplifiers, \$200: hp 5060.0792 Filler Panel, covers one panel opening in conbining case, $\$ 3$ each: hp 5060.0828 Control Panel Cover, converts combining case to carrying case, $\$ 23$; hp 5060 . 0808 Adapter Frame, holds 3 amplifiers, $\$ 25$.
Options: overload indication, front.panej lamp and output signal. order DY. 2460 A-M1. 8480,
Price: Dymec DY: 2460 A (less plug-in), $\$ 445$.

DY-2461A-M1 Data Systems Plug-in

Gain (inverting): fixed settings, 10, 30, 100, 300, 1000 (X0 position shorts output); adjustment. $\pm 2 \%$ on each range (front-panel screwdriver control).
input resistance: $100 \mathrm{~K} \pm 0.2 \%$. 50 pf nominal.
Output resistance: 50 milliohms maximum.
Bandwidth and settling time: (signal must be within output capability, see DY. 2460 A spec).
DC gain accuracy: see table; calibrated on X10 range, temp, range 10 to $50^{\circ} \mathrm{C}$.

OY. 2460 A with DY-2461A.M1 Data Systems Plug-in

Qaln	Min. 3 of bandwidith	$\begin{gathered} \text { Max. } \\ \text { seftiling thme to } 0.1 \% \\ \hline \end{gathered}$	Acmiracy
$\times 10$	25 kc	$50 \mu \mathrm{sec}$	-
$\times 30$	15 kc	$75 \mu \mathrm{sec}$	$\pm 0.5 \%$
$\times 100$	5 kc	$250 \mu \mathrm{sec}$	$\pm 0.5 \%$
$\times 300$	1.5 kc	750 usec	$\pm 1 \%$
$\times 1000$	350 cos	3.5 msec	$\pm 1 \%$

Price: Dymec DY-2461A-M1, $\$ 83$; combined with amplifier, $\$ 330$.

DY-2461A-M2 Bench-Use Plug-in

Gain (inverting): Gixed settings, $1,10,100,1000$ (X0 position shorts output) ; vernier, extends gain each setting, from X1 to XIO.
input resistance: $100 \mathrm{~K} \pm 0.2 \%$, 50 pf nominal.
Output resistance: 50 milliohms max.
Bandwidth and settling time: see table below (signal must be within output capability; see DY-2460A specs).
DC gain accuracy: see table; vernier at 1 ; temp. range 10 to $50^{\circ} \mathrm{C}$.

Gain	Min. 3 dob bandwidth	Max. satting time to 0.1%	Acouracy
XI	50 kc	$25 \mu \mathrm{sec}$	$=0.5 \%$
X 10	25 kc	$50 \mu \mathrm{sec}$	$\pm 0.5 \%$
X 100	5 kc	$250 \mu \mathrm{sec}$	$\pm 1 \%$
X 1000	350 cps	3.5 msec	$\pm 1.5 \%$

Price: Dymer DY.2461A-M2, \$125; combined with amplifier, \$570

DY-2461A-M3 Patch Unit Plug-in

Patch panel provides consections for up to 3 inputs and 1 feedback pach. Inputs, outpuk, circuit ground and chassis ground available at both front paael and rear connectos; summing point available at front panel only': overload signal at rear only. Price: Dymec DY-2461A-M3, $\$ 75$; combined with amplifer, $\$ 520$.

DY-2461A-M4 Plus-One Gain Plug-in

Gain: Xı; non-inverting.
DC gain accuracy: (includes linearity, long term stability, 10 to $\left.50^{\circ} \mathrm{C}\right) \pm 0.005 \%$ into $1 \mathrm{~K} ; \pm 0.0002 \%$ into 100 K .
Input resistance: $10{ }^{30}$ ohms, for relative humidity up to 70% at $40^{\circ} \mathrm{C}$.
Output resistance: 50 milliohms maximum.
Price: DY-2641A-M4, 835 ; combined with amplifier, S480.

DY-2470A DATA AMPLIFIER

Solid-state, wideband differential amplifier

The DY-2470A Amplifer is a flexible wideband differential amplifier exhibiting low drift and noise, achieved without the use of a chopper. The instrument will supply up to 1 watt output to a resistive or reactive load. Exceptionally high reliability and accuracy are achieved by the use of silicon semiconductors.

Applications include amplification of strain gage bridge, thermocouple and other low-impedance sensors. Amplifier provides an output suitable for data acquisition devices. in.
cluding recording galvanometers and oscillographs, analog recorders, servo control systems. Low instrument cost keeps per-channel price to the minimum. The DY 2470 A also applies directly to many general-purpose laboratory uses, both differential and single-ended.

The amplifier with its power supply is packaged in a unique molded dielectric case, so compact that ten instruments fit side-by-side in $51 / 4^{\prime \prime}$ of standard $19^{\prime \prime}$ rack space.

AVAILABLE MID-1965

Specifications

(unless nored, specifications hold after 30 min . warm-up at $25^{\circ} \mathrm{C}$ ambient, 1 K ohm source resistance, any unbalance)

DC galn: fixed steps: X0 (output shorted), X10, X30, X100, X300, X1000; optionally X0, X1, X10, X100, X1000, or other steps between 1 and 1000 available, up to 6 positions.
Gain accuracy (no load): at $25^{\circ} \mathrm{C}, \pm 0.02 \%$ initially $\pm 0.005 \%$ per month stability; ± 0.001 \% per ${ }^{\circ} \mathrm{C}$ maximum temperature coefficient.
Vernier adjustment (optional): $\pm 1 \%$ trimpot, $\pm 0.01 \%$ resolution; or X1 to X 3.5 multiplier with dial calibrated to $\pm 3 \%$ accuracy.
DC Ilnearlty: $\pm 0.01 \%$ at gain of 1000,0 to 10 v output.
Input Impedance: 1000 megohms min., shunted by s pf max.
Zero stability (at constant $25^{\circ} \mathrm{C}$): $\pm 5 \mu^{\mathrm{v}}, \pm 0.5$ na per day referred to input; $\pm 20 \mu^{\mathrm{r}}$ per day referred to output; $\pm 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}, \pm 0.2$ na per ${ }^{\circ} \mathrm{C}$ refecred to input; $\pm 10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ refecred to output.
Noise: 0 to $100 \kappa p 5: 5 \mu^{\mathrm{v}} \mathrm{P}$-p referred to input; $+500 \mu^{\mathrm{v}}$ p-p referred to output; $1<p s$ to $50 \mathrm{kc}: 5 \mu \mathrm{v} \mathrm{rms}$, teferred to input; $+500 \mu \mathrm{v}$ rms referred to output.
Common mode rejection: 120 db , to 60 cps .
Maximum input signal: $\pm I 1$ volts, differential + common mode; up to ± 20 volts can be handled without damage to instrument.
Output: ± 10 volts, 0 to 100 ma ; self-limits at approx. 11 volts, 125 ma .
Output impedance: 0.1 ohm $+10 \mu \mathrm{~h}$ maximum.
Load capabillty: 100 ohms or $0.01 \mu \mathrm{f}$ for full output; amplifier is stable and undamaged by short circuit or any capacitive load.

Slewing: 10° volts $/ \mathrm{sec}$ referred to outpur, or 10° volts $/ \mathrm{sec}$ referred to input.
Bandwidth: $\pm 1 \mathrm{db}, 0$ to 10 kc , any gain step; $\pm 3 \mathrm{db} 0$ to 50 ke any gain step: other fixed 3 db bandwidths between 0 to 50 kc and 0 to 100 cps optionally available.
Settling time: $100 \mu \mathrm{sec}$ to within 0.01% of final value.
Overload recovery: settiing time $+100 \mu \mathrm{sec}$ for inputs up to 10 times full scale; less than 1 msec for inputs up to 20 volts.
Overioad signal (optional): output is -18 v without overload; 0 to -1 v with overload, 5 ma drive capability; also, front-panel indication.
Operating conditions; 0 to $55^{\circ} \mathrm{C}$ ambient temperature range; up to 95% relative humidity at $40^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to 400 cps , approx. 5 w .
Dimenslons: $15 / 8^{\prime \prime}$ wide, $4-27 / 32^{\prime \prime}$ high, $15^{\prime \prime}$ deep ($41 \times$ $123 \times 381 \mathrm{~mm}$).
Weight: net 3 lbs ($1,4 \mathrm{~kg}$); shipping $5 \mathrm{lbs}(2,3 \mathrm{~kg})$.
Accessorles available: combining case: contains up to 10 instruments in $51 / 4^{\prime \prime}$ of standard $19^{\prime \prime}$ rack space (mating connectors furnished with amplifier) ; bench stand: holds one amplifier upright and includes input/output connectors, power switch, pilot light, power cord; mating rear connector with power cord, input/output cables.
Optional modifications: 1% gain trim; 3.5 to 1 gain vernier; overload indicator with output signal; special gain steps.
Price: Dymec DY-2470A, price on request.

WAVE AND DISTORTION ANALYZERS

The choice between a wave analyzer and distortion analyzer depends on the kind of information desiced. The rave analyzer is a narrow-band filter which is tuned to select and measure the strength of the individual components of a signal one at a time (Figure 1). (In the frequency range from 10 mc to 40 gc , wave analysis is accomplished with the hp 851A/8551A Spectrum Analyzer: see pages 214 through 217.) In contrast to the frequency selection of wave ana. lyzers, the distortion analyzer is a nar-row-band rejection filter which, when properly tuned. removes the fundamental frequency, so that the amplitude of the remaining components can be measured all at once (Figure 2). The distortion analyzer is used for fast, quantitative measurements of total distortion, whereas the wave analyzer provides detailed information concerning each harmonic and intermodulation product.

A signal becomes distorted whenever it passes through a non-linear circuit or nerwork. Percentage distortion is defned as 100 times the ratio of the root mean square sum of the harmonics to the fun. damental*.
$\%$ distortion $=$
$\frac{\left(A_{2}{ }^{2}+A_{3}{ }^{2}+A_{4}{ }^{2}+\ldots\right) H_{2} \times 100}{A_{1}}$
where A_{1} is the rms amplitude of the fundamental and $A_{2}, A_{3}, A_{4}, \ldots$ are the amplitudes of the individual harmonics.

The distortion analyzer

The distortion analyzer, typiffed by the hp 330 and 331 Series, measures total ems distortion and provides a ready determination of percentage distortion. The procedure is fast and easy. The an.
alyzer is first switched to the "Set Level" function, which converts the instrument to a broadband volemeter.

The instrument's attenuators and amplifier gain then are adjusted to piace the indicating meter's pointer on a seference mark. The function switch next is set to "Distortion." which places the rejection filter in the circuit. The operator tunes the filter to eliminate the fundamental frequency of the input signal, as noted by a dip in the meter's reading. The instrument now reads the rms sum of the remaining harmonic components, the attenuator being readjusted to bring the pointer up-scale.

The instrument is calibrated so that the final reading, referenced to the attenuator setting, shows percentage distortion directly or it can show distortion in terms of $d b$ units. This distartion, strictly speaking, is presented as the ratio of the sum of the harmonics to the value of the total wave, not to just the fundamental as shown in the equation. In the range where this instrument is used. however, the difference between this ratio and actual percentage distortion as defined previously is small, the difference being less than 0.5% for harmonic distortion as high as 10%.

The wave analyzer

The wave analyzer, as implied previously, is a highly selective voltmeter. In operation, a front-panel control is tuned to the frequency of the harmonic component to be measured, and the harmonic's voltage amplitude is then read directly on the front-panel meter. This information is useful, for instance, in analyses of waveforms obrained from vibration systems, where system resonance can be pinpointed by the presence of

Figure 1. Harmonic analysis of slightly unsymmetrical square wave, Several harmonics were allowed to run off scale so the smaller, higher order harmonics are clearly visible.
larger than normal harmonic com. ponents.

Hewlett-Packard wave analyzers are heterodyning tuned voltmeters, which means simply that the input signal is heterodyned to a higher intermediate frequency by an internal local oscillator. Filtering is performed in the IF amplihers, so that the instrument's passband remains constant regardless of the instrument's cuning. Tuning the local oscillator shifts the various input sigoal frequency components into the passband of the IF amplifiers. The output of the IF amplifiers is rectified and supplied to the metering circuit.

A Hewlett-Packard designed and built tuning capacitor is used in the oscillator circuits. This capacitor provides a linear rotation versus frequency characteristic, which facilitates tuning, since the distance between frequency increments on the dial is constant throughout the tun. ing range of the instrument. With this turing characteristic, close-spaced harmonics are separated as easily at the high end of the tuning range as at the low end.

Two attenuators insure that low. level harmonic content can be read with accuracy. The input attenuator is set according to the amplitude of the input signal, allowing maximum input amplitude without overloading of the linear amplifier and modulator. The second attenuator, in the metering circuir, permits the amplitudes of harmonic components to be read with accuracy throughout a 75 db range.
Automatic frequency control, an im. portant feature of the new hp wave analyzers, greatly facilitates wave analysis. Because of the narrow bandpass of these instruments (less than 7 cps in the Model 302A). harmonic components are likely to drift out of the passband dur. ing measurement. The automatic frequency control locks the instrument's tuning to the frequency of the harmonic component, so that measurements are not affected by drift in the source signal.

[^2]

Figure 2. Block diagram of ho 331 a Distortion Analyzer.

302A WAVE ANALYZER, 297A SWEEP DRIVE

Highly selective; measures wave components directly, 20 cps to 50 kc

The hp 302A. Wave Analyzer functions as a highly selective tuaed voltmeter separating the iaput signal into its individual components so that each- the fundamental, harmonics and ang intermodulation products - may be evaluated separately.

The instrumear operates by mixiag the iaput signal with an iaternal oscillator adjusted to provide a difference frequency of 100 kc . An automatic frequeacy control circuit maiatains a conscant difference frequency berween the input and oscillator signals. This insures accurate measurements despite frequency drift in the input sigal. After the input signal is mixed with a voltage from the internal oscil. lator, the 100 kc difference signal is passed through a natrow-band crystal filter, amplified and metered.

Frequency restorer

A frequeacy restorer circuit makes accucate ftequency measutements possible at each component frequency of the input wave. The frequency restorer circuit supplies a siausoidal signal at the frequency of the specific compooent to which the 302 A is uned. This signal can be measured on an electronic counter or observed on an oscilloscope. The amplitude of the restorer signal is determined by the level of the selected componear.

Model 302A also is particularly useful for measuring small sig. nals on noisy systems or traasmission lines. When the mode selector is switched to "BFO" the instrument becomes an oscillator and tuned voltmeter automatically tuned by one control to the same or oscillator frequeacy. The selecrive tuned voltmeter then discrimiates against the aoise and measures the desired signal. Speed and accuracy of measuring are eahanced by a linearly calibrated tuaing control giviag the same "runing feel" throughour the range.

Specifications, 302A
Frequency range: 20 to 50,000 cps.
Frequency callbration: linear graduation 1 division per 10 cps.
Dial accuracy: $=(1 \%+5 \mathrm{cps})$.
Voltage range: $30 \mu v$ to 300 v full scale, is ranges in a 30,100 , 300 sequence; ranges provided by input atrenuator and a meter range switch in sreps of $1: 3$ or 10 db ; meter range is indicated by a dial mechanically linked with the input attenuator; an absoluterelative switch. in coajunction with a variable 10 db contol is provided for adjustment of intermediate values.
Warm-up time: none.
Voltage accuracy: $\pm 5 \%$ of full scale value.
Resldual modulation products and hum voltage: greater than 75 db dowa.
Intermediate frequency rejection: intermediate frequency preseat in joput signal rejected by at least 75 db .
Selectivity: ± 3.5 cycle bandwidth at least 3 db dowa, ± 25 cycle bandwidth at least 50 db dowa, ± 70 cycle bandwidth at least 80 db down; beyond ± 70 cycle bandwidth ar least 80 db down.
Input Impedance: determined by setting of input attenuator: 100,000 ohms on 4 most sensitive ranges; 1 megohm on remaining ranges.
Restored frequency output: 1 volt across 600 ohms at outpur terminals for full-scale meter deflection; output voltage proportional to meter reading; output level control provided; feequency response $\pm 2 \%, 20$ to $50,000 \mathrm{cps}$; output impedance approximately 600 ohms.
Oscllator output; 1 volt across 600 ohms at output terminals (mode selector in BFO) ; output level control provided; frequency response $\pm 2 \%$, 20 to 50,000 cps: output impedance approximately 600 ohms.
Recorder output: 1 ma dc into 1500 ohms or less ar full-scale meter indication; for grounded or ungrounded recorders.
Automatlc frequency control: sange of frequency hold in is ± 100 cps minimum.
Power, 115 or $230 \mathrm{v} \pm 10 \%, 50$ to $1600 \mathrm{cps}, 3 \mathrm{w}$ (approx.) ; terminals ate provided for powering instrument from external battery source; battery supply raage 28 v to 18 v .
Dimensions: cabinet: $20^{3 / 4^{\prime \prime}}$ wide, $121 / 2^{\prime \prime}$ high, $141 / 2^{\prime \prime}$ deep (527 x $318 \times 368 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $10-15 / 32^{\prime \prime}$ high, $14^{\prime \prime}$ deep behind panel ($483 \times 266 \times 356 \mathrm{~mm}$).
Welght: net $43 \mathrm{lbs}(19,5 \mathrm{~kg}$), shipping $51 \mathrm{lbs}(23 \mathrm{~kg})$ (cabinet): net $35 \mathrm{lbs}(16 \mathrm{~kg}$), shipping 51 lbs (23 kg) (rack mount).
Price: hp 302A, $\$ 1800$ (cabinet) ; hp 302AR, $\$ 1785$ (rack mount).

297A Sweep Drive

The 297 A is a motor drive unit designed to enhance the usefulness of the hp 302A or 310A Wave Analyzer. With the 297A you may sweep through all or any part of the 302A range. Because the 297 A produces an x-axis output, you may easily make semi-automatic plots of harmonics, intermodulation products and response characteristics.

The 297A also may be used to drive other tunable devices through theit ranges. An available stand allows the shaft height to be ad. justed from 4 to 12 inches (102 to 305 mm).

Specifications, 297A

Sweep limits: any interval from 64 revolutions to 10 degrees.
Sweep speed with 302A: 170 and $17 \mathrm{cps} / \mathrm{sec}$.
Shaft speed: 10 rpm, 1 rpm , and neutral; other shaft speeds avail. able on special order; neutral permits manual operation.
Sweep voltage output: at least 12 volts maximum; full output is obtained with either 2.1 or 50 revolutions of the shaft.
Torque: 9 in 0.0 z at 10 rpm (approx. $22 \mathrm{in}-\mathrm{oz}$ max, at 1 rpm).
Power: 115 volts $\pm 10 \%, 60$ cps, 12 watts running or stalled.
Prlce: hp 297A, 8350 ; hp H03.297A ($230 \mathrm{v}, 50 \mathrm{cps}$), $\$ 37 \mathrm{~s}$.

310A WAVE ANALYZER
 Permits easy analysis of fundamental, harmonics, intermodulation products

The hp 310A High Frequency Wave Analyzer separates an input signal so that the fundamental, harmonics or intermodulation products can be analyzed. Any signal component between 1 kc and 1.5 mc may be selected for measurement. Additionally, a front-panel mode switch lets the 310A function as an eff. cient tuned voltmeter for accurately measuring relative or absolute signal levels, as a signal source for selective response measurements and as either an AM receiver or carrier reinsertion oscillator for demodulating single sideband signals.

High sensitivity of $10 \mu \mathrm{v}$ full scale, combined with the wide dynamic range of 75 db , allow's measurements of both weak harmonic components down to 1μ and strong signals up to 100 v . A switch above the inpur attenuator can be Alipped from Absolute to Relative to permit signal readings at any arbitrary point on the meter for relative-strength measurements of harmonic components.

Three bandwidths

Three bandwidehs, selected with a front-panel control, increase the versatility of the 310A. The 200 cps bandwidth dis. criminates between harmonics for exacl identification. The 1 kc bandwidde simplifies calculations of noise poreer per cycle bandwidth. The 3 ke handwidth admits carries channel signals for evaluation and is wide enough to pass intelligible voice signals, but contributes so little noise that even the $10 \mu \mathrm{v}$ range can be used.

Tuning is linear throughout the 310A's range, with no band 5 witching. Frequency can be read easily from a 4 -place digital dial which has a resolution of better than 200 cps over the en. tice band, with any setting accurace to $\pm 1 \%$ + 300 cps).

Among the features which make the 310A more versatile are AFC , restored Frequency output and a beat frequency oscil. lator The AFC has a dynamic hold in range of $\pm 3 \mathrm{kc}$ (at 100 kc) with response rapid enough to lock signals with drift rates in excess of $100 \mathrm{cps} / \mathrm{sec}$. The restored frequency output contains only that part of the input signal to which the instrument is tuned and so may be counted for exact frequency determination. The BFO convers the 310 A into a signal sourcetuned voltneter, with a single runing control, ideally swited for making selective or natroti-band response tesis on filter circuics and transmission systems.

Specifications

Frequency range: 1 kc to 1.5 mc (200 cps bandwiddh), 5 ke to 1.5 nic (1000 cps bandwideh) ; 10 kc to 1.5 mcc (3000 cps bandwidth).
Frequency accuracy: $\pm(1 \%+300 \mathrm{cps})$.
Frequency calibration: linear graduation. 1 div per 200 cps .
Selectivity: 3 IF bandwidths, $200 \mathrm{cps}, 1000 \mathrm{cps}$ and 3000 cps ; midpoint of the passband (f_{0}) is readily distinguished by a rejection region 1 cps wide benveen the 3 db poines.

	$\begin{gathered} 200 \text { ops } \\ \text { bandwiddh } \end{gathered}$	1000 cgs bandwldth	3000 еря bandwldth
Rejection*	frequency (cps)	frequenay (cps)	frequency (cps)
$\geq 3 \mathrm{db}$	$f_{0} \pm 108$	$\mathrm{f}_{0}=540$	$\mathrm{f}_{0}=1550$
$\geq 50 \mathrm{db}$	$i_{0}=500$	$!_{0} \pm 2400$	$\mathrm{I}_{0}=7000$
$\geq 75 \mathrm{db}$	$\mathrm{f}_{0}=1000$	$\mathrm{f}_{0} \pm 5000$	$t_{0}=17000$

'Rejection increases smodthly beyond the -75 do points
Voltage range: 10 pr to 100 v full scale, ranges provided by input attenuator and merer range switch in steps of $1: 3$ or 10 db .
Voltage accuracy: 56% of full scale.

Internal calibrator stability: $\pm \mathrm{I} \%$ of full scale.
Dynamic range: greater than 75 db .
Noise and spurious response: at least 75 db below a full-scale reference set on the 0 db position of Range switch.
Input resistance: determined by input attenuator; 10 K ohmis on nost sensitive range; 30 K ohris on next range: 100 K ohms on other ranges.
Automatic frequency control: dynamic hold $\cdot \mathrm{in}$ range is $\pm 3 \mathrm{kc}$. minimum, at 100 kc ; tracking speed is approximately $100 \mathrm{cps} / \mathrm{sec}$; locks on signals as low as 70 db below a full-scale reference set on the 0 db position of the Range switch.
Restored-frequency output: restored signal frequency maximum output is ar least 0.25 volt (meter ar full scale) across 135 ohms. with approximately 30 db of level control provided; output impedance approximately 135 ohnns.
BFO output: 0.5 v across 135 ohms with approx. 30 db of level control proxided; output impedance approx. 135 ohms.
Recorder output: i mia de into 1500 ohms or less for grounded or ungrounded recorders.
Receiver function (Aura) or Recording provision); internal carrier reinsertion oscillator is provided for demodulation of either nornal or inverted single sideband signals: AM signal also can be detected.
Power: lls or $230 \mathrm{v} \pm 10 \%$, so to 1000 cps ; approx. 16 w .
Dimensions: $163 / 4^{\prime \prime}$ wide. $103 / 4^{\prime \prime}$ high, $183 / /^{\prime \prime}$ deep ($426 \times 274 \times$ 467 mm) : hardware furnished for conversion to rack mount $19^{\prime \prime}$ wide. $10.15 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panel ($483 \times 266 \times 416$ mm).
Weight: net $44 \mathrm{lbs}(21 \mathrm{~kg})$; shipping $51 \mathrm{lbs}(22,3 \mathrm{~kg})$
Accessaries available: 11001A Cable Assembly, $55.50 ; 10503 \mathrm{~A}$ Cable Assembly. 86.50 ; 10111A Adapter, 57: 297A Sweep Drive, 5350 ; 11505A Bench Srand for 297A, $\$ 25$.
Price: hp 310A, 52200 .
Options

1. Internal frequency calibrator providing check points every 100 kc ; interpolation accuracy (berween check points): $\pm 2 \mathrm{kc}$ up to 1.4 mc . $\pm 3 \mathrm{kc}$ between 1.4 and 1.5 mc ; add $\$ 105$.
02 . db scale uppermost on meter face and extended to -25 db ; add $\$ 2 \mathrm{~s}$.

331 A, 332A DISTORTION ANALYZERS

Accurate distortion readings, 5 cps to 600 kc

The hp Model 331A Distortion Analyzer measures total distortion down to 0.2% full scale at any frequency between s cps to 600 kc : harmonics are inditated up to 3 mc . Model 331 A includes a sensitive wideband solid-state voltmeter which may be used separately for general-purpose voltage and gain measurements. This instrument measures noise and hum as small as 50 microvolts over a wide range of level and frequency.

Distortion analyzer

The distortion analyzer consists of a broadband amplifier, a tunable frequency-selective rejection circuit and a high-impedance voltmeter. The solid-state rejection circuit utilizes a capacitively runed Wien bridge network which provides greater than 80 db of fundamental rejection. Maximum input sensitivity at 0.1% distortion setting corresponds to $300 \mu \mathrm{v}$ rms for measuring low-level residuals. Input impedance is one megohm for both voltmeter and distortion operation with a single input terminal being used for both modes of operation.

High-impedance volimeter

The solid-state voltmeter section of the instrument employs a large amount of feedback to insure stability and flat frequency response from 5 cps to 3 mc . The voltmeter has 13 ranges in 10 db steps. Range is from $300 \mu \mathrm{v} t 0300 \mathrm{v}$ rms full scale. The bandwidth is s eps to 3 mc for t mv to 30 v range. $s \mathrm{cps}$ to 500 ke for 100 v to 300 v range. The $300 \mu \mathrm{v}$ range has bandwidth of 20 cps to 500 kc . The average-responding voitmeter is calibrated to the rms value of a sine wave.
The hp Model 332A is similar to Model 331A, but is provided with an amplitude modulation derector.

Specifications, 331A

Distortion measurement range: any fundamental frequency, 5 cps to 600 kc ; distortion levels of 0.1% to 100% are measured full scale in 7 ranges.
Distortion measurement accuracy: harmonic frequency measurement accuracy:

Fundamental input less than 30 V

Range	$\pm 3 \%$	$\pm 6 \%$	$\pm 12 \%$
$100 \% \cdot 0.3 \%$ f.s.	$10 \mathrm{cps}-1 \mathrm{mc}$	$10 \mathrm{cps}-3 \mathrm{mc}$	
0.1% f.s.	$30 \mathrm{cps}-300 \mathrm{kc}$	$20 \mathrm{cps}-500 \mathrm{kc}$	$10 \mathrm{cps}-1 \mathrm{mc}$

Fendamental inpul greater than 30 y

Rangt	$=3 \%$	$\pm 6 \%$	$=12 \%$
$100 \% \cdot 0.3 \% \mathrm{f} . \mathrm{s}$.	$10 \mathrm{cps}-300 \mathrm{kc}$	$10 \mathrm{cps}-500 \mathrm{kc}$	$10 \mathrm{cps}-3 \mathrm{mc}$
$0.1 \% \mathrm{f} . \mathrm{s}$.	$30 \mathrm{cps}-300 \mathrm{kc}$	20 cps .500 kc	$10 \mathrm{cps}-1 \mathrm{mc}$

Eliminatlon characteristics
Fundemental rejection: $>80 \mathrm{db}$,
Second harmonic accuracy for a fundamental of: S to 20
cps, belter than $+\mathrm{I} \mathrm{db}: 20 \mathrm{cps}$ to 20 kc , better than $\pm 0.6 \mathrm{db}$; 20 kc to 100 kc , better than -1 db ; 100 kc to 300 kc , better than -2 $\mathrm{db} ; 300 \mathrm{kc}$ to 600 kc , better than -3 db .
Distortion introduced by Instrument: <0.03\% from s cps to $200 \mathrm{kc}<0.06 \%$ from 200 kc to 600 kc ; meter indication is proportional to the average value of a waveform.
Frequency calibration accuracy: better than $\pm 2 \%$ from 10 cps to 200 kc , better than -3% from 5 to 10 cps , better than $+8 \%$ from 200 to 600 ke .
Input impedance: distortion mode: I megahm, shunted by less than 60 pf (10 megohms shunted by < 10 pl with 10001 A Probe) : voltmeter node: 1 megohn), shunted by $30 \mathrm{pi}, 1$ to 300 v rims. and I maceohm, shunted by $60 \mathrm{pf} .300 \mu \mathrm{y}$ to 0.3 " mis.
Input level for distortion measurements: 0.3 v rms for 100% set level (up to 300 " may be attenuated to set level reference).
DC Isolation: signal ground may be $\pm 400 \mathrm{v}$ de from external chassis.
Voltmeter range: $300 \mu \mathrm{v}$ to 300 v rms full scale (13 ranges), 10 db per range.
Voltmeter frequency range: $\$$ cps to 3 mc (300μ range: 20 cps . 500 kc .
Voltmeter accuracy

Range	$\pm \mathbf{2 \%}$	$\mathbf{5 \%}$
$300 \mu \mathrm{v}$	30 cps to 300 kc	20 cps to 500 kc
1 mv 1030 v	10 cps to 1 mc	5 cps to 3 mc
$100 \times 10300 \mathrm{v}$	10 cps to 300 kc	5 cps to 500 kc

Naise measurements: voltmeter residual noise on the $300 \mu \mathrm{y}$ range: $<25 \mu$ rins terminated in 600 ohms: $<30 \mu$ rass ter. minated with a shielded 100 K resistor.
Monltor terminals: approximately 0.1 v rins ourput for full.scale meter deflection.
Output impedance: 2 K .
Power, 115 or 230 volts $\pm 10 \%$. 50 to 1000 cps , approximately 4 watts; terminals are provided for external battery supply; pos. and neg voltages between 28 and 50 v are required from each battery.
Weight: net $173 / 4 \mathrm{lbs}(8 \mathrm{~kg})$; shipping $23 \mathrm{lbs}(10,4 \mathrm{~kg})$.
Price: hp 331A, 5890 .

Specifications, 332A

Same as model 331A exrept as indicated below:
AM detector: high-impedance de restoring peak detector with semiconductor diode operates from 500 kc to greater than 65 mc : broadband input.
Maximum Input: to vp-pac or 40 v peak transient; AM distortion levels lower than 0.3% cin be measured on a 3 to 8 v rms carrier modulated 30% in the standard broadeast band; distortion lower than 2% can be measured at the same level of carrier up to 65 mc .
Price: hp 332A, 5620 .

NEW

330B,C,D DISTORTION ANALYZERS

Accurate distortion readings 20 cps to $20,000 \mathrm{cps}$

The hp 330B Distortion Analyzer is actually four instru. ments in one. Model 330 B measures cotal distortion at any frequency between 20 cps and 20 kc , measures audio noise of voltages as small as 100 microvolts, measures voltages over a wide range of voltage and frequency and measures audio frequencies with 2% or less error. The 330 B includes a sensitive wide-range vturn which may be used separately for general-purpose voltage and gain measurements.

Many broadcast stations have AM and FM detectors built into the monitors they use. When the detector is part of the station equipment, hp 330 C can be used. The 330 C is similar to Model 330D, except that the AM detector is omitted.

The hp Model 330D is similar to Model 330B, but is provided with an amplitude-modulation detector, as well as an indicating meter having ballistic characteristics conforming to Federal Communications Commission requirements, so that broadcast station tests and measurements may be easily made. In addition, the frequency response of the vtum is reduced to eliminate errors caused by pickup of the of carrier.

In combination with a high-quality audio signal genera. tor, such as hp 206A (page 260) the distortion analyzer measures distortion, noise and audio frequency response of broadcast station equipment as required by the FCC.

Spec|fications

Distortion measurement range: any fundamental frequencr, 20 cps to 20 kc .
Frequency calibration accuracy: $\pm 2 \%$ entire range.
Elimination charackeristics: fundamental frequency reduced by more than 99.99% (80 db); second harmonic attenuation less than 17% (1.5 db) for fundamental frequencies 20 cps to 5 kc , less than 32% (3 db) for fundamental frequencies 5 to 20 kc .
Accuracy: residual frequencies are measured to within $\pm 3 \%$ of full-scale value for distortion levels as $100 \mathrm{as} 0.5 \%$; meter indica. tion proportional to average value of residual components; dis. tortion introduced by instrument less than 0.1%.
Sensitivity: distortion levels of 0.3% are measured full scale; levels of 0.1% readable with good accuracy.
Distortion meter Input Impedance: approximately 200,000 ohms, 40 pf shunt.
Input level for distortion measurements: at least 1 volt mis.
Voltmeter sensitivity: full-scale sensitivities of $0.03,0.2,0.3,1$, $3.10,30,100$ and $300 v ; 9$ ranges spaced exactly 10 db ; db scale: -12 db to +2 db , calibrated on zero level $=1 \mathrm{mw}$ in 600 ohms.
Voltmeter frequency range: Model 330B, 10 cps to 100 kc ; Models 330 C and $330 \mathrm{D}, 10 \mathrm{cps}$ to 60 kc .
Voltmeter accuracy: for line voltages of nominal value $\pm 10 \%$ (104 v to 126 v), 330 B within $\pm 3 \%, 10 \mathrm{cps}$ to $100 \mathrm{kc} ; 330 \mathrm{C}, \mathrm{D}$ within $\pm 3 \%, 10 \mathrm{cps}$ to 20 kc , and $\pm 6 \%, 10 \mathrm{cps}$ to 60 kc .

Voltmeter input Impedance: approx. 1 megohm, 37 pf shunt.
Nolse measurement: full-scale reading of 300 microvolts; noise measuring frequency range, 10 cps to 20 kc : satisfiactory readings can be made ro -75 dbm .
Noise ampllfier: 40 db gain $\pm 1 \mathrm{db}, 20 \mathrm{cps}$ to 20 kc .
Oscilloscope terminals: maximum gain from AF input to oscíllo. scope terminals is 75 db with full-stale meter deflection.
Meter movement: Models 330C and 330D: VU ballistic characteristics to meet FCC requirements for 'AM, FM and tv broadcasting.
AM detector: Model 330D: linear if detector rectifies the transmitter carrier; input circuit tunable from 500 kc to 60 mc in s bands; detector distortion is negligible.
Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to 1000 cps, approx. 90 w .
Dlmensions: cabinet: $203 / 4^{\prime \prime}$ wide, $123 / 4 "$ high, $141 / 4$ " deep ($527 \times$ $552 \times 362 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $13 \% /^{\prime \prime}$ deep behind panel ($483 \times 267 \times 321 \mathrm{~mm}$).
Weight: net $38 \mathrm{lbs}(17,1 \mathrm{~kg})$, shipping $48 \mathrm{lbs}(21,6 \mathrm{~kg})$ (cabinet) ; net $30 \mathrm{lbs}(12,5 \mathrm{~kg})$, shipping $42 \mathrm{lbs}(19,9 \mathrm{~kg})$ (rack mount).
Accessories avallabie: 11000 A Cable Assembly, $\$ 4.50$; 11001A Cable Assembly, $\$ 5.50$; 11005 A Transformer (for bridging iaput). $\$ 80$.
Prlce: hp 330B, $\$ 500$ (cabinet) ; hp 330BR, $\$ 485$ (rack mount) ; hp 330C, $\$ 525$ (cabinet); hp 330CR, $\$ 510$ (rack mount); hp 330D, $\$ 575$ (cabinet) ; $h p 330 \mathrm{DR}, \$ 560$ (rack mount).

FREQUENCY AND TIME MEASURING INSTRUMENTATION

Electronic counters have proven to be the most accurate, flexible, and conve. nient instruments available for making both frequency and time interval measurements. Since the introduction of the first high-speed counter (the 10 mc Hewlett-Packard Model s24A), more than 12 years ago, hp has developed a broad range of both vacuum rube and solid-state counters with a wide variety of features. These councers and associsted equipment can measure frequencies from 0 cycles per second to 40 gc , and time intervals from 10 nanoseconds to more than 100 days. The accuracy of these measurements can be as great as 3 parts in $10^{\prime \prime}$ per day.
An electronic counter is an instrument for comparing an unknown frequency or time interval to a known frequency or a known time interval. The counter's logic is designed to presear this information in an easy-to-read, non-ambiguous, numerical display. The accuracy of this measurement depends primarily upon the stability of the known frequency, which is derived from the counter's internal oscillator. The oscillators in Hew-lett-Pachard counters are designed and built by hp and are exceprionally stable to ensure accurate measurements. All Hewlett-Packard counters are engineered for maximum reliability, accuracy and ease of operation.
The decision as to which electronic counter is best suited for a specific application depends upon the range and type of measurements to be made. The Hewletr-Packard 5245L (50 mc) solidstate counter offers the widest frequency range in a basic counter, the highest accuracy and the greatest flexibility because of several plug.ins available (for special applications). The hp $5211 \mathrm{~A}, \mathrm{~B}$ are the least complex electronic counters for simple frequency and period measurements. The silla.B have a maximum frequency capability of 300 kc , a 4 -digit neon readout, and a 0.1% accurate time base derived from the 60 cps power line. Hewlerr-Packard has a wide range of counters betareen these two extremes with corresponding ranges of maximum frequency capability, accu. racy, resolution and fexibility.
With this very complete line of elec. tronic councers Hewlert-Packard also offers many input and output devices for these instruments. Included in the available accessory instruments are: digital recorders for automatic recording of counter measurements, digital clocks which control measurement intervals and supply information for simultaneous recording, digital-to analog con.
verters for obtaining analog records of digital measurements, and scanners for receiving the outputs from several electronic counters for display into a single recording device. Hewletr-Packard also manufacures magnetic and optical tachometers for rps measurement inputs to low-frequency electronic counters.

Counter operation

The electronic counter has several basic funcrional sections which can be interconnected in a wide variery of ways for making different types of measucements. Of these, the most important functional sections are: (1) the decade counting assemblies (DCA's) with numerical displays to totalize and display the count; (2) the signal gate, which controls count stars and stop with respect to time, and (3) the cime base, which supplies the precise increment of time to control the gate for a frequency or pulse train messurement. Other sections include: signal shaping display control, logic control and binary coded decimal (BCD) output. The logic control interconnecrs the proper circuits for the desired measurement, selects the appropriate measurement units for display and initiates rhe measurement cycle. The various modes of electronic counter operation are described in the following paragraphs, and accuracy is discussed on page 45.

Figure 1. Function switch set to manual Start and Stop to determine internst for totaizing input slgnal.

Figure 2. Function switch set to frequency and gate time selected by time base switch.

Figure 3. Function switch set to Period and counted frequency selected by time base switch.

Figure 4. Function swltch set to Perlod Average. Indut signal controls gate for counting time Dase frequency.

The time base selector switch selects the gating interval, positions the decimal point and selects the appropriate measurement units.

Period measurements

Period measurements are made with the counter functions arranged as shown in Figure 3. The unknown input signal controls the gate time, and the time base frequency is counted in the DCA's. The input shaping circuit selects the positivegoing zero axis crossing of successive cycles as trigger points for opening and closing the gate.
Period measurements aliow more ac. curate measurements of unknown low. frequency signals because of increased resolution. For example, a frequency measurement of 100 cps on the $\$ 24 \mathrm{sL}$. with a 10 -second gate time will be displayed as 0000.1000 kc . A single period measurement of 100 cps on an hp 524 sL with 10 mc as the counted frequency, would be displayed as $0010000.0 \mu \mathrm{sec}$. Thus, resolurion is increased by a factor of 100 . The accuracy here is also affected by the ± 1 count ambiguity \pm the time
base accuracy \pm the trigger error. (Ac. curacy is discussed on Page 45.)

Multiple period averaging

The effect of the ± 1 count ambiguity and trigger error can be minimized by multiple period averaging (Figure 4). In the hp 5245 L , for example, the func. tion selector switch is ganged to the decade divider assemblies (DDA'S) so the input signal may be scaled in decade sreps by factors up to 100,000 to reduce
trigger error. The ± 1 count ambiguity is also reduced by a factor of 10 for each decade of scaling selected for the input signal. In the low-frequency measurement example above, the counter would display $10000.000 \mu \mathrm{sec}$ for a 100 period average. (The funcrion selector switch automatically shifts the decimal point in the display to show the corsect reading for a single period.)

Ratio measurements

The ratio of two frequencies is determined by using the lower frequency sig. nal for gate control while the higher frequency signal is counted, as shown in Figure 5. With proper ransducers. ratio measurements may be applied to any phenomena which may be represented by pulses or sine waves. Gear ratios and clucth slippage, as well as frequency divider or multiplier operation, are some of the measurements which can be made using this technique.

Accuracy is ± 1 count \pm trigger error. The accuracy may be improved by using the mulkiple period averaging technique discussed above.

Rate measurements

With a preset counter or a counter with a preset plug-in. frequency measurements can be normalized automatically to rate measurements by appropriate selection of the gate cime. The counter will then display a readout corres. ponding to the desired engineering units. For example: the hp 5214 L Preser Counter or the hip 5245 L Counter with hp s264A Preset Plug-in can be set to a gate time of 600 milliseconds to cause an inpur from a 100 -pulse-per-revolution tachometer to be displayed directly in revolutions per minute.

Scaling

The new hp $32+5 \mathrm{~L}$ solid-state counter may be used for scaling (dividing down) inputs by factors of 10 , selectable in dec. ade steps. In this mode of operation, the input is routed through the decade dividers with the scaled output available from the rear of the counter.

Figure 5. Function switch set to Period and time base swltch to Ext. Lower irequency serves as gate control. while higher frequency replaces time base as counted frequency.

Flgure 6. Start and stop signals derived from two sources or from different palnts of same wavefarm as selected by Com-Sep switth.

Time interval measurements

Time interval measurements are simi. lar to period measurements. except that the trigger points on the single waveform or waveforms are adjustable. As shorvn in Figure 6. separate signals may be used as start and stop signals or. by switching the Com-Sep switch to "Com," measurements may be made from one point on a waveform to another point on the same waveform. Triggering polarity, amplitude and slope are selected for each channel independently.

The time interval is displayed in units of microseconds, milliseconds or seconds. Accuracy is affected by the same factors which affect period measurements.

Extremely short rime intervals (10 nanoseconds to 0.1 second) can be measured accurately with the 5275A Time In. terval Counter. This instrument, using a 1 mc external frequency standard, multiplies the 1 mc to 100 mc to obtain 10 nanosecond time increments as the "counted" frequency, which results in
exceptionally froe resolucion.
Measurement of the time required for a number of random events to occur is possible with the 5214 L Preset Counter, This instrument's decade dividers may be preser to close the gate on the Nth input pulse, where N is any number from i to 100,000 .

High-frequency measurements

Measurements of frequencies above the normal range of a counter are pos. sible utilizing a series of heterodyne converter plug.in units (see hp S24SL). These plug-ins convert the unknown high frequency to a related frequency which is within the counter's basic range. The counter accuracy is retained. since a harmonic of the time base oscillator frequency is used as the heterodyning signal for the frequency conversion.

The heterodyning signal is mixed with the unknown signal and the difference frequency is fed inro the counter for measurement as shown in Figure 7. The frequency converter's tuning control selects the 50 me harmonic (Figure 7 is for an hp 5254A Frequency Converter) that gives a beat frequency ourpur within the passband of the video amplifier (meter indicarion in the green). This frequency reading on the counter is then added to the setting on the dial of the converter's tuning control to give the unknow'n irequency.

Measurements up to 40 gc are pos.

Figure 7. High-frequency measurements, Meter shows when converter is tuned to desired harmonic which generates a difference frequency within counter renge.
sible with the addition of a transfer oscillator and related instruments ${ }^{\text {(}}$ (to 15 gc with DY-2590A and to 40 gc with hp 540 B). The DY-2590A operates in the 240 to 390 mc range and generates harmonics to at least 15 gc .

With a DY-2590A, an unknown signal is fed to a crystal mixer within the trans. fer oscillator, the oscillator is cuned to a submultiple of the measured frequency. A search light goes off when tuning achieves a zero beat (phase lock) between the measured frequency and one of the oscillator's harmonics. The counrer, with appropriate plug-in, reads the transfer oscillator's fundamental frequency which, when multiplied by the hacmonic number, gives a precise determination of the measured frequency. If the harmonic number is not known, it can be determined by a simple procedure involving a second reading at a higher setting of the oscillator's frequency.

Time-base oscillator accuracy

Hewlett-Packard's long experience in the manufacture of precision frequency standards has resulted in diseinctly superior electronic counter time bases. Several innovations in quartz oscillator crystal design and manufacture have resulted from Hewlett-Packard's intensive development program, and hp's oscillator and counter designs have consistently led the field.

The rime-base oscillators in hp highperformance counters have stabilities ordinarily found only in oscillators in. tended for use as frequency standards. As such, these counters (924C,D, 52.13L. 5245L) often serve as in-house frequency standards. in addition to performing their assigned measurement tasks. The oscillator of the 5243 L , for example, has an aging rate of less than ± 3 parts in 10° per 24 hours (after 72 hours of continuous operation). A $\pm 10 \%$ change in the nominal 115 or 230 volt ac line voltage can vary the basic frequency by no more than $\pm s$ parts in 10^{10}. Ambient temperature aflects the frequency' by less than \pm ? parts in 10^{11} per degree centigrade throughout the range from -20 to +50 degrees centigrade.

The accuracy of precision quartz oscillators is generally expressed by two paramerers - long-term stability and short-term stability. The long.term sta. bility. (also called crystal aging rate or drift rate) refers to slow changes in average frequency with time due to secular changes in the resonator or other

[^3]elements of the oscillator. This is usually expressed in fractional parts per unit time such as 3 parts in 10^{9} per day. The drift rate of a crystal oscillator is predictable after an initial aging-in period and it generally assumes a linear characteristic. The slope of this line is the long-term drift rate of the oscil. laror. Various methods exist for determining this drift rate and for calibrating the oscillator to a desired standard. Refer to Application Note S2, "Frequency and Time Standards", which is available from bp upon request. Short-term stability refers to changes in average frequency over a time sufficiently short such that the change in frequency due to long-term effects is negligible. Shortterm specifications on a counter's internal time base ascillator indicate the average effect of all noise on the counter's gate rime accuracy. Thus, in the hp 524sL with 2 parts in $10^{10} \mathrm{mms}$ for 1 -second averaging there is no shortterm contribution to the gate error for a frequency measurement.

The attainable accuracy of any elec. tronic councer is limited by the time base oscillator stability, since the time base oscillator supplies the definitive time information for a measurement. The time base must be calibrated periodically, since the drift rate will cause a cumulative deviation in frequency which can resulr in a measurement error. Figure 8 graphically illustrates the at.
tainable accuracy of the hp 5245L counter. Accuracy versus measured frequency is plotted and crossover points indicate areas below which determinavion of frequency is better performed by period measurement.
The ± 1 count ambiguiry is inherent in measurements made with an electronic counter because the gating is not normally coherent with the inpur signal. It is possible for the gate to open or close while an input pulse is passing through so that this pulse may or may not be included in the final count. The degree to which the ± 1 count ambiguity affecrs measurement accuracy is derermined by the factor $1 /$ displayed count.
The accuracy of period measurements is affected by the trigger error (a function of the input signal-to-noise ratio and rise time), as well as being affected by the time base stability and the follow. ing formula: percentage error $=$

$$
\pm\left(\frac{1}{f_{\mathrm{rb}} / \mathrm{f}_{x}}+0.003+\text { L.T. }+ \text { S.T. }\right) \mathrm{x}
$$

100, where $f_{16}=$ time base frequency counted, $f_{x}=$ sine wrave input with 40 db signal to noise ratio, $0.003=$ trigger error, L.T. $=$ long-term stability of the time base oscillator, and S.T. $=$ shortterm stability of the time base oscillator. This total error is reduced by the number of periods averaged when multipie period average operation is selected.

Figure 8. Attalnable accuracy of 5245L Counter. Period measurement accuracy based on 10 mc counted frequency. Time base accuracy is 1 park in 10 .

5245L ELECTRONIC COUNTER

Compact 50 mc counter with 3 parts in 10° time base stability

Advantages:

Time base stability of 3 parts in $0^{4 \prime}$ per day Measure directly to 3 gc with frequency converter plug-in Display storage
More accurate low-frequency measurements with multiple period averaging
Low-level 0.1 volt sensitivity without accessories
Higher sampling rates; time between samples independent of gate time

The Hewlett-Packard Model S245L Electronic Counter accurately makes frequency, period, multiple period average, ratio and multiple ratio measurements. In addition, the 5245 L can be used to scale a signal by decades up to 10°. Plug ins are directly installed in the $51 / 4$ inch high front panel and extend frequency measurements to 3 gc , permit time interval measurements, preser operation, de voltage measurements and several other functions (see pages (8-51). The basic counter (without plug-ins) provides a counting rate of 50 mc with 8 -digit resolution, presented on an in-line zeadour with easy-to-read rectangular digital display tubes. Designed with solid-state componenes throughout, power consumption is only 80 watts, and net weight is 32 pounds.

Unprecedented stability is attained with a new proportionally controlled oven for the quartz crystal. Careful design minimizes the effects of temperature and line voltage variations and contributes to greater realizable accuracy. The high time base stability, ± 3 parts in 10^{n} per day or better, means the time base ourput may be usefulasa frequency standard.

Basic counter operation

The hp 5245L (without plug-ins) measures frequencies and repetition rates of periodic or random pulses from 0 to 50 million pps. Gate times from $1 \mu \mathrm{sec}$ to 10 seconds are selected with a front-panel switch. Multiple period average to 10^{3} periods is obrained arithout need for a separare plug-in. This capability also applies for ratio measurements, since the decade divider assemblies art usable at any frequency, and makes pos. sible accurate measurements a: low and intermediate frequencies. The increase in accuracy over that possible in single period or ratio is a result of division of the trigger error by the averaging factor, as well as the result of increased resolution.

Ratio measurements also may be made with high accuracy, using the multiple period average function to obtain multiples of ratio. Thus, small differences may be accurately resolved. since the rrigger error is reduced by the averaging factor. Also, since the reading is displayed as the multiplication factor times the ratio, more counts are obtained. The inherent ± 1 count ambiguity, which is the mose significant error in ratio measurements near unity, becomes less significant and ratios of frequencies that are almost identical can be accurately resolved.
The basic counter will also scale (divide) an input frequency as high as 50 mc in decade steps by factors up to 10°. For ex. ample, a 14 mc signal can be divided to 0.014 cps . A rear-panel BNC connector and switch provide your choice of nine decade ourpur frequencies.

Display storage, sample rate

The 5243L is designed with display storage, which provides a continuous display of the most recent measurement. This display is held even while the instrument is gated for a new count. If the new count differs from the stored count, the display will shift to the new reading directly. The storage feature can be disabled with a suritch on the rear panel.
The Sample Rate control determines the time interval follow. ing gate closure, during which the gate may not be reopened. When the Function switch is set to Frequency, the Sample Rate control adjusts the time between gates from less than 0.2 sec ond to at least s seconds and is independent of gate time. The control also may be set to hold a display indefinitely

Remote programming, BCD output

All functions normaily controlled at the counter front panel may be remotely progranimed except for Sample Rate and Sensitivity. The counter provides voltages necessary for remote control through connectors on the rear panel. (Remote pro. gramming available on specia! order only.)
Four-line $B C D$ code output is provided, with assigned weights of $1 \cdot 2 \cdot 2 \cdot 4$ (" 1 " state positive with respect to " 0 " state) as standard. This output is suitabie for systems use or for output devices, such as hp Model 562A Digital Recorder (page 76), hp Model 580 A or 581 A Digital-to-Analog Converter (page -9) ; 1-2-f.8 BCD code output is optional at nominal extra cost.

Specifications

Frequency measurements

Range: 0 to 50 mc (de inpur) ; 50 cps to 50 mc (ac input, maximum sensitivity)
Gate time: 1μ sec 1010 seconds in decade steps.
Accuracy: ± 1 count \pm time base accuracy.
Reads in: kc or me with positioned decimal point; units annunciator in line with digital display.
Self check: counts 10 mc for the gate time seiected.

Scaling

Frequency range: 0 to 50 mc .
Factor: by decades up to 10^{θ} with rear-panel switch.
Input: front panel, Signal Input.
Output: in place of time base output frequencies.

Period average measurements

Range: single period, 0 to 1 mc ; multiple period, 0 to 300 kc .
Perlods averaged: 1 period to $10^{\bar{j}}$ periods in decade steps.
Accuracy: \pm I count \pm time base accuracy \pm trigger error.*
Frequency counted: 1 and 10 period, 1 cps to 10 mc in decade skeps; 100 period, 10 cps to 10 me ; 1000 period, 100 cps to 10 $\mathrm{mc} ; 10,000$ period, 1 ke to $10 \mathrm{mc} ; 100,000$ period, 10 kc to 10 mc .
Reads In: sec, msec, $\mu s e c$, with positioned decimal paint; units annunciator in line with digital display.
Self check: gate time is $10 \mu \mathrm{sec}$ to 1 sec (periods averaged of 100 kc) : counts 100 kc from the cime base.

Ratio measurements

Displays: (f_{1} / f_{2}) times period multiplier.
Range: f_{1}. 0 to $50 \mathrm{mc} ; \hat{f}_{z} \cdot 0$ to 1 me in single period: 0 to 300 kc in multiple period: periods averaged 1 to 10^{5}.
Sensitivity: 0.1 v rms, each input.
Accuracy: ± 1 count of $f_{1} \pm$ trigger error* of $f_{1} ; f_{i}$ is frequency applied to the decimal counters (enters Time Base Ext. jack on front panel) ; t_{2} is frequency applied to decade dividers (enters Signal 「npur jack).
Reads In: dimensionless; positioned decimal point for number of periods averaged.
Self check: period average self check appiies.

Time base

Frequency (Internal): 1 mc .
Stability: aging rate, less than 3 parts in 10° per 24 hours;** as a function of temperature, less than ± 2 parts in 10^{10} per ${ }^{\circ} \mathrm{C}$ from $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$; as a function of line voltage, less than ± 5 parts in 10^{10} for $\pm 10 \%$ change in line valtage from 115 v or 230 v rms; short-rerm. less than 2 parts in $10^{10} \mathrm{rms}$ with averaging time of one second under constant environmental and line voltage conditions.
Adjustments: fine frequency with range approximately 4 parts in 10^{8} and medium frequency with range approximately 1 part in 10^{0} available from front through plug in compartment; coarse frequency with range approximately 1 part in 10^{5} available at instrument rear panel.

Output frequencles

Rear panel: 0.1 cps to 10 mc in decade steps; suitch selecked on rear panel: all frequencies available in manual function without interruption at reset; 10 kc to 10 mc available conrinuously in all functions; i kc available continuously for all functions except 100 K period average; stability same as incernal time base; 5 volt pep rectangular wave with 1000 -ohm source impedance at 1 me and lower: 1 volt rms sine wave with 1000 -ohm source impedance only at 10 mc .
Front panel; 0.1 cps to 1 mc in decade steps; selected by Time Base switch; availability as defined under "rear panel" above; stability same as internal time base; 1 volt peak to peak.
External standard frequency: $1 \mathrm{mc}, 1$ voit rms into 1000 ohms required at rear-panel BNC connector.

General
Reglstratlon: 8 digits in line with digital display tubes and display storage; $99,999,999$ maximum display; total widh of 8 . digit display, including illuninated units annunciator and aucopositioned decimal point indication, does not exteed 7 inches.
Display storage: display held berween samples: swirch overrides storage
Sample rate: lime following a gate closing during which the gate may not be reopened is continuoush; variable from less than 0.2 sec to 5 sec in frequency mode, independent of gate time: display can be held indefinitely.
Operating temperature range: $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Connectors: BNC rype except for remote programming and BCD outpur.
Slgnal input
Maximums sensltlvity: 100 niv ems.
Coupling: ac or dc, separate BNC connectors.
Attenuation: attenuator provides ranges of $0.1,1$, and 10 v .
Impedance: 100 K ohms/v (10 K ohms at 100 mv) : approx. 40 pf on 0.1 v range, 15 pf on 1 and 10 v ranges.
Overload: diodes protect input circuit to 50 v rms signal on 0 I v range: 150 v rms on 1 v range: 500 v rams on 10 v range; ac coupling capacitance, $1 \mu \mathrm{f}, 600 \mathrm{v}$.
Time base external input (front panel)
Maximum sensitivity: 100 mv rms.
Impedance: 10 K ohms, approx. 40 pi .
Overload: diodes prorect input circuit to 50 v , rms,
Output
4-Ifne BCD: 1-2.2.4, "1" state positive; 4.line BCD 1.2.4.8 available as Option 02. ("1" state positive) and Option 03. ("1" state negative); "0" State Level: -8 v ;"I" State Level: +18
Impedance: 100 K ohms each line.
BCD reference voltage levels: approxinuately $+17 \mathrm{v}, 350$. ohm source; approximately $-6.5 v, 1000$-ohm source.
Print command: +13 v to 0 v step, dc-coupled.
Cable connector: Amphenol 50 -pin 57.30500 . 1 required
Hold-off requirement: +15 v min.. +25 v max. (rom chassis ground (1000 -ohm source).
Dimenslons: $51 / 4^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $163 / 8^{\prime \prime}$ deep ($132 \times 425 \mathrm{x}$ 416 mm).
Welght: net $32 \mathrm{lbs}(14.5 \mathrm{~kg})$ with blank plug-in: shipping 40 Jbs ($18,2 \mathrm{~kg}$).
Power: 115 or 230 volts $上 10 \%$. 50 to $60 \mathrm{cps} ; 95$ watts (50 to 1000 cps operation, price on request).
Accessorles furnished: 10503 A Cable, 4 feet long. male BNC connectors; detachable power cord, $71 / 2$ ieet long (2040 mm), NEMA plug; circuil board extender.
Optional and special features
Option 02. 4-line BCD 1.2.4.8, " 1 "' state positive in lieu of $1 \cdot 2.2 .4$ (identica! in other respects to above "output" data). add 580 .
Option 03. 4-line BCD 1.2 .4 .8 , "1" state negative in lieu of 1.2 .2 .4 (identical in other respects to above "output" data). add 580.
Remote operation (special order): programming voltages for Time Base and Function control are -15 volts de at 5 ma per gate: decimal point position and measurements units may be controlled with internal +170 voles or an external supply: order H65.5245L, price on request.
Cable connector: Amphenol 36 -pin $57.30360,2$ required for semote operation.
Price: hp 5245L, \$2950.

- Treger eftor is less than $=0.3 \%$ of one period - periods averaged for signals with 40 db or better signal-to-noise tatio.
* * After 72 hours of contenuous operation.

5264A PRESET UNIT

Read directly in engineering units with normalized measurements

The hp Model 5264A Preset Unit extends the versatility of the hp 5245L Electronic Counter's time base, and the counter retains its basic functions and measurement range. The 5264A makes possible:

1. Frequency measurements for N units of time ($\mathrm{N} x$ Freq).
2. Measurement of time for N events to occur ($\mathrm{N} \times$ Period).
3. Ratio and normalized ratio measurements ($\mathrm{N} x$ Ratio).
4. Counting N events (Preset).
5. Division of input frequency by $N\left(\frac{f}{N}\right)$

In these modes N may be any integer between 1 and 100,000 . Decade dividers in the preset unit control the counter gate.

$\mathrm{N} \times$ frequency measurements

In $N x$ frequency measurements, gate time is controlled by the preser decades (N) and the counter's Time Base s witch ($10 \mu \mathrm{sec}$ to 10 sec). The gate is held open for N periods ($N=1$ to $N=100,000$) of the time base setting.

This selectable gate time makes possible normalized read. ings or conversion of frequencies into practical units. The long gate times that are available (up to 10^{3} seconds) permit measurement of low frequencies with high accuracy.

Ratio, $\mathrm{N} \times$ ratio measurements

Model 5264 A permits ratio measurements over a range of frequencies with a choice of normalizing factors from 1 to 100,000 in one-digit steps. The counter displays $N f_{1} \div f_{2}$ and f_{1} is counted for N periods of f_{2}.

Dividing by $\mathrm{N}(\mathrm{t} / \mathrm{N})$

Another operation provided by the 5264 A is division of any input frequency up to 100 ke by N. Higher division ratios are possible using the counter to prescale the input signal in decade steps. With this technique, frequencies as high as the maximum rate of the counter can be divided by a five-digit number so long as the frequency supplied the preset unit does not exceed 100 kc .

$N \times$ period measurements

In the $\mathrm{N} \times$ period mode of the 5264 A , the 5245 L meas. ures the time for N events to occur. The measurement may be made in increments of $0,1 \mu \mathrm{sec}$ to 10 seconds, depending on the setting of the counter's Time Base switch. Period and multiple period measurements also are easily made with the mode switch in the $\mathrm{N} \times$ period position, Period average is determined by dividing the time reading by N .

Preset counting

When the mode switch of the 5264A is set to Preset, N events are counted. The first event opens the gate; the Nth closes the gate. This feature is useful in batching and the gate signal (positive at count start and negative at count end) can be used to control external circuitry or relays.

Specifications, 5264A*
$\mathrm{N} \times$ frequency (counter signal input)
Range: $5245 \mathrm{~L}, 0$ to 50 mc .
Gate time: (set by counter Time Base and " N " switches)
$10 \mu \mathrm{sec}$ to 1 sec in $10 \mu \mathrm{sec}$ steps
$100 \mu \mathrm{sec}$ to 10 sec in $100 \mu \mathrm{sec}$ steps
1 msec to 100 sec in 1 msec steps
10 msec to $10^{-4} \mathrm{sec}$ in 10 msec steps
0.1 sec to $10^{+} \mathrm{sec}$ in 0.1 sec steps

1 sec to $10^{\circ 1}$ sec in 1 sec steps
10 sec to $10^{\prime i} \mathrm{sec}$ in 10 sec steps
Accuracy: ± 1 count \pm time base accuracy.
Maximum sensitivity: 0.1 v rms .
Input impedance: $100 \mathrm{~K} / \mathrm{v}$; 40 pf on 0.1 sange, 15 pf on 1 and 10 v ranges.

$\mathrm{N} \times$ ratlo

4, (counter Ext. Time Base Input)
Frequency range: 5245 L , o to 50 mc .
Sensitivity: $0.1 \vee \mathrm{rms}$.
Input impedance: 10 K ; 40 pf shunt.
f_{2} (counter slgnal input)
Frequency range: 0 cps to 100 kc .
Maximum sensitivity: 0.1 volt.
Input impedance: $100 \mathrm{~K} / \mathrm{r}$; 40 pf on 0.1 range, 15 pf on 1 and 10 v ranges.
Reads: $\mathrm{Nef}_{1} / f_{\mathrm{y}}$.
Accuracy: ± 1 count of f_{1}.
Divide by N (5264A Auxiliary Input, f / \mathbf{N} mode)
Frequency range: 20 cps to 100 kc (sinusoidal).
Sensitivlty: 0.1 v mms .
Overload: signais in excess of 10 v rms may damage the instrument.
Prescalling: in decade steps to 10^{9} to maximum rate of counter; (scaled output frequency $\leq 100 \mathrm{kc}$).
Output: 0.2 v peak to peak centered at 0 volts, into high. impedance load; rise time <1, 5 ec, duration approximately $5 \mu \mathrm{sec}$.

[^4]

Specifications, 5264A, continued.
Input impedance: 1 megohm, 50 pf shunt.
$\mathbf{N} \times$ period (counter signal input)
Input frequency range: 0 cps to 100 kc .
Maximum sensltivity: 0.1 v mms .
Input impedance: $100 \mathrm{~K} / \mathrm{v}$; 40 pf on 0.1 v sange, 15 pf on 1 v and 10 v ranges.
Time units: $0.1, \mu \mathrm{sec}$ to 10 sec in decade steps.
Accuracy: ± 1 count \pm time base accuracy \pm trigger error.**

Preset (5264A Auxiliary input)

Input frequency range: 20 cps to 100 kc .
Maximum sensitivity: 0.1 v rms.
Overload: signals in excess of 10 v rms may damage the instrument.
Input impedance: 1 megohm, 50 pf shunt.
Preset range: 1 to 99,999 in steps of one.
Weight: net $3 \mathrm{lbs}(1,4 \mathrm{~kg})$; shipping $9 \mathrm{lbs}(4,1 \mathrm{~kg})$.
Accessory furnished: 10503 A cable, 4 ft (1220 mm) long, male BNC connectors.
Price: hp 5264A, \$650.
** Trigger error (sine wave) $<0.3 \%$ of one period $\div \mathrm{N}$ for ≥ 40 db signal-to-noise ratio on input signal; trigger error decreases with increased signal amplitude and slope.

5253B AND 5254A FREQUENCY CONVERTERS

Measure to 3000 mc with counter accuracy

Model 5253 B extends the range of the 5245L Electronic Counter to 500 mc , and Model 5254 A extends the range to 3000 mc . The stability and accuracy of the basic counter are retained, since the plug-in converters use a multiple of the 10 mc signal from the electronic counter time base to beat with the signal to be measured. The level-indicating meter and positive, smooth tuning permit quick and accurate frequency measurements by non-technical personnel.

The basic functions and measurement range of the 5245 L are retained when a frequency converter plug-in is installed. Simply move the counter Sensitivity switch off the "Plug.In" position and connect the input signal directly to the counter input.

The hp 5253B subiracts multiples of 10 megacyrles, and the hp 5254A subtracts multiples of 50 megacycles from the input frequency. The difference frequency is then supplied to the counter for measurement. Thus, the measured frequency is the sum of the counter display in megarycles and the value in megacyeles indicated by the frequency converter dial. The same stable internal crystal oscillator used for the counter's time base is used to obtain the harmonics subtracted from the measured frequency. Therefore, the additional frequencies generated by the converter introduce no error, and the counter accuracy is maintained over the range of the Erequency converter used.

Specifications, 5253B, 5254A*

Range (as converters for 5245L): 5253B, 50 to 500 mc ; 5254A, 300 to 3000 mc .
Accuracy: retains accuracy of 5245 L .
Input voltage range: 50 mv rms to $1 \mathrm{Vrms}(-13 \mathrm{dbm}$ to +13 dbm).
Maximum input: 5253B. 2 v rms or $100 \mathrm{vdc} ; 5254 \mathrm{~A}$. input power in excess of $100 \mathrm{mr}(+20 \mathrm{dbm}$ or 2.2 r rms$)$ may damage the converter.
Input impedance: approximately 50 ohms.
Level indicator: meter aids frequency selection; indicates ourput voltage to counter.
Input connector: 5253B, BNC female; 5254A. Type N female.
Reglstration: counter display in megacycles is added to feequency converter dial readings.
Weight: net $5 \mathrm{lbs}(2,3 \mathrm{~kg})$; shipping $10 \mathrm{lbs}(4,5 \mathrm{~kg})$.
Accessory furnished: 5253B, 10503A cable, 4 ft (1220 mm) long, male BNC connectors.

Accessory available: 5251A Frequency Converter for 5245 L , 20 mc to 100 mc range; other specifications same as 5253B; hp 5251A, 5300.
Price: hp 5253B, \$500; hp 5254A, 5825.

[^5]
5261A VIDEO AMPLIFIER, 5262A TIME INTERVAL UNIT

1 mv sensitivity for 5245L; time interval measurements with $0.1 \mu \mathrm{sec}$ resolution

5261A Video Amplifier

The hp 5261 A plug-in increases the hp 5245L sensitivity to 1 mv mms over the range of 10 cps to 50 mc and increases input impedance to 1 megohm. The output level meter indicates when the signal level to the counter is acceptable for a stable count. The auxiliary 50 -ohm output permits monitoring the unknown input signal to the counter with a scope. A 10 megohm 10:1 divider probe is available to facilitate frequency measurements in high-impedance circuits.

Specifications, 5261A*
Bandwidth: 10 cps to 50 mc with 524 sL .
Input sensitivity: 1 mv to 300 mv rms.
Max. Input: $100 \mathrm{v} d c$: 5 v rms (ranges: $1, j, 10,30,100 \mathrm{mv}$). Input impedance: approximately 1 megohm, is pf shunt.
Output level meter: shows acceptable signal level.
Accuracy: retains accuracy of 5245 L Electronic Counter.
Auxlliary output: fronr-panel BNC for oscilloscope monitoring or driving exrernal equipment; 50 ohm source imped. ance; on amplifer's most sensitive attenuator range, 1 mv rms at input resules in ar least 100 mv rms at auxiliary output into 50 -ohm load: maximum undistorted output is 300 murms into a so-ohm load.
Accessary furnished; 10507A Low Microphonic 50.Ohm Cable, f feet (1220 mm) long, BNC connectors.
Accessories available: 10003A 10:1 Probe, 10 pf shunt, 600 v max., \$30; 10100A $50-$ Ohm Feed-Thru Termination, \$1s.
Weight: net 2 lbs ($0,90 \mathrm{~kg}$): shipping $8 \mathrm{lbs}(3,8 \mathrm{~kg})$.
Price: hp 3261^, \$325.

5262A Time Interval Unit

The hp 5262A greatly increases the versatility of a 5245 L by making possible accurate time interval measurements with $0.1 \mu \mathrm{sec}$ resolution. Time is read directly from the counter display with units and decimal point also indicated. Counter time base accuracy is retained, since the counted signal is derived from the time base oscillator. The 5262A measures from $1 \mu \mathrm{sec}$ to $10^{8} \mathrm{sec}$, measures pulse length, pulse spacing and delays. It triggers from separate or common signals. The 5262A may be used as an amplitude discrimi-
nator for the 5245 L , which permits counting only' signals meeting requirements set by trigger level controls,

Specifications, 5262A*

Range: $1 \mu \mathrm{sec}$ to $10^{8} \mathrm{sec}$.
Standard frequency counted: 10^{-}to 1 cps in decade steps from 5245L or external frequency.
Accuracy (pulse): ± 1 period of standard frequency counted \pm time base accuracy.
Reglstration: on 5245L Electronic Counter.
Input voltage: 0.3 volt, p-p, minimum, direct-coupled input. Input impedance and overload: input impedance (constant up to 40 volts times Multiplier setting).

Multipliaz	Input limpedance		Max. Inprrs
	Resistance	Capachence	
$\begin{array}{r} \times 0.1 \\ \times 0.2 \\ \times 0.2 \end{array}$	$\begin{aligned} & 10 \mathrm{~K} \\ & 10 \mathrm{~K} \\ & 30 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 80 \text { of } \\ & 80 \text { of } \end{aligned}$ $40 \mathrm{pl}$	$\begin{aligned} & 50 \mathrm{vmis} \\ = & 150 \mathrm{v} \text { peâk } \end{aligned}$
$\begin{aligned} & \hline x_{1} \\ & \times 3 \end{aligned}$	$\begin{aligned} & 100 \mathrm{~K} \\ & 300 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 20 \mathrm{pf} \\ & 20 \mathrm{pf} \end{aligned}$	$\begin{array}{r} 150 \vee \mathrm{rms} \\ \pm 250 \vee \text { peak } \end{array}$
$\begin{aligned} & \times 10 \\ & \times 30 \\ & \times 100 \end{aligned}$	$\begin{gathered} 1 \mathrm{meg} \\ 3 \mathrm{meg} \\ 10 \mathrm{meg} \end{gathered}$	$\begin{aligned} & 20 \mathrm{pl} \\ & 20 \mathrm{of} \\ & 20 \mathrm{pf} \end{aligned}$	$=250 \vee$ peak

Start-stop: separate or common channels.
Trleger slope: positive or negative on start and stop channels, independently selected.
Trigger amplitude: both channels adjustable, -250 to +250 v .
Frequency range: 0 to above 2 mc when used as input signal discriminator.
Markers: separate output voltage steps, 0.5 volt peak to peak from source impedance of approximately $7 \mathrm{~K}, 100 \mathrm{pf}$; available at rear panel of counter with negative step coincident with trigger points on inpur waveforms for positive slope and positive step coincident for negative slope.
Reads in: $\mu s e c$, msec, sec with measurements unit indicated and decimal point positioned.
Accessorles furnished: 10503A Cable Assembly, male BNC to male BNC, f feet (1220 mm) long.
Welght: net $2.5 \mathrm{lbs}(1,1 \mathrm{~kg})$; shipping, $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: hp 5262A. $\$ 300$.
*W'hen used with hp 5249L Electronic Counter.

5252A PRESCALER, 5265A DIGITAL VOLTMETER
 Increase capability of 5245L

5252A Prescaler

The direct-counting frequency of the hp 5245 L Electronic Counter is extended to 350 mc using the Model 5252A Prescaler Plug.in. Prescaling is accomplished with transistor hinary dividers which operate over the frequency range dc to 350 mc . No tuning is required. A trigger level adjustment is provided to permit counting of either positive or negative random pulses.

Prescaling is accomplished by scaling the input frequency by a factor of 2,4 or 8 , while at the same time adjusting the counter's time base to provide a direct reading in frequency. A front-panel selector switch allows the operator to easily choose the correct scale factor. In the de to 100 me position, the scale factor is tro; in the de to 200 mc posi. tion, the scale factor is four, and in the dc to 350 mc position, the scale factor is eight.

Tentative specifications, 5252A*
Operating trequency range: dc to 350 mc .
Accuracy: same as the basic counter.
Ingut sensitivity: 100 mv rms.
Maximum input: 2 volts or +20 dbm .
Input impedance: 50 ohms (nominal).
Operating temperature range: $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Trigger level control: $\ddagger 1$ volt.
Scaled output: $>100 \mathrm{mv}$ rms into 50 ohms is available at the auxiliary output BNC connector of the basic counter.

5265A Digital Voltmeter

The hp 5265A Digital Voltmeter Plug-in quickly converts your 5245 L Electronic Counter to an accurate do digital volt. meter. It can be operated easily by non-technical personnel for production-type voltage measurements. Operation is straightforward-simply set range saitch, connect the rolt-
age to be measured and read. Decimal points are properly: positioned, and polarity is automatically indicated.

Fondamentally', the $5265 A$ is a voltage to-tume-interval converter which uses a linear voltage rimp and voltane coincidence circuits to define the time interval. Since the ramp is linear with time, the time interval is directly proportional to input voltage, and is measured by councing a 10 mc signal from the counter's time base.

A Local-Remore switch pernits remote selection of the DVM mode or the regular electronic counter functions when used with an H65.5245L Counter.

Specifications, 5265A"

Voltage range: 6 -digit presentation of $10.0000,100.000$, and 1000.00 v full scale with 5% overrange capability.

Registration: on 5245L.
Reads in: dc volts with decimal point positioned by range switch; automatic polarity indicator.
Accuracy $\left(0^{\circ} 10+50^{\circ}\right): 0.1 \%$ of reading (within 24 hrs and $\pm 10^{\circ} \mathrm{C}$ temperature change since last front-panel calibration adjustment and within 6 mos. of calibration of internal zener reference).
Range selection: manual.
Input resistance: 10.2 megohms to dc on all ranges.
Input filter
$A C$ rejection: 30 dt at 60 cps , increasing at 12 db per octave.
Response time: less than 450 msec to a step function to within 0.05% of final value.
Accessory furnished: $5060-063022$-pin extender board.
Welght: net $21 / 2 \mathrm{lbs}(1,1 \mathrm{~kg})$; shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: hp 5265A, 8575.

[^6]NEW

AVAILABLE MID-1965

5244L ELECTRONIC COUNTER

50 mc counting rate with 0.1 v rms sensitivity

The hp 5244L Electronic Counter measures trequency, period, multiple period average, ratio and multiples of ratio with a maximum counting rate of 50 mc . Rear connectors provide digital outpur in BCD form. Maximum sensitiviry is 0.1 volt rms. The counter time base is a quartz crystal oscillator with an aging rate of less than 2 parts in 10^{\prime} per month. Display storage provides a continuous display of the most recent measurement. With the function switch in "Frequency," the "Sample Rare" contro! adjusts the rime between gates from less than 0.2 second to at least 5 seconds.

Specifications

Frequency measurements

Range: 0 to 50 mc . de input: 50 (ps to 50 mc , ac input.
Gate time: 1μ sec to 10 seconds in decade steps.
Accuracy: ± 1 count \pm time base arcuracy.
Reads in: kc or me with positioned decimal point: units annun. ciator in-line with digital display.
Self check: counts 1 mc for the gare time seleced by time base switch.
Period average measuraments
Range: single period, 0 to 1 mc ; multiple period, 0 to 300 kc .
Perlods averaged: 1 period to 10^{3} periods in decade steps.
Accuracy: ± 1 count \pm time base accuracy \pm trigger error**
Frequency counted: single period. 10^{r} to 1 (ps in decade steps: multiple period, $10^{7}, 10^{3}$ or $10^{+} \mathrm{cps}$.
Reads in: sec, msec, μ sec with positioned decimal point; units annunciator in-line with digital display.
Self check: gate time is $10 \mu \mathrm{sec}$: 01 sec ; counts 100 kc .

Ratlo measurements

Displays: $f_{1} / f_{\text {f }}$ times period multiplier.
Range: f_{1} : 50 cps to niaximum rate of counter; $f_{0}: 0$ to 1 mc in single period. 0 to 300 kc in multiple period; periods averaged 1 to 10° in decade steps.
Sensitivity: $f_{1}: 1 \mathrm{v}$ rms from 100 cps 10 maximum rate of counter, 2 v rms from 50 to $100 \mathrm{cps} ; 2500$ ohm input impedance; $f_{2}: 0.1$ v rms, $100 \mathrm{~K} / \mathrm{v}$ input impedance.
Accuracy: ± 1 count of $f_{1} \pm$ trigger error* of f_{2}, where f_{1} is fre. quency applied to counting binaries (at Time Base Ext jack) and $f_{\text {a }}$ is applied to decade dividers (at signal inpur jack).
Reads in: dimensionless units with positioned decimal.
Self check: gate time is $10 \mu \mathrm{sec}$ to 1 sec ; counts 100 kc .

Time base

Frequency: 1 mc .
Stablilty:** aging rate: less than ± 2 parts in 10° per month; as a function of remperature: less than ± 2 parts in 10^{6} for a change from $+10^{\circ}$ to $+50^{\circ} \mathrm{C}, \pm 20$ parts in 10° for a change from -20° to $+65^{\circ} \mathrm{C}$: as a function of line voltage: less than ± 1 part in $10^{\prime \prime}$ for $\pm 10 \%$ line volage change.

Output frequencies: 0.1 cps to 1 mc in decade steps selected by Time Base switch.

General

Registration: 7 digits in-line with rectangular digital display tubes and display storage.
Sample rate: time following a gate closing during which the gate may not be reopened is continuously variable in the frequency function from less than 0.2 second 105 seconds, inde. pendens of gate time; display can be held indefinitely.
Input
Maximum sensitivity: 100 mv mms .
Coupling: ac or dc.
Attenuation: step attenuator provides ranges of $0.1,1$ and 10 volts.
Impedance: $100 \mathrm{~K} / \mathrm{v}$ (10 K at 100 mv), approximately 40 pi on 0.1 v range, $!5 \mathrm{pf}$ on 1 and 10 v ranges.
Overload: diodes protect input circuit up to 50 v rms on 0.1 volt range, 150 v mms on 1 volt range, 500 v rms on 10 volt range; 600 v de tolerable.
Operating temperature range: $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Connectors: BNC type except for BCD output.
Output: 4 line $1.2-2-4 \mathrm{BCD}$ with " 1 " state positive: $1.24-8$ optional; " 0 " state: -8 volts: " 1 " state: +18 volts; imped. ance: 100 K ohms each line; reference levels: +17 volis (350 . ohm source), -6.5 volis (1000 -ohm source) ; print command: +13 volts to 0 volt step, de coupled.
Hold-off requirement: +15 volts minimum, +25 volts maximum from chassis ground, $1000 \cdot 0 \mathrm{hm}$ source.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep ($425 \times 140 \times$ $416 \mathrm{~mm})$.
Weight: net 23 lbs (10.4 kg); shipping $36 \mathrm{lbs}(16.3 \mathrm{~kg}$).
Power: 115 or 230 volts $\pm 10 \%$, so to 60 cps. approximately 80 watts (50 ro 1000 cps operation, prite on request)
Accessories furnished: 10503A cable assembls, 4 ft (1220 mm). male BNC connectors; detachable power cord $71 / 2 \mathrm{ft}$ (2270 mm) with NEMA plug; printed circuit board extender.
Price: hp 5344L, 52225.

Options

1. 8.digit registration, add $\$ 110$.
2. 1-2.4.8 BCD outpur in lieu of $1 \cdot 2 \cdot 2 \cdot 4 \mathrm{BCD}$. add $\$ 70$.
3. same as 02. except " 1 " state negative, add 570 .
4. 8-digit registration and 1-2-4.8 ("!" state positive). BCD output in licu of $1 \cdot 2 \cdot 2 \cdot 4 \mathrm{BCD}$, add $\$ 190$.
5. same as 04. except "1" state negative, add 5190 .

- Tripger error fise sune wive input is $\frac{s=0.3 \text { 毕 of one perind }}{\text { perinds averared }}$ for signals with to db or more signal-to noise-ratio.
: The crertal :ime base (better than 3 parts in 10^{y} per 24 hours and better then 2 parts in $10^{24} \mathrm{mms}$ with 1 second averaging) which is used in the 52-15L is avalitable on special order.

2590A MICROWAVE FREQUENCY CONVERTER

Measure frequency to 15 gc with counter accuracy

Model 2590 A , in a single compact all-solid-state instrument, performs the functions of a transfer oscillator and a transfer oscillator synchronizer. (hp 5408 , page 63, is a transfer oscillator only.)
By phase-locking an internal transfer oscillator to the signal frequency, Model 2590 A makes cw frequency measurements inherently equal to the accuracy of the external time base used, even on rapidly drifting signals. With the hp Model 5245L/5253B combination (pages 46. 47, 49) complete coverage is provided from do to $15 \mathrm{gc}_{\text {, with attainable accuracy as }}$ high as 5 parts in 1010. Permanently phase-locked, the signal frequency's drift may be tracked continuously over long periods.
The 2590A automatic phase-lock is augmented by an automatic search oscillator, to simplify synchronization ar system set-up. An automatic gain control eliminates input level adjustments. The instrument incorporates a precision FM discrimina. tor and an envelope detecror, for observation and accurate measurement of FM deviation, deviation rate and signal amplitude modulation.
FM and orher short-term frequency disturbances can be observed on an oscilloscope while phase-locked to the signal. For signals with carrier frequency sufficiently stable not to require phase-locking. accurate measurements of FM deviation and deviation rate may be made with the precision built-in discriminator. A separate output from the envelope detector provides for oscilloscope observation and measurement of signal AM, in either FM or phase-locked operating modes.

The carrier frequency of pulsed signals can be determined to well within ± 4 parts in $10^{\text {ri }}$ using the 2590A with an auxiliary oscilloscope. FM on the pulse also can be observed.
The 2590 A is available as an individual instrument to be coupled by the user with a councer, or as part of a complete frequency measuring and recording system, Dymec Model DY-2040A. The system includes the 2590 A , hp 5245L Counter with hp 5253B Frequency Converter, and hp S62AR Printer (page 76).

Specifications

Frequency range: 0.5 to 15 gc .
Signal input: minimum level, typicaily -20 to -30 dbm from 05 to 10 gc : increasing $10-7 \mathrm{dbm}$ at 15 gc ; maximum level, +20 abm (100 mw); Type N connector.

Lock-on range: approx $\pm 0.25 \%$ of signal frequency in normal APC mode; rack mode increases lock-on range to $\pm 0.45 \%$ (approx.) at lower end of transfer oscillator range, decreasing to 0.25% at upper end.
Accuracy: \pm stability \pm resolution of measurement of transfer oscillator fundamental: stability, same as 10 mc reference sup. plied: resolution, ± 1 count at transfer oscillator frequency, equivalent to 42 to 2.5 parts in 10^{8} with 1 sec counter gate or 4.2 to 2.5 parts in 10^{10} with 10 sec gate.

External reference: $10 \mathrm{nk}, 0.1 \mathrm{vmin}$. into 90 ohms: BNC connec. tor.
FM measurements: discriminator characteristics when in FM mode: linearity (max. deviation from straight line through origin), better than $\pm 1 \%$ over bandridth of $\pm 500 \mathrm{kc}$, better than $\pm 5 \%$ over bandwidth of $\pm 2 \mathrm{mc}$; video frequency response, 30 cps to 1 mc (3 db points) ; center frequency, 30 mc (nominal): sensitiviry, $5 \mathrm{v} / \mathrm{mc}(\pm 10 \%$) ; output impedance, 1 K ; front-panel BNC connector.
AM measurement: sensitivity, 100 mv ems (nominal) for 100% modulation at 1 kc : frequency response, 30 cps to 1 mc ; load inmpedance, 1 megohm shunted by 12 pf max.; front-panel BNC connector.
APC monitor: FM on signal may be monitored when in FM operating mode; sensitivity, $\pm 3 \mathrm{v}$ minimum for frequency deviation of $\pm 0.25 \%$; deviation limies. APC mode can follow frequency deviations up to $\pm 0.005 \%$ of signal frequency at rates from 100 cps to 50 kc (min.); at rates below 100 cps , deviation limit increases at $6 \mathrm{db} / \mathrm{octave}$ to a max, of 0.25%; impedance, measuring device should have min. input impedance of 1 megohm, shunt capacitance not greater than 20 pl : rear-panel BNC connector.
Transfer osclllator: fundamental frequency range. 240 to 390 mc ; drift, less than $1 / 10^{3}$ per hous immediately atter turn-on, less than $1 / 10^{5}$ per hour after 2 to 3 hours' operation (oscillator automatically corrected for drift in APC mode) : residual FM, less than 10 eps rms; dial. $21 / 4$ " dia. calibrated in 5 me inecements.
Power: $115 / 230$ y $\pm 10 \%$. 50 to 1000 cps , approx. 35 w .
Operating conditions: ambient temperatures 10 to $59^{\circ} \mathrm{C}$. relative humidities to 95% at $40^{\circ} \mathrm{C}$.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $31 / 2^{\prime \prime}$ high, $16-5 / 16^{\prime \prime}$ deep behind panel ($426 \times 86 \times 414 \mathrm{~mm}$) ; instrument is fully enclosed for use on bench; may be mounted in $19^{\prime \prime}$ rack with side extensions to panel (furnished).
Welght: net 23 lbs ($10,4 \mathrm{~kg}$) : shipping 30 lbs ($13,6 \mathrm{~kg}$).
Price: Módel 2590A, 51900 .

2590A shown with 5245 L Counter, 52538 Plug.In

5223L, 5233L ELECTRONIC COUNTERS

Versatile universal counters, to 2 mc counting rate

Advantages:

Superior trigger level controls usable in all functions
Improved readability with rectangular digital tubes
Minimum bench or rack space, $31 / 2^{\prime \prime}$ panel height
Reliable, rugged and completely solid state
Versatile, yet easy to operate
More accurate low-frequency measurements with multiple period averages
Low.level measurements without accessories; 0.1 volt sensitivity

High sampling rates; times between samples independent of gate time
Display storage

Uses:

Measure frequency
Count periodic or random pulses
Measure period, period average, time interval
Determine ratio and multiples of ratio
With transducers, measure speed, How rate, other physical variables

Models 5223L and 5233L are universal electronic counters. They measure time interval, frequency, period, multiple period average, ratio and multiple ratio. The 5223 L provides a maximum counting rate of more than 300 kc and 5 -digit resolution, and the 5233 L provides a maximum counting rate of more than 2 megacycles with 6 -digit resolution. Both instrument readouts are in-line displays of rectangular digital tubes.

DC coupling

With the 5223 L and 5233 L , dc coupling allows accurate trigger point definition with low input amplifier noise and low trigger drift. A trigger preceded by an ac-coupled input will respond to an average of level. The trigger point will change with wave shape and repetition rate. This simation is nor of great significance in frequency measurements since
it is only desired to maintain the number of zero crossings. However, if a pulse of large amplitude and duration is followed by a pulse of small amplitude and duration, the trigger may miss the small pulse, if circuit time constants are such that the average do level does not have time to recover. This would be a serious iimitation in nuclear work, where counted pulses are random in amplitude and width. The variability of trigger point with repetition rate and wave shape (produced with ac coupling) is a serious soucce of exror in time interval measurements - some doubt always exists as to where the actual trigger point is. It may be a point of low slope near the top of a pulse where noise can cause appreciable error.

Optimum trigger point definition

The 5223L and 5233L each provide two identical input channels for optimum trigger point definition. Separate or the same signals may be used to start and stop the count; the time interval measured may be selected between any desired points on either signal with a choice of ac or dc coupling. Input channel controls allow selection of the slope, amplitude and polarity of the trigger voltage for all other measurement functions, as well as time interval.

Any input amplifier drift or noise will add to the trigger ambiguity. The effect of this internal noise becomes increasingly apparent as the input signal-to-noise ratio increases. Consequently, for precise measurement capabilities, each input channel of the 5223 L and 5233 L has been designed to minimize amplifier drift and noise. In these instruments the amplifier noise referred to the input is typically less than 100 microvoles.

Particular design care was necessary to insure that these input amplifiers would possess an extremely wide dynamic range. This insures that the input signal peaks can exceed the highest level control adjustment for the next higher attenuator range without changing the dc level. For example, on the Xl attenuator position, peaks considerably beyond 10 volts do not alter the zero crossover point.

	NEW 5223L Electronic Counter	L Electronic Counter
	Range：de coupled： 0 to more than 300 kc ；ac coupled： 10 cps to more than 300 kc ． Impedance：approx， 1 megohm． 80 pi shuns． Sensitivify： $0.1 \vee$ rms sine wave： 1 v pulse， $1 \mu \mathrm{sec}$ min．a idth． Trigger level：-100 to +100 volis，adjuscable，either pasitice or nega． tive slope：independent contiols on each channel． chanreifrputs：Common，Separate，Cherk． Marker output：avaikable at rear panel for oscilloscope intensity modu． lation to mark rigger points on inpue wavetorms：>1 usec dufation and -15 volts peak．	Range：do coupled： 0 to more than 2 mc：ac coupled： 10 cps to more than 2 me． Impedance：approx． 1 megohm． 80 pl shunk． Sensitlvity： $0.1 v$ mos sine quave； 1 v pulse． $0.2 \mu \mathrm{sec}$ min．width． Trigger level：-100 to 100 volts．adjustable eicher positive or nega． tive slope．Independent ronteds on each channel． Charnal Iniputs：Common．Separatc，Check． Marker output：avarlable ar rear panel for oscilloscope inkencity modu－ latinn to mats trigzer poiass on input waveforms：i usec duration and -1 个 woles peak．
F	Range： 10μ sec to 10° sec． Input：Channels A and B Accuracy：$=1$ count＝time base accuracy zerigerer error．＊ Reads in：msec or sec with positioned decimal． Measurement：time from A to B Self check；perind self check below applies，when levels and slopes of both channels are identical．	Range： $10 \mu \mathrm{sec}$ to $10^{4} \mathrm{scc}$ ． Input：Channels A and B ． standard frequency counted； 1 me to 0.1 ors in decade aters or ex－ terna！frequenc／ 100 cps to 1 mc ． Accuracy：$=1$ cnunt $=$ time base accuracy $=$ utherer cene．＊ Reads in：msec or sec with positioned decimal． Measurement：time from A to B ．
	Range： 0 to $>300 \mathrm{kc}$ ． Input：Channel A． Accuracy：$=1$ count $=$ cime base accuracy． Readsin：kc or me with positioned decimal． Gako time： 10 usec to 10 sec in decades． Self elseek；counts 100 ke tor the gate tume chosen by time base selector．	```Range: () to >2 mo. Input: Chanmel A. Accuracy: =1 count = cime base accuracy. Reads in: ke or mo with positmoned decimal. Gate time: }10\mu\mathrm{ sec to 10 sec in decades Self check: counrs I mo for the gate time chosen by time base selecinr.```
号	Range； 0 to 100 kc ． Input：Channel A ． Accuracy：at count＝time bise accuracy＝ifigeer espot．＂A Reads In：$\mu s e c$ of msec with positioned decimal． Frequency counted： 100 te to 0.1 ＜ps in decade steps． Self check：gate time is 1 sec：frequency counied is 0.1 cps to 100 kc as selected by sime base switch．	Range： 0 to 100 kc ． Input：Channel A ． Accuracy：＝1 cinons＝time bise accuracy＝trikger erior．${ }^{*}$ Reads in：mser or sec with positioned decimal． Frequency counfed： 1 mic to 0.1 rps in decade steps． Self chack：pate time is 1 sec；frequency counted is 0.1 cos to 1 mc as selecred bu time base saitech．
这	Range： 0 co 300 kr ． Indut：Channel A． Accuracy：$=1$ count $=$ time base accuracy＝qigger error．${ }^{*}$ Reads in；usec or mser a＇ith positioned decimal． Frequency counted： 100 kc ． Perlods averaged： 10 to 10^{8} in decade stens． Self chack：pare cime is $10 \mu 5 e \mathrm{c}$ to $10 \mathrm{sec}\left(1 \mathrm{to} 10^{\circ}\right.$ periods of 100 kc ）： counts 100 kc ．	Range： 0 to 2 ms （multiple period）， 0 to 1 nc（X10）． 0 to 100 ks （X） Input：Channel A ． Accuracy：$=1$ count $=$ pime base accueacy $=$ triprer cifor．${ }^{* *}$ Reads in：usec of nsec with poserinned decimal． Periods averaged： 10 to 10^{\prime} in decade steps． Frequency counted：t mc． Self check：gate time is $10 \mu \mathrm{sec}$ to $10 \mathrm{sec}\left(10 \mathrm{to} 10^{\circ}\right.$ periods of 1 me ： ginuts I mes．
婁	Range：Channel $A\left(F_{A}\right)$ ； 0 to above 300 kc ；Chansel $\mathrm{B}\left(\mathrm{P}_{\mathrm{B}}\right) ; 0$ to 300 kc ． input：Channels A and B ． Messures：$\frac{F_{A} \text {（mulriplier）}}{F_{\text {I }}}$ Racds：$\frac{F_{A}}{F_{B}}$ or $\frac{1000 F_{A}}{F_{B}}$ ，depending on muleiplier setring． Accuracy：$=1$ count of $F_{A}=\frac{\text { trigger error of } F_{B}}{\text { mu！ctiplier setcing }}$ Multipller： 1 to 10° in decade steps． Self check：counts 100 kc for $10 \mu \mathrm{sec}$ to 20 sec ，depending on multi－ plier serting．	Range：Chanal A（ F_{A} ）：o to more than 2 me；Channel $B\left(F_{B}\right): 0$ oo 2 me （multuple period）． 0 to $1 \mathrm{me}(\mathrm{X} 10)$ ， 0 to $100 \mathrm{xe}(\mathrm{X} 1)$ ． Input：Changels A and 8 ． Measures：$\frac{F_{A} \text {（mulciplier）}}{F_{n}}$ Reads：$\frac{F_{A}}{F_{B}}$ o！$\frac{1000 F_{A}}{F_{n}}$ ，depending on multiplier setting． Accuracy：$=1$ count of $F_{A}=\frac{\text { trigger error of } F_{B}}{\text { mulaplier seling }}$ Multoller： t in 10° in decade seds． Self check：counts I mr for $10 \mu \mathrm{sec}$ to 10 sec ，depending on multiplier secting．
	Inoust：Channel A． Multsplieri prescales input of Channel A in decades． 1 to 10° ． Totallze：periodic events at rates to more than $3 \times 10^{6} / \mathrm{sec}$ ：random events with pulse spacing of $3.3 \mu \mathrm{sec}$ ar more．	Input：Channel A ． Multiplier：prescales input of Channel A in decades，t so 10^{1} ． Totailze：periodic events at rates to more than $2 \times 10^{\circ} / \mathrm{sec}$ ；random events with pulse spacing to $1.5 \mu \mathrm{sec}$ or less．
\＃ \％ \％ ¢ E E	Frequency（internal）： 100 kc Stablity：aging rate：$<=2$ pats in $10^{\circ} /$ areck：as I Function of line volt． age：＜l part in 10° for 100 changes in linc：is a function of ambicnt temperapure：$c=20$ parts in $10^{\circ}+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ ，<100 parts ia $10^{3}-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ ． External Inputs sensigivity： 1 v rots．sinc wive into 1 K ohm：range： 100 cos to 300 kc ，sine weve． Outputs，rear panil Oscillator： 100 ke． 1 v peak to peak，open circuit；time base （eeparate BNC connecror）： $0,1 \mathrm{eps}$ to 100 kc in decade steps． 5 \because peak open cireuir．I usec wideh， 1000 ohm source；alaliable in period．Time Interval．and Manual without reset intertuptions．	Frequency：（internali： 1 mc ． Stablity： 1 ging rate．e ± 2 parts in 0° per moneh；as a funccion of line rolgage c＝1 part in 10° for changes of $=10 \%$ ；as a funcrion of ambi－ ent temperature； $\mathrm{c}=2$ parts in $10^{\circ}\left(-10^{\circ}\right.$ in $+50^{\circ} \mathrm{C}$ ），$=20$ pares in 10° $\left(-20^{\circ} 10-65^{\circ} \mathrm{C}\right)$ External input：sensitivity： 1 v ims into 300 ohms，sine piate；range： 100 eps to 1 mc ，sine wive． Outputs，rear parel Qscillator：I me． 3 u pest 10 xaki time base fesparate BNC con－ nectoc）： 0.1 cps to I me in decade steps．S repeak to peak． 600. ohm source．available in Period．Time Ineerial，and Manual with． but reset interruptions．
哭	Range： 0 to 300 kc ． Function sefting：mamual． tnput：Channel X ． Factor：by decades up to 10^{8} Output：rese panel in place of rime base output（requencie	```Ramge: 0 to =2ma. Function setting: manual. Input: Channel {. Factor: by decades up to 10}10 Output: rear panel in place of time base output frequencies s y p-p Irom 600 ohms.```
矿 E E E	Panter output Output： 4 －line $1-2 \cdot 2.4 \mathrm{BCD}, 100 \mathrm{~K}$ each line；＂ 0 ＂state level； approx．-28 volts：＂ 1 ＂state level：-2 volts． Reference levels：approx．-2.4 voits， 330 ohm source iopedance． and -26.9 volis． 1000 ohm source． Print commands $\mathbf{+ 2 8}$ volt step from 2700 －ohm source in series with 1000 of． Hold－off requirementa：chassis ground to $\mathbf{- 1 2}$ voles maximum． Registrstion： long－life rectangular digital tubes with display stor1ge． Sample rata：time following a gate closing during which the gare may not be reopened is continuously vapiable from less than 0.2 see to s sec．independent of gare time display can be held indefinitely． Self check：in all function and multidlies positions． Oparating temperature range；$-20^{\circ} \mathrm{C}$ to $-65^{\circ} \mathrm{C}$ ． Power： 115 or 230 volts $=10 \%$ ， 30 to 60 cps ＂ 4 ； 30 warts． Dimensfona： $163 / 4^{\prime \prime}$ wide． $3-19 / 32^{\prime \prime}$ high， $111 / 4^{\prime \prime}$ dect（ $425 \times 86 x$ $281 \mathrm{~mm})$ ． Welght；net 19 lbs（ 8.5 kg ）：shipping 26 lbs（ 11.9 kg ）． Price：ho 3223L．\＄1325． Optlon 02．：1．2．4－8 BCD output（＂1＂state posirive），in lien of 1．2－2－4 BCD ourpue，add $\$ 30$ ．	Primier output Output；flime $1.2 .2 .4 \mathrm{BCD} ; 100 \mathrm{~K}$ each line：＂ 0 ＂stale level： approx，－8 rolts：＇ 1 ＇＂state level：approx． $\mathbf{- 1 8}$ volts． Reference levels：approx，-17 volis， 3 so－ohm source impedance， and approx． 6 volts， 1000 ．ohm source iropedance． Print command；+28 volt step， 2700 ohm soufce Impedance： 1000 p （ in series． Hold－ott requirements；from＋2 vaiss to－ 20 volts． Regestration： 6 lone－life rectangular digital tubes $\begin{aligned} \text {－ith display storage．}\end{aligned}$ Massuraments unlit：unit readout for frequency，period，period aver－ agr，and tome interval with positioned decimal point： Sample rate：time following a gate closing during which the gate may nor be reopened is continuously variable from Jess than 0.2 sec to 5 sec；independent of gare time；display can be held indefinitely， Self check：in all function and multiplier positions． Operating temperature range：$-20^{\circ} \mathrm{C}$ ：0． $53^{\circ} \mathrm{C}$ ． Power：llis or 330 volts $=10 \%$ ． 30 to 60 cps ．＊＊； 90 wates． Dimensions： $161 / 3^{\prime \prime}$ nide， $3.15 / 32^{\prime \prime}$ high， $111 / 4^{\prime \prime}$ deep（ $425 \times 86 \times$ 285 mm 1. Welght：net 19 lbs（ 8.5 kg ）；shipping $22 \mathrm{lbs}(10 \mathrm{~kg})$ ． Prles：hp $\$ 233 \mathrm{~L}, \$ 1790$. Option 02：1－2× 1.8 BCD output in lieu of $1 \cdot 2 \cdot 2 \cdot 4 \mathrm{BCD}$, add $\$ 60 . t$
－For any uave shape，erigger error is less than $=\frac{0.0029}{\operatorname{signal} 5 l o p e(v / \mu s e c)} \mu \mathrm{sec} ;$ below 0.1 cp；maximum cror may increase up to 10 －fold，depending on line voltage and envieonmental condicions． －Wath trigger ievel set at zero，either slope，trigger error for sine wave input is less than $=\frac{0.3 \%}{\text { periods one deriod }}$ at rated sensitivity for signals with 40 db sig． nal－to－noise ratio． －Whe frequency limit imposed by cooling fan．＋Oprion 03．－same as 02．excepe＇1＂＇stare negative，add $\$ 60$.		

$5211 A_{〔} B, 5212 A, 5512 A, 5232 A, 5532 A$ ELECTRONIC COUNTERS

Compact counters with measurement versatility to 1.2 mc

Advantages:

Reliable, rugged and compact Stable internal frequency standard
Low power consumption with solid-state components Modular cabiner permits bench or rack operation

Uses:

Accurate low frequency measurements with multiple period a veraging
Low-level measurements without accessories
Higher sampling rates; sampling time independent of gate time

These six Her-letr-Packard electronic counters offer the ad vantages of solidstate construction, broad measurement capabilities, rugged and compact packaging and a a'ide selection of performance characteristics.

Maximum counting rate ranges from 300 kc to 1.2 mc , A variety of visual readouts contain from 4 to 6 digits, with both in-line digital rube and neon columnar displays. Features of. fered in common by all six counters include modular cabinets only $31 / 2$ " high, low heat dissipation and power consumption with solid-state components, 0.1 v sensitivity, display storage for non-blinking readout, four-line $B C D$ outpur for systems and recorders, flexible operation and reduced operator errors. When a counter is in the frequency mode, the time berween counts is adjustable from less than 0.2 second to more than 5 seconds and is independent of gate time. Because time between counts is not dependent upon gate time, faster sampling rates ate often possible.

The instruments are compact and reliable, have low power consumption and can operate with specified accuracy over a wide temperature range. Plug-in module construction increases instrument versatility and simplifies maintenance. Conservative design features, such as the use of decade dividers in the gate generating circuits, provide operational stability and eliminate calibration problems. Input sensitivity is 0.1 volt rms, input impedance, I megohm.

5211A,B Counters

Models 5211A and 5211B have a maximum counting rate of 300 kc and make direcr irequency and ratio measurements. They also measure speed in rpm and rps, when used with trans.
ducers, and count events occurring within a selected period of time. They offer four digit resolution and neon columnar display. They are idensical except for gate times. The 5211 A has gate times of 0.1 and 1 second; the 5211 B has a third gate time of 10 seconds.

Both offer manual control of the gate by a front-panel function switch, by external consact closure or by 3 volt peak positive pulses ar least $10 \mu \mathrm{sec}$ wride at half-amplitude points. Time base is derived from the power line, and since power line frequency is usually held to betrer than 0.1%. the counters have an accuracy fully adequate for most indusrial measuremenes.

5212A, 5512A, 5232A, 5532A Counters

With this group of solid-state instruments, two basic counters give maximum counting rates of 300 kc and 1.2 mc , with a choice of column or in line readous. Each makes direct frequency, period, multiple period average and ratio measure. ments. Modcls 5212A and 5512A have a maximum counting rate of $300 \mathrm{kc}, 5$-digit resolution and respective displays of neon columns and long-life digital display tubes. Models 5232 A and 5532 A have maximurn counting rates of 1.2 mc and 6 .digit resolution with the same readout choice.
The front panel of each counter has input attenuation control. display control, reset button and function switch. In the rear are the storage-disable switch, external standard input jack (permies use of an external oscillator as the counter time base) and digital recorder output connecror. Self-check is provided for both frequency and period measurement modes.

General specifications

Operating temperature range: $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(-20^{\circ} \mathrm{C}\right.$ to $+50^{\circ} \mathrm{C}$ for $5211 \mathrm{~A}, \mathrm{~B}$).
Weight: all models, net less than $15 \mathrm{lbs}(6,8 \mathrm{~kg})$.
Dimensions: $163 / 4^{\prime \prime}$ wide. $31 / 2^{\prime \prime}$ high, $111 / 4^{\prime \prime}$ deep ($425 \times 89 \mathrm{x}$ 286 mm) ; hardware furnished for converting to $19^{\prime \prime}$ wide by $31 / 2^{\prime \prime}$ high rack mount.
Power. 115 or $230 \mathrm{v} \pm 10 \%$, 50 to $60 \mathrm{cps} *$, less than 40 w .
Accessories furnished: 10503A Cable. 4 feer long, BNC connectors; detachable power cord; circuit board extender,

* hp $5211 \mathrm{~A}, \mathrm{~B}$ require 50 or 60 cps operation (specify Option 01. for 50 eps operation) ; $5212 \mathrm{~A}, 5512 \mathrm{~A}, 5232 \mathrm{~A}$ and 5532 A operate between 50 and 60 cps line frequency with limit imposed by fan.

hp Cauntar		52514, B	5212 A	6672A	5232A	5632A
Max. counting rate		300 kc	300 kc	300 kc	1.2 mc	1.2 mc
Registration		4 digits columnar	5 digits columnar	5 digital display indicators	6 digits columnar	6 digital display indicators
Time base		power line: accuracy typically $\pm 0.1 \%$ or better	100 kc crystal oscillator; aging rate, $\pm 2 / 106 /$ week		1 me crystal oscillator; aging rate, $=2 / 107 /$ month	
Period and multipie period average measurement	Range	2 cps to 300 kc			2 cps to 1.2 mc	
	Accuracy	\pm one count, $=$ time base accuracy, $=$ trigger error				
	Resds in	msec or $\mu \mathrm{sec}$ with positioned decimal				
	Periods averaged	$1,10,10^{2}, 10^{3}, 10^{4}, 10^{5}$				
Frequency measurement	Range	2 cps 10300 kc			$2 \cos$ to 1.2 mc	
	Accuracy	± 1 count, \pm time base accuracy				
	Reads in	kc, cos with positioned decimal	ko with positioned decimal			
	Gate time	1, $0.01 \mathrm{sec}: 5211 \mathrm{~B}$, additional 10 sec	$10,1,0.1,0.01 \mathrm{sec}$			
Ratio measurement	Reads	f_{1} / t_{2}	$i_{1} / t_{2} \times$ periods averaged			
	Range	$\mathrm{H}_{1}: 2 \mathrm{cps}$ to 300 kc (0.1 v rms); f_{z} : 100 cos to 300 kc (1 v rms into 1000 ohms)	$f_{1}: 100 \mathrm{cps}$ to 300 kc (1 v rms into 1000 ohms); $\mathrm{f}_{2}: 2 \mathrm{cps}$ to 300 kc		$f_{1}: 100 \cos$ to $1.2 \mathrm{mc}(1 \vee$ rms into 500 ohms ; ; $1_{2}: 2$ cps to 300 kc	
	Accuracy	+1 count of $\mathrm{f}_{14}=$ trigger error of f_{2}				
Recorder output		4-line BCD (1-2-2-4) ; 4-line 8CD (1.2-4-8) available as Option 02. (Extra cost special on 5211A)				
	Impedance	100 K each line				
	"0" siate level	approximately -28 volis				
	" l " state level	-2 volts				
	Reference levels print command	approximately -2.4 volts, $\begin{aligned} & 350 \text { - } \mathrm{hm} \text { source impedance; and approximately }-26.9 \text { volts, } \\ & 1000 \text {-ohm source impedance }\end{aligned}$				
		+28 v step, irom 2700 -ohm source in series with 1000 of				
	Hold -of requirements	chassis ground to +12 volts maximum				
		(output optional at extra cost in 521/A)				
Price		$\begin{aligned} & \text { hp 5211A, } \$ 800 \\ & \text { hp 52118, } \$ 725 \end{aligned}$	hp 5212A. \$925	hp 5512A, \$1050	hp 5232A, \$1300	hp 5532A. \$1450

5212A

5214L PRESET COUNTER

Presetable time base decades provide new measurement versatility

Uses:

Measures normalized rate
Measures ratio
Measures normalized ratio
Measures time for N events to occur
Counts N events, giving an output pulse at the start and the end of the count
Allows N to be remotely preset
(N may be set to any integer from 1 to 100,000)
Model 52142 Preset Counter is one of the most versatile electronic counters ever produced. It not only measures frequency and period and totalizes, as do most universal elec. tronic counters, but it also performs the additional measurement functions enumerated under "Uses". Such versatility is achieved by using two sets of decades; one set registers the signal being counted, the other, which may be preset to any integer from 1 to 100,000, controls the gate. Provision has been made so that the number N can be remotely programmed. Separate output signals also are available to operate external equipment whenever the gate opens or closes.

Rate measurement

In rate measurements, which correspond to the frequency measurements of ordinary counters, gate time is controlled by the preset decades (N), the time base (100 kc), and the multiplier (M). The gate is held open for N periods ($N=1$ to $N=100,000$) of the frequency furnished by the time base. If the internal 100 kc time base is connected directly to the preset decades (M at X1), the gate time is set in 10 usec steps. Setting the Multiplier to X10 or X100 divides the time base frequency by 10 or 100 respectively. so that time may be set in $100 \mu \mathrm{sec}$ or I msec steps, as well. Setting gate time for 1 second permits frequency measurements directly in cycles per second.

Being able to select gate time allows you to normalize readings or to convert frequencies into practical units. For instance, if a tachometer generator, which produces 100 pulses per revolution, is connected to a rotating shaft, you can set the gate to $10.000 \mathrm{msec}(0.01 \mathrm{sec})$ and measure rps directly or you can set the gate for $600.00 \mathrm{msec}(0.6 \mathrm{sec})$ and measure rpm.

The long gate times that are available (up to 100 sec onds) allow you to measure low frequencies or register the least significant digits of an input signal better to observe small variations of rate.

Ratio measurement

Model 5214 L measures ratio over a wide range of frequencies and with a wide choice of normalizing factors. The signal connected to input B goes through the Multiplier switch and the preset decades, and controls the gate time; the signal connected to input A goes to the readout decades. Consequently, signal A is counted for a number of periods of signal B equal to the product of N and the Multiplier setting.

The number displayed by the readout decades is MNA/ B, where A is the frequency of the signal connected to
input A, and B is the frequency of the signal connected to input B . Gate length from 1 to 10° period's of signal B can be chosen in steps of 1,10 , or 100 . Input B also can be used for extending gate time or for applications requiring an external time base.

Time measurement

In the Time function, which corresponds to period mea. surements in conventional counters, the hp 5214 L measures the time in milliseconds for N events to occur. The measurement may be made in increments of $0.01,0.1$ or 1 msec by setting the Multiplier to $\mathrm{X} 1, \mathrm{X} 10$, or X 100 , respectively.

Period and multiple period measurements are also easily made with the function switch in the Time position, and period average is determined by dividing the time reading by N. The ability to choose the number of input cycles measured and to choose time increments of $0.01 \mathrm{msec}, 0.1$ msec , or 1 msec allows the operator to achieve the greatest accuracy possible, or to obtain a required accuracy in the shortest measurement time.

Preset counting

When the Function switch is set to Preset at N, the 5214 L counts N events and provides an output pulse at the be. ginning and end of the preset count. This feature is useful in batching, as the gate signal can be used to control external equipment. Separate electrical output signals are available at the beginning and end of the count.

Display storage

All $h p$ solid-state electronic counters have display storage which holds the most recent measurement even while the instrment is gated for a new count. If the new count differs from the stored count, the display will shift to the new reading directly. Where desirable, the storage feature may be disabled by a rear-panel switch.

Electrical readout

These counters provide a four-line BCD code output with assigned weights of 1-2-2-4 ("1" state positive with respect to " 0 " state). This output is suitable for systems use or for output devices such as hp 562A Digital Recorder, or the 580A, 581A Digital-to-Analog Converters (pages 76 and 79). 1-2-4-8 BCD code output is also available at extra cost.

Specifications

Functlons

Totallze (Input A)
Range: 2 cps to 300 kc .
Sensitivity: *0.1 volt rms sine wave.
Gate time: manual control.
Input impedance: 1 megohm, 50 pf shunt.
Capaclty: 99,999 counts in units, tens or hundreds.
Rate (Input A)
Range: 2 cps to 300 kc .
Sensitivity: *0.1 volt rms sine wave.
Gate time: $10 \mu \mathrm{sec}$ to 1 sec in $10 \mu \mathrm{sec}$ steps; $100 \mu \mathrm{sec}$ to 10 sec in $100 \mu \mathrm{sec}$ steps: 1 msec to 100 sec in 1 msec steps.
Accuracy: ± 1 count \pm time base accuracy.
Input impedance: 1 megohm, 50 pf shunt.

Preset (input A)

Input frequency range: 2 cps to 100 kc .
Sensitivity*: 0.1 volt rms sine wave.
Reads: time for N events in msec.
Time units: $10 \mu \mathrm{sec}, 0.1 \mathrm{msec}$ or 1 msec .
Input impedance: 1 megohm, 50 pf shunt.
Accuracy: ± 1 count \pm time base accuracy \pm trigger error \dagger

Ratio

Input A: frequency range 2 cps to 300 kc ; sensitivity, ${ }^{*} 0.1$ volt rms sine arave; input impedance, 1 megohm, 50 pf shunt.
Input B: frequency range, 2 cps to 100 kc on X) (2 cps to 300 kc on X10 and X100); sensitivity, 0.1 v to 10 v rms; input impedance, I megohm, 50 pf shunt.
Reads: $\mathrm{N} \times \mathrm{A} / \mathrm{B} \times$ Multiplier.
Accuracy: ± 1 counk.
Internal time base
Aging rate: < ± 2 parts in 106/week.
Temperature: $< \pm 20$ parts in $10^{\circ}+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$: $< \pm 100$ parts in $10^{n}-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Line voltage: <1 part in 10° for $\pm 10 \%$ line.

Printer output

Output: 4-line 1-2-2-4 BCD: 1-2-4-8 BCD optional.
Impedance: 100 K each line; " 0 " state level: approx. -28 v : "1" state level: -2 v.
Reference levels: approx. -2.4 v. 350 ohm source impe. dance and $-26.9 \mathrm{v}, 1000$-ohm source.
Print command: step from -29 v to -1 v from 2700 -ohm source in series with 1000 pf .
Hold-off requirements: chassis ground to +12 v max.
Remote operation: number " N " can be remotely preset by appropriate contact closures.

General

Reglstration: s long-life rectangular digital display tubes with display storage.
Sample rate: sample rate control determines length of time after gare closure before gate can be reopened; adjustable from 0.2 sec min. to at least 5 sec max. with counter in Rate, it is independent of gate time, and display can be held indefinitely.
Input connectors: BNC, on front and rear panels, wized in parallei.
Oparating tamperature: -20 to $+65^{\circ} \mathrm{C}$.
Outputs: positive pulse approx. 10 v high and $9 \mu \mathrm{sec}$ wide at gare opening and closing.
Dimensions: $163 / 4$ " wide, $3 \cdot 13 / 16^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep (426 . $97 \times 337 \mathrm{~mm}$) ; quickly converts to rack mount: $19^{\prime \prime}$ wide. $31 / 2^{\prime \prime}$ high, $111 / 4^{\prime \prime}$ deep bebind mounting surface (483 x $89 \times 286 \mathrm{~mm}$).
Welght: net $15 \mathrm{lbs}(6,75 \mathrm{~kg})$; shipping $25 \mathrm{lbs}(11 \mathrm{~kg})$.
Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to $60 \mathrm{cps}, 35 \mathrm{w}$ (line frequency limit imposed by fan motor).
Accessories provided: two 10503 A cables, 4 feet long. BNC connectors, circuit board extender, detachable power cord.
Price: hp 5214L, \$1475.

Options

2. 1.2.4.8 BCD (" 1 " state positive) in lieu of 1-2.2-4, add $\$ 50$.
03: Same as Option 02. except "I" state negative, add $\$ 50$.

signal to noise ratio on input signal: trigger error decreases with in. creased signal amplitude and slope.

* Internal control allows trigger adjustment for negative or positive pulses.

COMPLEMENTARY EQUIPMENT FOR HEWLETT-PACKARD SOLID-STATE COUNTERS

Increase versatility of basic instruments

The versatility of Hewlett-Packard counters is enhanced in four ways by complementary Hewlett-Packard equipment. First, the DY-2590A Microwave Frequency Converter manufactured by the Dymec Division of Hewlett-Packard extends the frequency measuring capability of the 5245 L 50 MC Counter, 5253B 500 MC Frequency Converter Plug-in combination to 15 gc . Second, the DY-2539A Digital Comparator and DY-2514A Digital Scanner increase the number of systems applications by providing data handling for making Go/No-Go decisions on counter measurements and scanning the BCD outputs of up to six counters. Third. Dymec solid-state output couplers increase the forms in which the BCD output of counters may be recorded and stored for additional data handling or process. ing by digital machines. Fourth, Moseley $x-y$ and stripchart recorders, in conjunction with the Hewlett-Packard 580A, 581A Digital-to-Analog Converters provide the user with a selection of analog recording equipment. In each case, the equipment provides convenient, permanent records of counter measurements in analog form.

Figure 1 demonstrates the capability of the DY-2539A Digital Comparator to compare readings made with the 5245 L Counter with a predetermined level (or predetermined upper and lower levels). The result of the comparison is available and may be printed by the hp 562A

Digital Printer or fed back to the system being monitored by the counter, thus completing a feedback control system. Front-panel indication of the comparison is also available. The data from the counter used by the digital comparator in the actual comparison is available from the comparator in BCD form. It may be printed with the Go/No-Go indication by the 562 A or converted to analog form by the Hewlett-Packard 580A, 581A Digital-to-Analog Converters and plotted on a Moseley 680 Strip. Chart Recorder, provid. ing a permanent, visual record of the comparison.

The system in Figure 2 demonstrates the use of the DY. 2514A Digital Scanner to scan up to six 5245L 50 MC Counters with 5253B 500 MC Frequency Converter Plug. ins, using the DY-2590A Microwave Frequency Converter to measure microwave frequencies. Frequency measurements made by the counters are sequentially or sandomly (depending on the mode of opecation) scanned by the DY-2514A, and the data, in BCD form, is made directly available to one of four different types of output equipment. The scanner couples directly to the hp $562 \mathrm{~A}, \mathrm{AR}$ Digital Recorders and modified versions of the DY-2545 Tape Punch Coupler, DY- 2546 Magnetic Tape Recorder Coupler and DY. 2526 Card Punch Coupler. Both the magnetic tape records and the punched cards are IBM. compatible.

Figure 1

Figure 2

The hp 562A Digital Recorder is a solid-state recorder featuring parallel entry that provides a permanent printed record of counter measurements. Low-inertia moving parts allow printing rates as high as 5 lines $/ \mathrm{sec}$. Standard capacity is 11 digits per line (12 on special order). A data storage feanure allows the driving source to transfer data in 2 msec . Available for operation from BCD or 10 -line sources. Price: hp 562A, $\$ 1600$ (approximate, depending on options). See page 76 for more complcte information.

The DY-2590A Micronare Frequency Converter, page 53, is an all solid-state instrument with its chassis cast in one piece to completely eliminate troublesome RFI. The DY-2590A measures frequency to 15 gc by phase-locking an internal transfer oscillator to the signal souice. Measure. ment accuracy is equal to the counter tome basc. A scarch oscillator is provided to simplify phase locking. Price: Dymec DY-2590A, $\$ 1900$.

The DY-2514A Digital Scanner, page 78, transmits digital data from up to six counters to one digital recording instrument. The scanner is compatible with the BCD outputs from all hp solid-state counters. The 2514A can operate in either sequential or random scanning modes with continuous scan, single scan or manual steps. Price: Dymec DY-2514A, $\$ 2500$ (for 3 sources, 8 digits per source).

The ho 580A, 581A Digital-to-Analog Converter accepts the 4 -line $B C D$ output from all hp solid-state counters The analog output is available for galvanometer or potentiometer recorders. The two models, described on page 79. vary only in physical dimension. Price: hp 580A, hp 581 A, $\$ 525$ each.

The Moseley 680A Strip-Chart Recorder is a solid-state device with eight chast speeds, continuous zero set, and a zener reference. The 680 A uses 6 -inch chart paper up to 100 feet long. The recorder may be used with a digital-toanalog converter to obtain permanent, visual records of counter measurements versus time. The Moseley 680 A , described on pages 360,361 , is priced at $\$ 750$.

The DY-2939A Digital Comparator, pages 82, 83, compares $B C D$ information against single or dual preset limits providing Go/No-Go lamp indications and electrical output. Comparisons rake less than 2 mser. The DY-2539A provides all possible compacison conditions-combinations of relative sign and magnimde-encountered in measurement situations with counters. Price: Dymec DY-2539A, $\$ 1850$ for 4 -digit comparison, $\$ 1950$ for 5 -digit and $\$ 2050$ for 6-digit.

5275A 100 MC TIME INTERVAL COUNTER

Time interval measurements with 10 nanosecond resolution

Model S275A is ideally suited for precise digital measurements of short time interrals between events that can be represented by suitable electrical pulses. Resolution to 10 nanoseconds is achieved in automatic measurements over the full 10 nsec to 0.1 sec range of the instrument.

Counted frequency is 100 mc , obtained from an external 1 megacycle standard by a multiplying circuit within the counter. Applications for this instrument include the mea. surement of explosive burning rates, speed aad acceleration timing of test vehicles in the free-fight wind tunnels, and nuclear measurements of various kinds.

Rugged, modular construction and solid-state components
contribute to the rypical hp quality and reliability of this remarkable instrument. Standard features of remote reset, rear-mounted trigger terminals and 4 -line BCD output make the S279A suitable for many applications that would otherwise require equipment of special design. The time interval counter is housed in the hp cabinet configuration which allow's easy convertibility from bench use to rack mount.

For system installation hp 101A 1 MC Oscillator (pages 100,101) is capable of supplying the time base for as many as twenty 5275A Time Interval Counters. Using one frequency standard conserves valuable rack space and reduces system cost where several time interval counters are required.

Specifications

Range: 10 nanoseconds to 0.1 second.
Resolution: 10 nanoseconds.
Accuracy: ± 10 nanoseconds \pm time base accuracy.
Tirne base Input: (hp 101A Oscillator recommended)
Frequency: 1 mc .
Amplitude: 1 v rms into 1000 ohms.
Signal-to-noise ratio: 60 db .
Phase and amplitude modulation: less than 0.1%.
Stability: compatible with measurement needs.
Registration: 7 places, digital, in neon columns.
Reads In: microseconds, with decimal point.
Start and stop trigger Input: sepacate channels.
Input impedance: SO ohms.
Minimum trigger pulse requirements: 3 v peak, $0.5 \mathrm{v} / \mathrm{nsec}$ rise time, 5 nsec width.
Trigger polarity: selectable, positive or negative.
Reset: automatic, manual, or remote, using rear terminals.
Standard frequency counted: 100 mc .

Output: 4-line 8CD 1-2-2.4, "1" state positive; 4-line BCD 1-2.4.8, " 1 " state positive available as Option 02.; " 1 " state negarive available on special order; " 0 " state: -8 volts, " 1 " state: +18 volts.
Impedance: 100 K , each line.
Print command: step from -6 to +13 volts, de coupled, 2000-0hm source.
Hold-off requirements: any voltage from 0 to +12 volts, in. clusive.
External reset: -13 -volt puise, $30 \mu \mathrm{sec}$ minimum duration.
Accessories furnished: two 10503A Cables, 4 ft . long, male BNC connectors.
Operating temperature range: $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Dlmensions: $163 / 4^{\prime \prime}$ wide, $3-15 / 32^{\prime \prime}$ high, $19^{\prime \prime}$ deep ($425 \times$ $88 \times 483 \mathrm{~mm}$).
Weight: net, $15 \mathrm{lbs}(7 \mathrm{~kg})$; shipping $18 \mathrm{lbs}(8 \mathrm{~kg})$
Price: hp 5275A, 52500 .
Option 02.: 4 -line $8 D C$ output, $1-2-4.8, ~ " 1$ " state positive in lieu of 1-2-2-4 (identical in all other respects), add $\$ 70$.

External standard: 100 kc or 1 mc signal from external primary standard can be applied to unit for highest accuracy; 2 volts rms required; input impedance, nominal: $56 \mathrm{~K}, 40 \mathrm{p}$ shunt.
Connectors: BNC type.
Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to 60 cps , approx. 600 w .
Accessories furnished: 10503A Cable Assembly, 48" RG-58/U cable, terminated each end with UG-88/U BNC male connectors.
Dimensions: cabinet: $20^{\prime \prime}$ wide, $211 / /^{\prime \prime}$ high, $231 / 2^{\prime \prime}$ deep (508 x $540 \times 597 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $191 / 4^{\prime \prime}$ high, $201 / 4^{\prime \prime}$ $\operatorname{deep}(483 \times 489 \times 514 \mathrm{~mm})$.
Welght: net $118 \mathrm{lbs}(53 \mathrm{~kg}$), shipping $153 \mathrm{lbs}(69 \mathrm{~kg}$) (cabinet) ; net 108 lbs (49 kg), shipping 153 lbs (69 kg) (rack maunt)
Price: hp S24C, $\$ 2600$ (cabinet): hp S2ACR. $\$ 2600$ (rack mount); hp S24D, $\$ 2350$ (cabinet); hp $524 \mathrm{DR}, \$ 2350$ (rack mount) ; with 4.line (1-2-2.4 " 1 " state positive); BCD output and reference voltage for driving 562A Digital Recorder, price on request.

Options

1. Single-line voltage coded decimal output (staircase) for operating 560A Digital Recorder; 524D.95A installed, add \$75 (MS 3102A-22.14S output connector).
2. 10 . Iine decimal code output and $562 \mathrm{~A}-16 \mathrm{C}$ Cable for operating 561B Digital Recorder or remote indicator; 524C-95B installed ($\$ 24 C, C R$ only), add $\$ 150$ (Ampheool 57.20500 output connector).

525A Frequency Converter Unit

(plugged into 524 Electronic Counter)
Range: as amplifier, 10 cps to 10.1 mc : as converter, 10.1 mc to 100 mc .
Accuracy: retains accuracy of counter.
Resolution: 0.1 cycle to 1000 cycles, depending on gate time.
Input voitage: 0.1 volt to 10 volts $\mathrm{ms}, 10 \mathrm{cps}$ to $10 \mathrm{mc} ; 10 \mathrm{mv}$ to 1 volt rms, 10 me to 100 mc .
Input impedance: approximately 1 megohre shunted by 40 pf .10 cps to 10 mc ; approximately so ohms, 10 me to 100 mc .
Tuning Indicator: funing eye aids frequency selection, indicates correct volkage level adjustment.
Waight: net 5 lhs (2 kg) : shipping 8 lbs (4 kg).
Price: hp 525A, $\$ 300$.

525B Frequency Converter Unit
 (plugged inro s24 Elearonic Counter)

Range: 100 mc to 220 mc .
Accuracy: retains accuracy of counter.
Resolution: 0.1 cycle to 1000 cycies, depending on gate time.
Input voltage: 0.2 volt rms minimum.
Input impedance: approximately 50 ohms.
Tuning Indicator: tuning eye aids frequency selection, indicates correct input voltage.
Welght: net $5 \mathrm{lbs}(2 \mathrm{~kg})$; shipping $8 \mathrm{lbs}(4 \mathrm{~kg})$.
Price: hp 525B, $\$ 300$.

525C Frequency Converter Unit

(plugged into 524 Elcctronic Counter)
Range: as converter for counter, 100 nmc 10510 mc ; as amplifier for counter, 50 kc to 10.1 mc ; direcr connection for 0 to 10.1 mc .
Accuracy: retains accuracy of counter.
Resolution: 0.1 cycle to 1000 cycles, depending on gate time.
Input voltage: 20 mv ms minimum, 50 kc to $10.1 \mathrm{mc} ; 100 \mathrm{mv}$ rms minimum 100 to 510 mc .
Maximum input: 2 v ms from 50 kc to 10.1 mc and 100 to 510 mc . input impedance: approximately $700 \mathrm{ohms}, 50 \mathrm{kc}$ to 10.1 mc ; approximately 50 ohms, 100 mc to 510 mc .
Level Indicator: meter aids frequency selection, indicates usable voltage level.
Weight: net $61 / 2 \mathrm{lbs}$ (3 kg) ; shipping 10 ibs (5 kg).
Prlce: hp 525C, \$475.

526A Video Amplifier Unit
 (plugged into 524 Electronic Counter)

Range: 10 cps to 10.1 mc .
Accuracy: retains accuracy of counter.
Minimum input voltage: approximately 10 mv cms .
Level control: neter indicates input signal level, correct voltage ad. justment.
Output terminal: BNC connector provides 10 times input voltage from $93.0 h m$ source on the most sensitive range; allows nscilloscope monitoring of input signal without loading circuit.
Reads in: same as basic 524 Counter.
Accessories furnished: supplied with 10505A Probe Assembly, which increases input impedance to 10 megohms shunted by 15 pf : maximum sensitivity using probe is 0.1 vols rms.
Weight: net 5 lbs (2 kg) : shipping 7 lbs (3 kg).
Price: hp $526 A, 5200$.

526日 Time Interval Unit
 (plugged into 524 Electronic Counter)

Range: $1 \mu \mathrm{sec}$ to 10° seconds.
Accuracy: ± 1 period of standard frequency counted, \pm time base accuracy.
Registration: on 524 Counter.
Input voltage: 1 volt peak minimum, direct-coupled input.
Input impedance: approximately 1 megohm, 40 pf shunt.
Start-stop: independent or conmon channels.
Trigger slope: positive or negative on start and/or stop channels.
Trigger ampifitude: boch channels continuously adjustable from -192 to +192 vols.
Standard frequency counted: $10 \mathrm{sps}, 1$ or $100 \mathrm{kc}, 10 \mathrm{mc}$ from 52 द counter; or externally applied frequency.
Reads int sec, msec or μ sec: decimal point automatically positioned.
Accessory furnished: 10503A Cable Assembly, 48" RG.58C/U cable terminated with UG.88/U BNC connectors.
Weight: net $s(b s(2 \mathrm{~kg})$; shipping $7 \mathrm{lbs}(3 \mathrm{~kg})$.
Price: hp 526B, $\$ 200$.

526C Period Multiplier Unit
 (plugged into 524 Electronic Counter)

Range: 0 to 100 kc .
Gate time: $1,10,100,1000$, and 10,000 cycles of the unknown frequency.
Accuracy: ± 1 count \pm time base accuracy \pm rigger error.
Standard frequency counted: $10 \mathrm{cps}, \mathrm{l} \mathrm{kc}, 100 \mathrm{kc}, 10 \mathrm{mc}$ or externally applied frequency.
Reads in: seconds, milliseconds, microseconds.
Input voltage: 1 volt rms minimum.
Input impedance: 1 megohm, 40 pi shunt.
Weight: net $5 \mathrm{lbs}(2 \mathrm{~kg})$; shipping $7 \mathrm{lbs}(3 \mathrm{~kg})$.
Price: hp 526C, $\$ 225$.

526D Phase Unit

(plugged into 524 Electronic Counter)
Range: phase angle, 0 to 360° lead or lag.
Frequency range: 1 cps to 20 kc .
Reads in: time units with maximum resolution of $0.1 \mu \mathrm{sec}$ for full frequency range; for frequencies 396 to 404 cps, a frequency multiplier (3600 X) provides readings direct in tenths of degrees.
Accuracy: $\pm 0.1^{\circ} \pm\left(F_{p} / F_{c}\right) \times 360^{\circ}$ where F_{p} is frequency of phase measured signal, and F_{c} is counted frequency assuming noise 65 db below signal and negligible counted frequency error: S / N ratio influences accuracy; accuracy diminishes somewhat below 350 cps when ac coupled; for highest accuracy both inputs should be coupled in the same mode, ac or dc.
Input voltage: 5 to 120 volts rms ; usable to 240 v rms .
input impedance: approximately 1 megohm, 80 pf shunt.
Waight: net 5 lbs (2 kg) ; shipping $10 \mathrm{lbs}(5 \mathrm{~kg})$.
Price: hp 526D, 5750; for direct measurement in 0.01° of 800 cps systems, specify H01-526D, price on request.

522B, 523C,D ELECTRONIC COUNTERS

Measure period, time or frequency, 10 cps to 1.2 mc

Advantages:

Increased sensitivity
Superior trigger level controls
Versatility
Compact, nuged desigo
High accuracy
Easy to operate and maintain

Uses:

Measure frequency
Count periodic oc random pulses
Measure period, time interval
High-accuracy phase measurements
Totalize events, measure ratios
Ballistic measurements

523C, D Electronic Counters

High sensitivity and sophisticated trigger level circhitry make the hp 523 C and 523D Electronic Counters useful for a broad range of applications. The instruments measure frequency, period, time interval, phase delay, random events and ratios. They also totalize electrical events, periodic or random. The 523C has an in.line display, while the 523D has a neon columnar display. Digital recorder output is optionally available on both instruments.

Speciflcations, 523C,D

Frequency measurement

Range: 10 cps to 1.2 mc .
Accuracy: ± 1 count \pm rime base accuracy.
Input sensitivity: 0.1 v rms, adjustable to 150 v rms maximum input.
Input trigger levels: stop channel may be used so that only signals meeting conditions ser by trigger level controls are counted; slope may be + or - , level -300 to +300 volts.
Input Impedance: approximately 1 megohm, 50 pf shunt.
Gate tlme: $0.001,0.01,0.1,1,10$ seconds.
Reads In: kilocycles, positioned decimal point.

Period measurement

Range: 0.00001 cps to 100 kc .
Accuracy measuring sine waves: ± 1 count \pm time base accuracy \pm trigger error.
Input requirements: 0.1 v rms minimum, direcr-coupled.
input impedance: approx. 1 megohm shunted by 50 pf.
Measurement perfod: 1 or 10 cycles of unknown.
Standard frequency counted: 1 cps to 1 mc in decade steps or externally applied signal, 10 cps to $1.2 \mathrm{mc}, 0.1 \mathrm{v} \mathrm{ms}$ minimum.
Reads in: seconds, msec or $\mu \mathrm{sec}$, positioned decimal point.
Time interval measurement
Range: $1 \mu \mathrm{sec}$ to $10^{\circ 6} \mathrm{sec}$.
Accuracy (pulse input): ± 1 count \pm time base accuracy.
Irput Impedance: approximately 1 megohm, 50 pf shunt.
Input requlrements: 0.1 v rms minimum; direct- or accoupled input.
Start and stop input: separate channels with independent controls; separare or common input.

Start and stop marker output: separate output pulses, each approximately $5 \mu \mathrm{sec}$ duration and -20 v peak, available at rear of instrumene for oscilloscope intensity modulation to mark start and stop points on input waveform; may be combined with Sep.Com switch on rear of instrument.
Trigger slope: pos. or neg, on stazt and stop channels.
Trigeer amplitude: continuously adjustable on both input channels from -300 to +300 v .
Standard trequency counted: $1 \mathrm{cps}, 10 \mathrm{cps}, 100 \mathrm{cps}, ~ I ~ \mathrm{kc}$, $10 \mathrm{kc}, 100 \mathrm{kc}, 1 \mathrm{mc}$; external.
Reads In: seconds, msec or $\mu \mathrm{sec}$; positioned decimal point.

Phase measurement

Range: 1 cps ro 20 kc , de coupled; 50 cps to 20 kc , ac coupled.
Input voltage: 5 to 10 v rms, pure sinusoidal signal.
Accuracy: $\pm 0.1^{\circ} \pm\left(\frac{f_{p}}{f_{c}}\right) \times 360^{\circ}$ where f_{c} is the counted frequency and f_{D} the measured frequency.
Ratio measurement: displays f_{1} / f_{2}, or $10 f_{1} / f_{2}$, with accuracy of ± 1 count; $f_{1}, 10 \mathrm{cps}$ to $1.2 \mathrm{mc} ; \mathrm{f}_{2}, 0.00001 \mathrm{cps}$ to 100 kc $\left(f_{1}>f_{2}\right)$.
Totallze: electrical events, periodic or random to 999999 at rates to $1,200,000 / \mathrm{sec}$.

General

Registration: S23C, six in-line digital tubes, single line: 523D, six decimal places each indicated by lighred numbers.
Stability: 2×10^{-8} per week.
Display time: variable from approximately 0.1 to 10 seconds; display can be held until manually reset.
Self-check: councs of 100 ke or 1 mc .
Output frequencles: available at front panel; 1 cps, 10 cps , $100 \mathrm{cps}, 1 \mathrm{kc}, 10 \mathrm{kc}$ rectangular; 100 kc and 1 mc sine wave, 0.5 vp -p; stability $2 / 10^{4}$ per week.
External standard: 100 kc from external primary standard can be applied to unit for highest accuracy; minimum input. 1 v rms.
Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to 60 cps . approx. 350 w .
Dimensions: cabinet: $201 / 2^{\prime \prime}$ wide, $21 / 4^{\prime \prime}$ high, $183 / 44^{\prime \prime}$ deep ($521 \times 286 \times 476 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $83 / 4^{\prime \prime}$ high, $161 / 4^{\prime \prime}$ deep ($483 \times 222 \times 413 \mathrm{~mm}$).
Welght: net 48 lbs (22 kg), shipping 78 lbs (35 kg) (cabinet): net $48 \mathrm{lbs}(22 \mathrm{~kg}$), shipping $61 \mathrm{lbs}(28 \mathrm{~kg}$) (rack mount).
Accessories turnished: two 10503A Cable Assemblies.
Accessorles avallable: remote indicator for 523C, 523CR and inrerconnecting cable (100^{\prime} maximum), prices on request.
Digital recorder kits for field installation: 523D-95A Adapter Kir for operating 560A Digital Recorder from 523C or 523D, 545; 523C.958 Adapter Kit for operating 561B Digital Recorder from 523C. 845.
Price: hp $923 \mathrm{C}, \$ 1750$ (cabinet); hp $523 \mathrm{CR}, \$ 1730$ (rack mount); hp 523D, $\$ 1500$ (cabinet); hp $523 \mathrm{DR}, \$ 1500$ (rack mount).

Options

1. Single-line decimal code (staircase) for operating 560A Digital Recorder, add \$45.
2. 10-line decimal code output for operating 561B Digit-
al Recorder or remote indicator, 523C only, add $\$ 45$.

Spectal output

Four-line BCD output (1-2-2.4, "1" state positive) avail. able for driving 562A Digital Recorder; 580A, 581A Digi-tal-to-Analog Converters; Dymec instruments, or data processing equipment, prices on requese.

522日 Electronic Counter

Versatile, low-cost precision cothnter covers 10 cps to 120 $k i$ - The all-purpose hp 522B Counter measures frequency, period and time interval. Results are displayed automatically in direct-reading form-cps, kc, seconds or milliseconds. Reliable and accurate readings make measurement quick and convenient, even for unskilled personnel. The counter can be supplied with digital recorder output for a small additional charge.

Specifications, 522B

Frequency measurement

Range: 10 cps to 120 kc (220 kc optional).
Accurecy: ± 1 count \pm time base accuracy.
Stabllty: $1 / 10^{3} /$ week or better.
Input requirements: 0.2 volt rms minimum; inpur is directcoupled (0.5 v rms above 120 kc with 220 kt option).
Input impedance: approximately 1 megohm, 50 pf shunt.
Gate time: $0.001,0.01,0.1,1,20$ sec; manual control extends to any multiple of 1 or 10 sec .
Display time: variable 0.1 to 10 sec in steps of gate time selected or until manually reset.
Reads In: cps or k c, decimal point indicated.

Period measurement

Range: 0.00001 cps to 10 kc ; output pulse available to actuate trigger circuit for mechanical register.
Accuracy: ± 1 count \pm time base accuracy \pm trigger error. Input requirements: 0.2 v rms min.; direct-coupled input.

Input impedance: approximately 1 megohm, 50 pf shunt.
Gate time: one or ten cycles of unknown frequency; may be extended to any number of cycles of unknown frequency lower than 90 cps by manual control.
Standard frequency counted: 1, 10, 100 cps: $1,10,100 \mathrm{kc}$: external.
Display time: variable from 0.1 to 10 seconds in steps of period being measured or until manually reset.
Reads in: seconds or msec, decimal point indicased.
Time interval measurement
Range: $10 \mu \mathrm{sec}$ to 100,000 seconds (27.8 hrs)
Accuracy: ± 1 count \pm cime base accuracy.
Input requirements: 1 v peak min.: direct-coupled input.
Input impedance: approx. 290.000 ohms, 50 pf shent.
Start and stop: independent or common channels.
Trigger slope: + or - on start and/or stop channels.
Trigger amplitude: continuously adjustable on both channels from -100 to +100 volts.
Standard frequency counted: same as for perind measure. ment.
Display time: same as for period measurement.
Reads in: seconds or msec, decimal point indicated.

General

Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to $60 \mathrm{cps}, 260 \mathrm{w}$.
Dimensions: cabinet: $203 / 4$ " wide, $123 / 4$ " high, $141 / 44^{" ~ d e e p ~}$ ($527 \times 324 \times 362 \mathrm{~mm}$); rack mount: $19^{\prime \prime}$ wide, $10^{1 / 2^{\prime \prime}}$ high. $135 / 8^{\prime \prime}$ deep $(483 \times 267 \times 346 \mathrm{~mm})$.
Welght; net $50 \mathrm{lbs}(22 \mathrm{~kg})$, shipping $60 \mathrm{lbs}(26 \mathrm{~kg})$ (cabi. net): ne: 43 lbs (19 kg), shipping $57 \mathrm{lbs}(25 \mathrm{~kg}$) (rack mount).
Price: hp $922 \mathrm{~B}, \$ 950$ (cabiner); hp 922 BR . $\$ 950$ (rack mount): with staircase output (for 560 A operation) specify Option 01., add $\$ 45$. For 220 kc operation, specify Option 02., add $\$ 35$; BCD output ($1-2-2-4$) available. price on request.

521 SERIES INDUSTRIAL COUNTERS

Low cost, flexible, easy to use; 1 cps to 1.2 mc

Frequency, speed and random events, such as nuciear phenomena, occurring over a preselected time, are measured quickly and accurately by any one of the five low-cost electronic counters in the Hewlett-Packard 521 Series.

When connected to a suitable transducer that converts mechanical events into electrical pulses, the electronic counters measure weight, pressure, temperature, rps, rpm and other quantities that can be related to frequency.

Adapting the 521 Electronic Counters for recorder opera. tion is conveniently done by the use of an adapter kit, in-
stalled by either the factory or the customer. It allows a permanent record of information to be acquired through some appropriate Hewlett-Packard digital recorder - 560A (staircase) or 561B (10 -line) (page 77), or 562 A (BCD) (page 76)- for analysis or future reference. Additionally, the kit provides compatibility between the counters and the 580 A and 581A Digital-to-Analog Converters (page 79), so that chart recorders may be used for analog recordings of frequency drift or other type of signal source variation.

hp Matel	521A	623C	521D	5215	6210
Maximum frequency	$\begin{gathered} 120 \mathrm{kc} \\ \text { (220 kc with Option 03.) } \end{gathered}$	120 kc (220 kc with Option 03.)	120 kc (220 ke with Option 03.)	$\frac{120 \mathrm{kc}}{(220 \mathrm{kc} \text { with Option 03.) }}$	1.2 mc
Accuracy	$\begin{gathered} \pm 1 \text { count, } \\ \pm \text { line acculacy, approx. } \\ 0.1 \% \\ (0.01 \% \text { with } 0 \text { ption 04.) } \end{gathered}$	$\begin{aligned} & \pm 1 \text { count. } \\ & \pm 0.01 \% \end{aligned}$	$\begin{aligned} & \quad \pm 1 \text { count, } \\ & \pm \text { line accuaracy, approx. } \\ & 0.1 \% \\ & (0.01 \% \text { with Option 04.) } \end{aligned}$	$\begin{aligned} & \pm 1 \text { counl, } \\ & \pm 0.01 \% \end{aligned}$	$\begin{gathered} \pm 1 \text { count, } \\ =\text { line accuracy. approx. } \\ 0.1 \% \\ \text { (0.01\% with Option 04.) } \end{gathered}$
Registration	4 places, meon display capacity: 9,999	5 slaces. neon disolay cápacity: 99,999	4 places, digital display capacity: 9,999	$\underset{\substack{5 \text { placees, } \\ \text { digital } \\ \\ 99,999 \\ \text { display capacity: }}}{ }$	5 places. neon display capacity: 99.999
Gate time	0.1 .1 second, manual, ext.	$0.1,1,10$ seconds. manual, ext.	0.1 .1 second, manual, ext.	$0.1,1,10$ seconds, manual, ext.	0.1. I second, manual, ext.
Power	115 or $230 \mathrm{v}, 50$ to 60 cps , approx. 160 w on 115 -volt line (add 10 w for crystal time base unit)				
Size (cabinet)			$93 / 4^{"}$ wide, $151 / 2^{\prime \prime}$ high, $151 / 2^{2}$ deep $(248 \times 387 \times 394 \mathrm{~mm})$		
Price: cabinet or rack mount	\$600	\$715	\$850	\$1050	\$700

Input: 0.2 volt, rms, minimum, or output from 1PA1 Photorube (or equal): 0.5 valt tms required at frequencies above 120 kc with 220 kc (Option 03.) : continuously adjustable control for reducing sensitivity to overcome noise.
Input Impedance: approximately 1 megohn), 50 p shunt (500 K for "Photorube Jack").

Display time: rariable from gake cime to approximately 15 seconds, or until manually reset.

Reads in: cps and aps or rem with 506A or 508A Tachometer accessories (page 69).

Welght: net $28 \mathrm{lbs}(13 \mathrm{~kg})$, shipping $37 \mathrm{y} / 2 \mathrm{lbs}$ (17 kg) (cabinet) ; net 26 lbs (12 kg), shippiag $41 / \frac{\mathrm{l}}{\mathrm{l}} \mathrm{bs}$ (19 kg) (rack mount).

Accessory provided: 10501A Cable Assembly, 44" (RG/58C/U termiasted on one end only with UG-88/U type BNC connector).
Options: (factory iostalled or kit form)

1. Adapter for 560 A Digital Recorder operation (starcase), all models, add 845 ; for Geld installation order Kit No. 521D. 95A, \$45.
2. Adapter for 5618 Digital Recorder operation (10-line) for S21D and $521 E$, add \$45; for feld installation order Kit No. 521D-95B, 845.
3. For 220 kc operation for $321 \mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, add S35 (installed).
4. Crystal time base (100 kc) plug.in for $521 \mathrm{~A}, \mathrm{D}, \mathrm{G}$, add $\$ 100$; for feld installiation order Kit No. S21C.99B, \$100.
Modificatlons: BCD output (1-2.2-4) for use with 562A Digital Recorder, 580A, 581A Digital-to-Analog Converters; price on request.

500B,C FREQUENCY METERS; 506A, 508A,B,C,D TRANSDUCERS
 Measure frequency, 3 cps to 100 kc

The hp Model 500B directly measures the frequency of an alternating volkage from 3 cps to 100 kc . Suitable for labora. tory and production measurements of audio and ultrasonic frequencies, it also is useful for direct rachometry measure. ments with a transducer such as hp 506 A or $508 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$.

Readings on the 500 B and 500 C are not affected by variations of input signal level or power line voltage. The meter will count sine waves, square waves or pulses and will indicate the average frequency of random events. Provision is made for checking the calibration against power line frequency and to operate a recorder for a contimuous frequency record or $\mathrm{x} \cdot \mathrm{y}$ plot.

Specifications, 500B

Frequency range: 3 cps to $100 \mathrm{kc}, 9$ ranges in $10,30,100$ sequence.
Expanded scale: allows any 10% or 30% portion of a selected range to be expanded to full meter scale (except 10 (ps range).
Input voltage: sensitivity: 0.2 v rms minimum for sine waves, +1 v peak minimum for pulses; maximum, 250 v peak; sensitivity control reduces threshold sensitivity.
input Impedance: approx. 1 megohm shunted by 40 pf ; BNC connector for input.
Accuracy: berter than $\pm 2 \%$ of full scale (unexpanded) ; reading affected less than 0.5% by $\pm 10 \%$ variation from nominas line voltage: expanded scale $\pm 0.75 \%$ of range switch setting.
Output linearlity. (refation of input frequency to output current at the external meter jack): on 100 kc range, within approx. $\pm 0.25 \%$ of full-scaie value; other ranges, $\pm 0.1 \%$ of full-scale value.
Recorder output; 1 ma for full-scale defiection into 1400 ± 100 ohms.
Puise output: to trigger stroboscope, etc., in synchronism with input signal; to measure FM.

Photocell Irput: phone jack on panel provides bias for Type 1P41 Phototube: allows direct connection of 506 A Tachoneter Head. Power: 115 or 230 voles $\pm 10 \%$. 50 to $1000 \mathrm{cps}, 110$ wans.
Dimenslons: cabinet: $71 / 2^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high, $141 / 2^{\prime \prime}$ deep ($191 \times$ $292 \times 368 \mathrm{~mm}$): rack mount: $19^{\prime \prime}$ wide, 7 " high, $13^{\prime \prime}$ deep $(483 \times 178 \times 330 \mathrm{~mm})$.
Weight; net $17 \mathrm{lbs}(8 \mathrm{~kg})$, shipping $19 \mathrm{lbs}(9 \mathrm{~kg})$ (cabinet): net $20 \mathrm{lbs}(9 \mathrm{~kg}$), shipping 30 lbs (14 kg) (rack mount)
Accessory furnished: 10501A Cable.
Accessories available: 506A Optical Tachemerer, s150; 508A, B.C.D Tachometer Generators, \$125 each; 500B-95A Accessory Meter for remote indication (operates from recorder jack), 555.
Price: hp 500B, $\$ 335$ (cabinet); hp s00BR. 5335 (rack mount)

Specifications, 500 C

Model s00C Frequency Meter is identical in construction and circuitry to 500 B but is calibrated in rpm for greater convenience in tachometry applications.
Speed range: 180 rpm (15 rpm with multiplying transducer) to $6,000,000 \mathrm{rpm} .9$ ranges.
Accessory available: 500C.95A Accessory Meter, Sss
Price: hp 500 C , $\$ 345$ (cabinet) ; hp 500 CR . $\$ 345$ (rack mount)

506A Optical Tachometer

Model 506A is a light source and photocell for use as a transducer with instruments such as hp 921 Series Electronic Counters. hp 500B Electronic Frequency Meter and hp 500C Electronic Tachometer Indicator.

Specifications, 506A

Range for direct reading: 1 to 5000 rps with 521 Series; 3 to 5000 rps with 500 B ; 180 to $300,000 \mathrm{rpm}$ with 500 C ; lower speed may be measured by using a multisegment refector.
Output vollage: at least 1 v rms, 300 to $100,000 \mathrm{rpm}$ (into 1 megohm or more impedance) with reflecting and absorbing sur. faces $3 / 4$ " square.
Light source: 21 candlepower, 6 volts automotive bulb.
Phototube: Type 1P41.
Phototube bias: +70 to +90 v de (supplied by $500 \mathrm{~B}, \mathrm{C}, 521$).
Power: 115 or 230 volts $\pm 10 \%$. 50 to 1000 cps, 25 watis.
Dimensions: $22^{\prime \prime}$ high, $11^{\prime \prime}$ wide maximum ($559 \times 279 \mathrm{~mm}$).
Welght: net 10 lbs (skg) ; shipping $17 \mathrm{lbs}(8 \mathrm{~kg}$).
Accessories available: $56 \mathrm{~A} \cdot 16 \mathrm{~B}$ Adapter Cable (connects 506 A to 522B Counter). 540 .
Price: hp 506A, s195.

508 Tachometer Generators

Models 508A,B,C,D Tachometer Generators are rotational speed transducers for use with electronic counters or frequency meters in making fast, accurate rpm measurements, 15 to $40,000 \mathrm{rpm}$. They are specifically designed to operate with hp electronic counters and frequency meters.

Specifications, 508 Series

Shaft speed range: 508 A , is to $40,000 \mathrm{rpm}$; $508 \mathrm{~B}, 30$ to 30,000 rpm; 508C, 40 to $25,000 \mathrm{rpm}$; $508 \mathrm{D}, 50$ to 5000 rpm .
Output frequency: $508 \mathrm{~A}, 60$ cycles $/ \mathrm{rev} . ; 508 \mathrm{~B}, 100$ cycles/rev. 508C, 120 cycles/rev; 508D. 360 cycles/rev.
Drive shaft: $1 / 1^{\prime \prime}$ diameter, projects $19 / 32^{\prime \prime}$.
Running torque: approx. 0.15 in-ox; 0.5 in-0z at 1500 rpm .
Peak starting torque: approximarely 4 in-0z.
Dimenslons: $2-7 / 16^{\prime \prime}$ high, $31 / 2^{\prime \prime}$ wide, $33 / 4^{\prime \prime}$ deep ($62 \times 89 \times 95$ mm).
Weight: net $2 \mathrm{lbs}(1 \mathrm{~kg})$; shipping $3 \mathrm{lbs}(1 \mathrm{~kg})$.
Price: hp 508A, B,C,D, $\$ 125$ each.

NUCLEAR INSTRUMENTATION

Nuclear instruments detect. count and display the occurrence of nuclear events -alpha and beta particles, neutrons and gamma or x-rays. These different radiarions occur in the transition of elements from one state to another.
single-channel pulse height analysis. The precision calibration of the 5201 L window enables counting of pulses with peaks falling within a window having a width calibrated between zero and 0.5 volt. The ability to quickly establish a

Figure 1. Hewlett-Packard nuclear instrumentation system,

The basic nuclear instrumentation sys. tem Hewlett-Packard uses for counting nuclear events is shown in Figure 1. It is a complete system for detecting, counting and displaying gamma radiation, All systems for counting nuclear events contain these basic instruments, although they may be packaged differently. The Hewlett-Packard packaging format, utilizing modular cabinets, provides the most versatile usage over a wide range of applications. In addition, this format is compatible with instruments in exist. ing gamma spectrometers.

By packaging the Nal(TI) crystal and photomultiplier tube (the integral assembly) and the preamplifier into a derector assembly, by packaging the high-voltage supply separately, and by combining the single-channel analyzer and the scaler-timer in one module, Hew-lett-Packard offers instruments grouped so they may be used to count almost every type of ouclear event if the proper detector is used.

There are many types of detectors available, each with an application (type of event counted) for which it is best suited. For example, crystals of sodium iodide activated with thallium, $\mathrm{NaI}(\mathrm{TI})$, are particularly suited for detection of gamma radiation. Hewlett-Packard uses this crystal in the integral assemblies in the Models 10601A, 10602A, 10611A and 10612A Scintillation Detectors.

Spectrometer systems

By operating the 52012 Single-Channel Analyzer in the "narrow windowΔE mode," the system may be used for
very narrow and calibrated window. with high repeatability, has wide application. With the narrow window the user is able to easily analyze the photo peak(s) of radiation samples.

Figure 2, Scanning gamma spectrometer.
If the window of the single-chanal analyzer in the 5201L is swept across the full energy spectrum of a sample, providing total energy spectrum information, the system is a scanning gamma spectrometer. Figure 2 shows how the chart drive of a Moseley 680 Srrip-Chart Recorder can be used to simultaneously sweep the single-channel analyzer over the energy spectrum and drive the x axis of a Moseley 7590B Nuclear Plotting System, providing both strip-chart and point plot recordings of the energy spectrum of a sample. The Moseley 680 spectrum recording of $\mathrm{C}_{s}{ }^{18+}$ is shown in Figure 3.

Substituting the Modei 52021 Scaler-

Timer for the Model 52011 Single-Channel Analyzer in the spectrometer of Figure 1 provides a simple integral discriminator in place of the single-channe! analyzer. This spectrometer is capable of providing gross gamma count information. Connecting a number of scalertimers with a Dymec DY. 2514A Digital Scanner to an hp 562A Digital Recorder and/or recording devices such as the DY. 2595 Tape Punch Coupler, DY. 2526 Card Punch Coupler or the DY. 2546 Magnetic Tape Coupler, provides a means for collecting data from many nuclear sources and in numerous forms. Such a system could be used to monitor the radiation of different types of particles from one source, in one case, or, in another, the strength of gamma radia. rion at various distances from a source or at different positions about a source.

Applications for gamma spectrometry

The gamma spectrometer configurarions described above indicate the farranging capability of Hewlett-Packard's nuclear instruments in all areas where gamma (or other nuclear event) spectromerry is of valuc.

Activation analysis and natural radiation detection are important tools of scientists in both pure and applied scientific research. Radioisotopes are used in medical research, diagnosis and therapy. Industry uses neutron activation analysis in testing for impurity concentrations in products of all forms. For example, the semiconductor industry uses the ability of gamma spectromerers to detect minute quantities of impurities in semiconductor crystals. Law enforcement agencies use spectrometers to detect small quantities of gunpowder, poisons, etc., that have been activated by neutron bombardment, as a tool in crime detection.

Figure 3. Strip-chart recording of C, ${ }^{\text {13 }}$ spectra.

5201L, 5202L, 5203L SCALER-TIMERS

Three models offer broad flexibility

Advantages:

Solid state
Preset time and count
Output for hp printers
6 -digit in-line readout
200 nsec pulse resolution
The Hewlett-Packard scaler-timers allow wide flexibility in muclear counting applications. The hp 5201 L Scaler-Timer has a single-channel pulse height analyzer that allows manual or automatic spectrometry. In manual operation, the two integral discriminators have a digital (voltage) readout, and the discriminator levels are stable to 0.01% per ${ }^{\circ} \mathrm{C}$ full scale. In automatic operation, the lower level discriminator may be scanned by application of an external voltage.

The hp 5201L and 5202L differ in that the pulse height analyzer in the 5201 L is replaced by a simple integral disctiminator in the 5202 L . Both may be used to totalize counts, count for a preset time or register time for a preset number of counts to occur. They have selectable preset count times in integral multiples of 0.1 second or 0.1 minute and utilize the power line frequency as the time base. Sampling mode may be either automatic or manual. The hp 5203L Scaler may be either manually operated or externally gated. It may be slaved to a 5201 L or a 5202 L .

All of the scalers and the scaler-timers have the same input counting capability with multiple pulse resolution of 200 nsec. A binary-coded-decimal (BCD) output for driving hp digital recorders or other devices is provided in these instruments as a standard feature.

The compact modular cabinet design gives high portability, maximum utilization of space, plus the ability to convert quickly from bench to 19" rack mounting configuration (all conversion hardware included at no extra cost).

Specificaklons, 5201L

General

Resolving time: 200 nsec , Preset Time; $10 \mu \mathrm{sec}$, Preset Count.
Maximum count rate: 5×10^{6} counts $/ \mathrm{sec}$, Preset Time; 1×10^{5} counts $/ \mathrm{sec}$, Preset Count.
Count tlme: $0.1 \mathrm{sec} \times$ preset number or 0.1 min , x preset number.
Sample time: 200 msec + Gate Time, or Hold.
Sampling mode: "Auto" position allows repeat of function at maximum sampling rate; "Manual" position requires that Start button be depressed to start sample.
Accuracy: ± 1 count \pm time base accuracy.
Tlme base: power line frequency (typically $\pm 0.1 \%$ or better).
Gate in: $+5 v$ to $+20 v$ to count; 0 v for non-count.
Gate out: $+20 v$ when gate open, $0 v$ when gate closed.
Reset: (a) front-panel pushbutton or (b) automatic internal reset.
Preset range: N number selectable: 0 to 99,999 .

Power: 115 or 230 volts $\pm 10 \%, 60 \mathrm{cps}, 35$ watts (50 cps available upon request).
+20 v power supply: output through rear TNC.
Pulse height analyzer
Modes of operation: * (a) integral ($E_{\text {rin }}$ only), (b) differential with narcow window ($E_{m i n}$ and $\triangle E$), (c) differential with wide window ($E_{m 1 n}$ and $E_{\text {max }}$).
Discriminator range: $0,05 \mathrm{v}$ to $5 \mathrm{v}\left(E_{\mathrm{m} / \mathrm{n}}\right.$ and $E_{\text {max }}$ adjustable).
External $\mathrm{E}_{\text {rati }}$ control: 4.95 v to scan complete range.
$\triangle E$ range: 0 to 0.5 v , adjustable.
Polarity: positive or negative (selectable).
Inpyt impedance: 500 ohms, ac-coupled, 1 msec input time constant.
Input pulse length range: 15 to 80 nsec for 200 nsec multiple pulse resolution.
Maximum count rate: $5 \times 10^{\text {f }}$ counts $/ \mathrm{sec}$.
Input diseriminator stablity: $<0.01 \% /{ }^{\circ} \mathrm{C}$ full scale (over specified temperature range and line voltage variations).
Integral linearity: $\pm 0.25 \%$ of full scale, with pulse rise time-constant of $0.25 \mu \mathrm{sec}$ and decay time-constant of $1 \mu \mathrm{sec}$.

Functions

Preset time: displays number of counts ducing preset time interval of 0.1 sec or 0.1 min . x preset number N .
Preset count: displays number of 0.1 second or 0.1 minute intervals required for N counts to occur.
Manuas: discriminator pulses are totalized (a) pushbutton Start-Stop or (b) +5 to +20 volts applied at rear connector.
Check: counts internal source approx, 80 kc and reads preset N .

Specifications, 5202L
(Same as 52011 except as follows)
Discriminator
Discriminator range: 0.1 to S volts (max. peak pulse amplitude).
Polarty: positive or negative (selectable).
Input impedance: 1000 ohms, accoupled, I msec input time constant.
Input pulse rise time: 7 to 660 nsec .
Input pulse length range: 15 to 80 nsec for 200 nsec multiple pulse resolution.
Maximum count rate: 5×10^{8} counts $/ \mathrm{sec}$.
Specifications, 5203L

General

Resolving time: 200 nsec .
Maximum count rate: 5×10^{6} counts $/ \mathrm{sec}$.
Gate $\operatorname{In} ;+5 \mathrm{v}$ to +20 v to count, 0 v for non-count.
Gate out: +20 v when gate is open, 0 v when gate is closed.

[^7]Reset: (a) front-panel pushbution or (b) automatic internal reset.
Power. 115 or 230 rolts $\pm 10 \%, 60 \mathrm{cps}, 35$ watts (50 cps available upon request)
+20 v power supply: output at rear TNC.
Discriminators: same as 5202 L

Functions

Check: totalize internal source of approx. 80 kc when Start button is depressed.

Specifications, all models

Printer output

Output: 4.line BCD (1-2.4-8) code, "1" state negative standard; (I-2.4.8 code, "1" state positive or 1-2.2.4 code. " 1 " state positive optional)
Impedance: 100 K ohms each line.
Positlue state level: +18 volts.
Negative state level: -8 volts.
Reference levels: $+17.6 \mathrm{v}, 350$ ohm source impedance -6.9 v, 1000 -ohm source impedance.

Print command: +28 volt step, from 2700 ohms in series with 1000 pf .
Hold-off requirements: externally applied +5 v $10-6 \mathrm{v}$.
Printer output connector: 50-pin Amphenol 57-30500, rear.
Physical
Registration: 6 long-life rectangulas digiral display tubes with display storage.
Dimensions: $163 / 4^{\prime \prime}$ wide $\times 3.3 / 16^{\prime \prime}$ high $\times 111 / 4^{\prime \prime}$ deep ($426 \times 97 \times 286 \mathrm{~mm}$).
Welght: net $15 \mathrm{lbs}(6,8 \mathrm{~kg})$; shipping $24 \mathrm{Jbs}(11 \mathrm{~kg})$.
Accessorles furnished ($5201 \mathrm{~L}, 5202 \mathrm{~L}$ and 5203L): two 10503A Cables. 4^{\prime} long, BNC connectors; circuit board extenders; detachable power cord.
Prices: on request.

Miscellaneous

Remote operation for (5201L and 5202L): as an optional extra. N can be preser remotely by appropriate ciosure at rear-panel connector.

$10601 \mathrm{~A}, 10602 \mathrm{~A}, 10611 \mathrm{~A}, 10612 \mathrm{~A}$ SCINTILLATION DETECTORS; 5551A POWER SUPPLY

For gamma ray detection

Hewlett-Packard scintillation detectors utilize selected sodium iodide (thallium activated) crystals and photomultiplier tubes as integral assemblies. These assemblies combine efficient scintillators for gamma ray detection with photomultipliers having the best light collection characteristics. A solid-state amplifier, with sufficient gain and pulse shaping chacacteristics to disectly drive a single channel analyzer without a linear amplifier, completes the scintillation detector.

The hp scintillation detectors are available in both solid and well configurations, with 2×2 and $3 \times 3 \mathrm{NaI}$ (TI) crystals. A magnetic shield is urilized in all detectors, which maximizes protection from external ac and dc mag. netic fields. The entise assembly is sealed against moisture in a stainless steel case. A TNC connector is used for the low-voltage power supply input, a high-voltage BNC connector is used for the high-voltage power supply input, and a BNC connector for the signal output. A focus control and three-position selector switch (for selecting: long time constant; short time constant, X1 gain; short time constant, X10 gain) are accessible on the detector assembly for optimizing measurements.

Speciflcations, 10601A
Crystal: $2^{\prime \prime} \times 2^{\prime \prime}$ solid.
Resolutlon: < 8% FWHM*.
Stability: $<2 \%_{c}^{* *}$.
Overall dimensions: $23 / 4^{\prime \prime}$ diameter $\times\left[13 / 4^{\prime \prime}\right.$ long (70×298 mm), nominal.
Weight: set $4 \mathrm{lbs}(1,8 \mathrm{~kg})$.
Specifications, 10602A
Crystal: $3^{\prime \prime} \times 3^{\prime \prime}$ solid.

Resolutlon: $<8 \%$ FWHM ${ }^{*}$.
Stabillty: <1\%**.
Overall dimensions: $31 / 2^{\prime \prime}$ diameter $\times 131 / 4^{\prime \prime}$ long (82×336 mm), nominal.
Weight: net $71 / 2 \mathrm{lbs}(3,4 \mathrm{~kg})$.

Specifications, 10611A

Crystal: $2^{\prime \prime} \times 2^{\prime \prime}$ well.
Resolutlon: < 10% FWHM*.
Stability: $<2 \% \%^{* *}$.
Overall dimenslons: $23 / 4^{\prime \prime}$ diameter $\times 121 / 4^{\prime \prime}$ long (70×311 mm), nominal.

Well dimenslons: $1^{\prime \prime}$ diameter $\times 1-35 / 64^{\prime \prime}$ deep $(25 \times 39$ mm).
Weight: net $4 \mathrm{lbs}(1,8 \mathrm{~kg})$.
Specifications, 10612A
Crystal: $3^{\prime \prime} \times 3^{\prime \prime}$ weil.
Resolution: $<10 \%$ FWHM*.
Stability: $<1 \% \%^{* *}$.
Overall dimenslons: $31 / 2^{\prime \prime}$ diameter $\times 131 / 4^{\prime \prime}$ long (82×336 mm), nominal.
Well dimensions: $21 / 32^{\prime \prime}$ diameter $\times 2^{\prime \prime}$ deep ($17 \times 51 \mathrm{~mm}$). Weight: net $71 / 2 \mathrm{lbs}(3,4 \mathrm{~kg})$.

Specifications, all models
 (integral assembly)

Crystal: NaI (TI)
*FWHM = full width at ha!f maximum of $C_{1}{ }^{19 r}$ photo-peak,

* *pulse height change at $25^{\circ} \mathrm{C}$ over 24 hours or $1000 \mathrm{cpm} / 10,000$ cprn count race shift at $25^{\circ} \mathrm{C}$, using a C^{195} source, 0.662 mev.

Typical output: LTC (Long Time Constant): $0.3 \mathrm{v} / \mathrm{mev}$; X1 gain (Short Time Constant): $1.8 \mathrm{v} / \mathrm{mev}$; X10 gain (Short Time Constant) : $18 \mathrm{v} /$ mer.
Magnetic field effects: ac: $< \pm 0.1 \%$ change in resolution (4 gauss rms, 60 cps neld; dc: $< \pm 0.5 \%$ change in pulse height " ± 2 gauss field).
Amplifier
High-voltage Input: 1500 rolts (max.), 7.35 megohms (approx.).
Low-voltage input: +20 volts at 21 ma (+24 volts maximum input).
Output pulse shape: LTC: $0.25 \mu \mathrm{sec}$ rise time-constant, $12.5 \mu \mathrm{sec}$ fall time-constant, $30 \mu \mathrm{sec}$ fall time, peak to 0 volts; X1: $0.25 \mu \mathrm{sec}$ rise time-constant, $1 \mu \mathrm{sec}$ fall time-constant, $3 \mu \mathrm{sec}$ fall time, peak to 0 volts; X10: $0.25 \mu \mathrm{sec}$ rise time-constant, $1 \mu \mathrm{sec}$ fall time-constant, $3 \mu \mathrm{sec}$ fall time, peak to 0 volts.
Maximum output: LTC: +4 rolts; $\mathrm{X} 1:+10$ volts; X 10 : +10 volts.
Output impedance: 50 ohms nominal (with $100 \mu f$ in series)
Focus control: to adjust photomultiplier tube for maximum gain and resolution.
Gain switch: 3-position slide switch: LTC, X1 and X10.
Accessory furnished: one 10517A Cable 4' long, TNC connectors.
Price: on request.

5551A Power Supply

The Hewlett-Packard Model 5551A High.Voltage Power Supply is designed to supply the high voltage (170 v to 1615 v) requirements of the photomultiplier in a gamma scintillation detector assembly. High stability and broad voltage range (voltage ranges are overlapped with an ac-
curate vernier adjustment) make this instrument valuable in numerous other experimental and laboratory applications.

The 5551A utilizes standard components operating well within their design range. This, coupled with conservative overall design means long, trouble-free operation, plus ease of maintenance. As a safety feature, microswitches break the ac power when either the top or bottom cover is removed, and pushbuttons are provided to remove residual charges from the instrument's capacitors.

This instrument is packaged in Hewlett-Packard's modular cabinet, allowing quick and easy conversion from beach to $19^{\prime \prime}$ rack configuration.

Specifications, 5551A

Electrical

Output voltage: 170 v to 1615 v .
Polarity: positive or negative (selectable).
Output current: 1 ma max.
Output impedance: 20 K .
Line regulation: $\pm 0.01 \%$ for $\pm 10 \%$ line change.
Ripple: $<0.005 \%$ ms.
Power: 115 or 230 volts $\pm 10 \%, 60 \mathrm{cps}, 30$ watts (50 eps version available upon request).
Physica!
Weight: net $20 \mathrm{lbs}(9,1 \mathrm{~kg}$).
Dimensions: $163 / 4^{\prime \prime}$ wide, $3.3 / 16^{\prime \prime}$ high, $111 / 4^{\prime \prime}$ deep ($426 \times 97 \times 286 \mathrm{~mm}$).
Connectors: 2 high-voltage BNC (female) connectors on rear.
Accessorles furnished: one 10516A high-voltage cable, 4^{\prime} long, high-voltage BNC connectors; detachable power cable.
Price: on request.

DIGITAL RECORDERS AND ACCESSORIES

It erequently is expedient or necessary to obtain permanent records of rapidly changing phenomena measured by electronic counters, digital voltmeters or other digital devices. Often it is desirable to relate this permanent data record to time or translate it to analog form. Hewlett-Packard digital recorders and accessories are designed for this purpose.

Digital recorders

Hewlett-Packard digital recorders are electro-mechanical devices which provide printed records of digital information from electronic counters, digital voltmeters, scaler-timers, etc.

The form of the digital information determines which hp recorder is to be used. The hp Model 560A accepts "single-line" or staircase information for each digit position from the data source, i.e., each position (0 through 9, blank and -) of each print whee) is determined by a specific voltage level on a single-line connection to that column (digit position). The hp Model 5618 requires a " 10 -line" input for each column of information from the data source; thus, each print wheel position is controlied by a separate line.

562A Digital Recorder

The hp Model 562A requires a paral. lel-entry, 4 -line binaty-coded-decimal input (or $10-$ line; see options on page 76). The 562A (utilizing plugin column board input circuitry) is extremely fexible, allowing operation from two unsynchronized sources. Interchangeability of column boards allows complere mixing of the available codes among the columns. A unique storage feature in the 362 A permits the driving source to transter its data into the 562 A binaries in 2 milliseconds, thas freeing the source to initiate a new measurement. The hp Model 565 A is the basic printer mechanism used in the preceding hp digital recorders. Data entry is parallel, and one line is needed for each position on each print wheel. Control cables and driving electronics must be fabricared for each 965 A application.

Operator convenience

These digital recorders provide a printed record on $3^{\prime \prime}$ fan-folded paper tape (or standard $3^{" c}$ coll). A convenient storage drawer is provided to collect the printed paper tape. The recorder paper is quickly and easily changed.

All hp recorders feature a manual paper advance control to aid observation of the recorder's last printont. A space selector also is provided which
permirs single- or double-spaced records. A three-position "Record" switch selects standby, momentary or print-on-command operation.

Hold-off signals from the digital recorders (except 565A) prevent external equipment from changing input data while print wheels are being positioned. A print command pulse is required from the data source to initiate a recorder print cycle.

Accuracy

Recorder accuracy is the same as the accuracy of the digital source providing the input. Parallel data entry and lowinertia moving parts allow printing rates as high as s lines per second with 11 digit information per line (12 on special order). The high printing rate makes the recorders ideal for recording rapidly changing data such as frequency. period, time, How rate, pressure, voltage, current or other data available in a digital form. The recorders are designed for continuous, unattended operation. Printing mechanisms are simple, durable and trouble.free, with little maintenance required.

An analog output, suitable for driving either porentiometer or galvanometer recorders is standard on the 360A and optional on the 562A (for those 562A's with either $1-2 \cdot 2-4$ or $1-2 \cdot 4.8 \mathrm{BCD}$ col. umn boards installed). See pages 76 and 77 for details.

Digital clocks

For providing time-of-day reference to recorded data, all hp recorders (except the 569 A) may have a digital clock installed. The hp Model 570A Digital Clock is used with the 560A Digital Re. corder, the 571B Digital Clock with the 561B Digital Recorder, and a special clock, the HO3-571B, is used with the 362A Digital Recorder. These hp clocks indicate time to 23 hours, 99 minutes and 59 seconds in an in-line display. All time digits are available for printing. The location and number of time digits on the printed record are determined by connector arrangements on the rear of the digital recorders.

Accessories

Herrletr-Packard digital recorders are supplied with an inked ribbon, packet of printer paper, inpur cable (omitted in 565A), and a maintenance service kit. Extra inked ribbons (hp Stock No. 9283. 0002, $\$ 3.50$ each) and a 24 -packet carton of paper (Stock No. 560A-131A, $\$ 20$) are available from Hewlett-Packard. A wide range of optional and com.
plementary equipment for the various recorders is listed on pages 76 and 77.

For the 560 A , digital recorder adapter kits for field installation in hp counters are available as follows:

$h \mathrm{hp}$ Counter model	Kit number	Price
521 Series	$521 \mathrm{D}-95 \mathrm{~A}$	$\$ 45$
522 B	$522 \mathrm{~B}-95 \mathrm{~A}$	$\$ 45$
523 B	$523 \mathrm{~B}-95 \mathrm{~A}$	$\$ 45$
$523 \mathrm{C}, \mathrm{D}$	$523 \mathrm{D}-95 \mathrm{~A}$	$\$ 45$
524 B	$524 \mathrm{~B}-95 \mathrm{C}$	$\$ 200$
$524 \mathrm{C}, \mathrm{D}$	$5240-95 \mathrm{~A}$	$\$ 60$

Also available for the 560 A :
hp 405A.95C Adapter, connects 560A to 405 CR Digital Voitmeter, $\$ 85$.
hp $560 \mathrm{~A} \cdot 16 \mathrm{H}$ Cable, $\$ 80$.
hp 560A.16P Extension Cable, 6', 20 . conducror, $\$ 63$.
hp 560A.16Q Extension, 6', 26.conductor. $\$ 8$ s.
Additional comparators increase print. out of s60A from 6 columns to 11 columns. Comparators plug into sockers in the 560A. hp 560A-s8 Plug in Compara. tor Unit, $\$ 25$ each.

561B accessories available include: Digital recorder kits for field installa. tion: hp 521D-95B, 54s, for 521D and s21E Counters; hp $523 \mathrm{C}-95 \mathrm{~B}$, \$65, for 523C; hp s24C.95B, \$165, for 524 C ; hp 561B-16A Cable, s100; hp 561B-95D Connector, $\$ 8.50$.

Figure 1. Typical Dymec DY-2010 System incorporating hp 562A Digltal Recorder.

562A DIGITAL RECORDER

Flexible data input with information storage

Hewlett-Packard Model 562A Digital Recorder is a solid. state electro-mechanical device providing a pinted record of digital data from any of a number of sources. Parallel data entry and low-inertia moving parts allow printing rates as high as 5 lines per second, each line containing up to 11 digits. Twelve-digit capacity is available on special order.
Data enter the unir through rear-mounted 50 -pin connectors. Internal plug-in connectors route the information to any desired sequence of print wheels. A separate storage binary unit is associated with each individual print wheel for 4 -line BCD input codes.
Model 562A may be equipped to translate 1-2-2-4 BCD, other 4 -line codes or 10 -line code by substituting plug. in column boards.

Specifications

Accuracy: identical to input device used.
Printing rate: 5 lines per second, maximum.
Column capacity: to 11 columns (12 avaliable on special order).
Print wheels: 12 positions, numerals 0 through 9 , a minus sign and a blank; other symbols available.

Input requirements

Data input: parallel entry, BCD (1.2-2.4, 1-2.4.8 or 1.2-4-2) or 10 -line, see Options; " 1 " state must differ from " 0 " stake by at least 4 volts but by no more than 75 volts.
Reference voltages: BCD codes require both " 0 " and " 1 " state references; 10 -Ine codes require reference valtage for " 0 " state; reference vollages may not exteed ± 150 ソ to chassis; input impedance is approximarely 270 K ohms.
Hold-otf signals: both polarities are available simultaneously for BCD codes and are diode-coupled; 10 ma maximum load +15 v open sircuit from 1 K source, -5 v open circuit from 2.2 K source (160 msec hold-off is provided for 10 -line codes).
Print command: + or - pulse, 6 to 20 volts amplitude, $1 \mathrm{v} / \mu \mathrm{sec}$ minimun rise time, $20 \mu 5 e c$ or greater in width, ac coupled.
Analog output (optlonal): (from 1.2.2.4 or 1.2-4.8 boards) accuracy is $\pm 0.5 \%$ of full scale or better; 100 mv for potentiometer recorder: 50 K ohm minimum load resistance; 1 ma into 1.5 K ohm maximum for galvanometer recorder.
Transfer time: 2 msec for BCD codes.
Paper required: hp folded paper tape (15,000 prints per packet with single spacing) hp Stock No. 560 A .131 A or standard 3 -irch roll tape.
Line spacing: single or double.
Power: 115 or $230 v \pm 10 \%$, 50 to 60 cps , approx. 130 w . (4 prints $/ \mathrm{sec}$ at 50 (ps; 50 cps model with 5 prinis $/ \mathrm{sec}$ available.)

Dimenslons: cabinet: 203/4" wide, $121 / 2^{\prime \prime}$ high, $181 / 2^{\prime \prime}$ " deep (527 x $318 \times 470 \mathrm{~mm}$) : rack mount: $19^{\prime \prime}$ wide, $10-15 / 32^{\prime \prime}$ high, $161 / 2^{\prime \prime}$ deep ($483 \times 266 \times 419 \mathrm{~mm}$).
Weight: net 35 lbs (16 kg), shipping 80 lbs (36 kg) (cabinet) ; net 30 lbs (13 kg), shipping 63 lbs (31 kg) (rack mount)
Price: hp 562A, $\$ 1085$ (cabinet); hp 562AR, $\$ 1060$ (rack mount); basic unit with 11 -column capacity; colunin boards, input connector assemblies and cables required for operation are not included, see Options.
Options, Group 1
(Completely equips 562A for operation with Hewlett-Packard and Dymec instrumenis.)
Option 11. For 6.column operation from 1-2.2.4 " 1 " state positive code, add $\$ \$ 40$
Option 12. For 9-column operation from 1-2-2-4 "1" state posiuive code, add 5769.
Option 13. For 11-column operation from 1-2-2-4 "1" state positive code. add $\$ 993$.
Option 14. For operation with 5245L; 10-column operation; prinus measurement unit and indicates decimal position-e.g., 16942.496 kc would be printed as 3 kc 16942496: the first digit shows how far to move the decimal to the left: add 586 s .
Options, Group 2, column boards
Option 21. 1-2-2.4 "1" state positive, $\$ 75$ each.
Option 22. 1-2-4-8 "1" state positive, $\$ 75$ each.
Option 23. 1-2.4-8 "1" state negative. $\$ 75$ each.
Option 24. 1-2-2-4 " 1 " state negative, $\$ 75$ each.
Option 25. 10-line " 1 " state positive (no storage), 550 each.
Option 26. 10.line ' 1 "' state negative (no storage), 550 each.
Option 27. 1-2-4-2 "1" state negative. 575 each.
NOTE: Input connecror assemblies and inpur cables (Group 3 options) are required for use with Group 2 column boards.
Options, Group 3, connector assemblies
Option 30. BCD input connector assembly for up to 9 columns, $\$ 55$.
Option 31 BCD input connector assembly for up to 6 columns, $\$ 43$.
Option 32. Input cable, for up to 9 BCD columns or three 10 . line columns, 535 .
Option 33. 10-line input connector assembly for up to 3 columns, \$35.
NOTE: More than one input connecror assembly and input cable are required for: 1. more than nine BCD columns; 2. operation from rwo sources; 3 , more than three 10 -line columns.
Options, Group 4
Option 41. Analog output (from 1-2-2-4 boards), $\$ 175$.
Option 42. Analog output (from 1.2.4.8 boards), $\$ 175$.

560A, 561B, 565A DIGITAL RECORDERS

Print 11-digit information at rates of 5 lines per second

Similar in operation to the hp 562A, the 560 A Digital Recorder accepts parallel enery staircase inputs, and the hp 5618 Digital Recorder accepts 10 line decimal code inputs. The hp 565A Printer Mechanism is mechanically similar to the mechanism employed in the 560A, 561B and 562A Recorders. It is designed specifically for use in custom systems.

Specifications, 560A, 561B

Column capaclty: 11 columas (12 available on special order).
Print rate: 5 lines per second.
Print wheels: 12 positions having aumerals 0 through 9, a minus sign, and a blank; other symbols are available on special order.
input: 560 A : parallel entry staircase voltages, staircase descends from +135 v at count of zero to +55 vat count of nine; 961 B ; decimal code, 10 lines, plus 2 lines for blank and minus sign for each column.
Driving sources: 560A: hp electronic counters which have staircase output recorder kits installed, 405A-95C Adapter, or other sources providing appropriate input voltages; 561B: hp electronic counters (521D, $521 \mathrm{E}, 523 \mathrm{C}, 524 \mathrm{C}$; pages 64.68) with recorder kits and 405CR Digital Volumeter (page 153), stepping swirches, relays, beam switching tubes, contacr closures, or - 15 to - 100 voits connected to appropriate input wire.
Print command signal: ± 15 volts peak, $10 \mu \mathrm{sec}$ or greater in width, $1 \mathrm{v} / \mu \mathrm{sec}$ minimun slope; manual control with momentary. contact switch.
Line spacing: zero, single or double; in "zero" does not print, paper does not advance.
Paper required: $560 \mathrm{~A}-131 \mathrm{~A}$ folded paper tape or standard $3^{\prime \prime}$ roll; tape sufficient for 15,000 single-spaced lines.
Power: 115 or 230 volts $\pm 10 \%$ approximately 75 watts, (250 watts for 560 A) 50 to 60 cps (4 prints $/ \mathrm{sec}$ maximern at 50 cps) : 50 cps model available which retains s print/sec capability.
Dimensions: cabinet: $203 / 4^{\prime \prime}$ wide, $121 / 2^{\prime \prime}$ high, $181 / 2^{\prime \prime}$ deep (527 x $324 \times 470 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $10.1 \mathrm{~s} / 32^{\prime \prime}$ high, $16^{\prime 1} 2^{\prime \prime}$ deep ($483 \times 266 \times 419 \mathrm{~mm}$).
Welght: $560 \mathrm{~A}:$ net $60 \mathrm{lbs}(28,5 \mathrm{~kg}$), shipping $82 \mathrm{lbs}(38 \mathrm{~kg})$ (cabinet) ; net $55 \mathrm{lbs}(25 \mathrm{~kg}$), shipping $79 \mathrm{Jbs}(35.5 \mathrm{~kg}$) (rack mount). 561B: net 42 lbs (19 kg), shipping $61 \mathrm{lbs}(28$ kg) (cabinet); net $30 \mathrm{lbs}(18 \mathrm{~kg})$, shipping $62 \mathrm{lbs}(28 \mathrm{~kg})$ (rack mount).
Accessorles available: $560 \mathrm{~A} \cdot 131 \mathrm{~A}$ folded paper tape, 24 -packet carton, 520; 960A: 9283.0602 inked ribbon, $\$ 3.50,560 A \cdot 16 \mathrm{P}$

Extension Cable, $6 \mathrm{fr} .(1830 \mathrm{~mm}$) long, 20 conductor, $\$ 65$, $560 \mathrm{~A}-16 \mathrm{Q}$ Extension Cable, 6 ft . (1830 mm) long, 26 conductor, \$85: 561B: $561 \mathrm{~B}-16 \mathrm{~A}$ Cable, $\$ 100,561 \mathrm{~B}-95 \mathrm{D}$ Connectors (mates with J101 or J102), 58.50 .
Accessories furnshed: 560A and 561B: 9281-0018 folded paper tape, one packet, 9283.0002 inked ribbon, 560A-95N Digital Recorder Service Kit; 560A: 560A-16H Cable, accommodates 8 columns, connects to Option 01 .equipped hp vacuum tube counters and 405CR Digital Voltmeter; 561B; 561B-16A Cable, actommodates 6 columns, connects to Option 02 .equipped vacuum tube counters.
Price: hp $560 \mathrm{~A}, \$ 1400$ (cabinet); hp 560 AR , $\$ 1385$ (rack mount); additional 560A. 58 Plug-in Comparators (one required per columa: 6 furnished), \$125 each; hp 561B, $\$ 1150$ (cab. inet) ; hp 561BR, 51135 (rack mount)

Specifications, 565A

Number of columns: 11 (12 available on special order).
Data entry: parallel entry to all columns; one line required for each position of each print wheel to be operared.
Maximum print rate; 5 lines per second.
Standard characters: 0 through 9, minus sign and blank (others available on special order) ; dimensions: approximately $0.085^{\prime \prime}$ wide. 0.1 " high.
Column spacing: $1 / 4^{\prime \prime}$.
Line spacing: $5 / 32^{\prime \prime}$ single space; $5 / 16^{\prime \prime}$ double space.
Power
Motor: $115 \mathrm{v} \pm 10 \%, 60 \mathrm{w}, 501060 \mathrm{cps}$ (50 cps provides 4 prints/sec max.).
Clutch solenoid: 240 to $260 \mathrm{vdc}, 75 \mathrm{ma}$ (operates for approx. is msec to start printing cycle); coil designed for vacuum tube switching nerworks; lower voltage coils are available on special order for transistor switching.
Pawl magnets: 60 to 70 vdc , is ma (operate when needed during printing cycle); coils designed for vacuum tube switching networks: luwer voltage coils are available on special order for transistor swirching.
Dimensions: $93 / 4^{\prime \prime} \mathrm{high}, 83 / 8^{\prime \prime}$ wide, $93 / 4^{\prime \prime}$ deep $(248 \times 213 \times 248$ mm).
Welght: net $15 \mathrm{Jbs}(7 \mathrm{~kg}$) : shipping $20 \mathrm{lbs}(9 \mathrm{~kg}$).
Price: hp 565A (with high-voltage clutch and pawl coils for vacuum tube drive), $\$ 750$; for $115 \mathrm{v}, 50 \mathrm{cps}$ operation with 5 prints $/ \mathrm{sec}$ capability sperify H27-569A, \$763: for 230 v , 50 ©ps operation with 5 prints/sec capability specify H24.565A, $\$ 765$.

DY-2514A DIGITAL SCANNER

Transmit digital data from multiple sources to one recording device

The Dsmer DY-2514A Digiral Scanner provides for sequential scanning of multiple digita! measuring instruments, such as electrodic counters, nuclear scalers, digital voltmeters or digital clocks, and couples their outputs into a single set of recording equipment such as a digiral recorder, card or tape punch or magnetic tape recorder.

The basic DY-2514A accepts up to 8 digits of BCD data from up to 3 sources. Easily added modifications expand this to 6 sources and 10 digits per source. By cascading scanners, data from up to 36 sources can be transferred to a single recorder. In all cases, the output cecorder is provided source iden. tification. It sequentially interrogates all selected data sources and transmits these data directly to the recorder by means of contact closures, necessitating only that source outputs be compatible with recorder input.

Sources to be recorded are selected by depressing pushbutions on the 2514A front panel. (All sources not selected can be operated as independent instruments.) Upon com.
mand, the 2514 A scans all selected sources in sequence. This command can be provided by manual depression of a frontpanel pushbutton, by remote contace closure or at timed in. rervals determined by a clock. Three operating modes permit: (1) manual advance one channel at a time through all selected channels each time a front-panel pushbutton is depressed; (2) single scan of all selected channels; (3) conrinuous scanning of all selecred channels.

Sources can be scanned in either of two modes: In Sequential mode, the 2514A interrogates selected sources in sequence, passing from one source to the next when data from the previous source have been recorded. Hold-off sig. nals to all selected sourees are removed simultaneously at end of scan. In Random mode, the DY-2514A interrogates all selected sources sequentially. but passes to the next source if data are not available for recording. Hold-off signals are removed individually as data are recorded. If, in a given scan, a source does not have data a a ailable, it will be passed over and recorded on a subsequent scan when data become available.

Specifications

Source-scanner Interface

Number of sources: 3 standard; options expand up to 6.
Diglt copacity: 8 digits/source. standard: options expand to 10.
Accuracy: identical to data source.
Data Input: parallel-entry 4 -linc $B C D$, any code; binary swing must meet recorder requirements; source-scanner record command and hold-off signals, compatible with all hp solid-state counters.
Scanner-recorder interface
Digital recorders compatible with DY-2514A: hp M45sG2AR Digital Recorder: DY-2526-M19 Card Punch Set; DY-2545-M01 Tape Punch Set; DY-2546-M15 Magneric Tape Recorder Ser.
Source Identlfication: positive-true 4-2'-2-1 standard; 8-4. 2.1 positive true and negative-true optionally a vailable; " 1 " state (-0.5 to 0) " at 2.5 ma; " 0 " state (-10 to -8) v. 1 K impedance, 1 ma max.
Scanner-recorder record command and hold-off signals: compatible with hp digital recorders and Dymer output couplers.

Transter rate: to 20 sources $/ \mathrm{sec}$ (depends on recorder).
External 5 olect signals: Resec/Start/Stop Commands: dc shife from (-12 to -6) v to (-0.5 to +15) v; input in. pedance 4.3 K ; min. duration $20 \mu \mathrm{sec}$; accepts equivalent command from ac-coupled source; requirements for external source select signals same as above.
Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to $60 \mathrm{cps}, 30 \mathrm{w}$ approx.
Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panel ($426 \times 133 \times 416 \mathrm{~mm}$); adapter kit furnished for $19^{\prime \prime}$ rack mounting.
Weight: net $30 \mathrm{lbs}(13,6 \mathrm{~kg}$); shipping $45 \mathrm{lbs}(20.4 \mathrm{~kg})$.
Options: 3 sources, 10 digits/source, add $\$ 45$ to basic instrument price; 4 sources, 8 digits/source, add $\$ 129 ; 4$ sources, 10 digits, add $\$ 185$; 5 sources, 8 digits, add $\$ 170$; 5 sources, 10 digits, add $\$ 245 ; 6$ sources, 8 digits. add 8215 ; 6 sources, 10 digits, add 8305 ; negative-true 4-2-2-1 source identifcation, positive- or negative-true $8-4-2-1$ identifica. tion, add $\$ 25$ for each; external source selection, add $\$ 200$; mode to permit cascading 6 slave scanners, add $\$ 300$: manual data entry of 18 digits, add $\$ 350$.
Price: DY-2514A for 3 sources, 8 digits/source, $\$ 2500$.

580A, 581A D/A CONVERTERS; 570A, 571 B DIGITAL CLOCKS

High resolution with conventional strip-chart recorders; clocks for timing data

The hp 580 Series Digital-to-Analog Converters make possible automatic, high-precision analog records from electronic counters, digital voltmeters and other devices providing the proper 4 -line BCD output code. These converters operate directly with all Hewletr-Packard and Dymec solid-state counters, and ourput kits are available for hp vacuum rube counters. Since the digital-to-analog converters tolerate a wide range of input voltages, they are suitable for use with other tube and solid-state devices, including nuclear scalers.

Output signals for strip-chart or x-y recorders of both the porentiometer and gaivanometer types are available, and controls for recorder calibration and zero adjustment are provided. A so-pin connector accepts f.line data from a maximum of nine decade counting units. This information is transferred to storage binary units upon receipt ofa command pulse from the counting source. The stored data ate then ranslated and weighted to provide the proper analog output voltage or current.

Specifications, 580A, 581A

Accuracy: 0.5% of full scale or better.
Potentlometer output: 100 mv full scale; minimum load resistance

20 K ; calibrate control ; dual banana plugs front and rear.
Galvanometer output: 1 ma fuil scaie into 1500 ohms; $28 r 0$ and calibrate controls: phone jack front and rear.
Driving source: parallel entry 4 -line $\mathrm{BCD}, 1-2-2-4$ (9 digis maximum): " 1 " sate +4 to +75 volts with reference to " 0 " state.
Reference voltages: reference voltages required for both the " 0 " and " 1 " state; reference voltages not to exceed $\pm 150 v$ to chassis.
Command pulse: positive or negative pulse, 20μ sec ot greater in width, 6 to 20 volts amplitude.
Transter time: 1 millisecond.
Power: 11 s or 230 volus $\pm 10 \%$, 50 ro $1000 \mathrm{cps}, 1$ watts.
Dimensions: $980 \mathrm{~A}: 163 / 4^{\prime \prime}$ wide, $3.15 / 32^{\prime \prime}$ high, $1 \mathrm{I} 1 / 4^{\prime \prime}$ deep (425 x $9 \times 285 \mathrm{~mm})$; $58 \mathrm{IA}: 7 \cdot 25 / 32^{\prime \prime}$ wide, $6 \cdot 3 / 32^{\prime \prime}$ bigh, $8^{\prime \prime}$ deep ($198 \times 155 \times 203 \mathrm{~mm}$).
Welght: 580A: net $13 \mathrm{lbs}(6 \mathrm{~kg})$, shipping $20 \mathrm{lbs}(9 \mathrm{~kg})$; 581 A : aet $8 \mathrm{lbs}(3,5 \mathrm{~kg}$), shipping $13 \mathrm{lbs}(6 \mathrm{~kg})$.
Accessory furnished: 562A-16C Cable, 6^{\prime} (1830 mm) long with an Amphenol 57.30500 connector at each end.
Price: hp 580A, $\$ 525$; hp 581A, 8525.

The 570A, 571B Digital Clocks, which mount in the left side of the hp 560A and 561B Digital Recorders (page 77), provide time-of day information and control the rates at which measurements are made. They indicate time in hours, minutes and seconds (24-hour basis) in an in-line display. All time digies displayed are available for printing. Clocks may be ordered installed in the respective recorders. In addition, a modifed 571B (H03.571B) is available for use with the hp 562A Digital Recorder (page 76).

Specifications, 570A, 571 B
Indleation: 6 ia-line digital display tubes indicate to 23 hours, 59 min, 59 sec ; 12 -hour formar available on special order.
Time base: front-panel time-base switch selects: (1) 60 cps (50 cps available on special order), (2) counter (1 pps from hp counters), (3) external (5 v positive pulses, $200 \mu \mathrm{sec}$ loag, 1 pps; input impedance approximately 500 ohms).

Time print format

570A: program plug at rear of 560 A serves all 11 columns of digital recorder; time format determined by wiring of program plug; normally wired to print six time digits on left side of 560 A paper: blank also can be programmed in any single columa by program plug.
571 B: six time digits may be recorded in right-hand six columns of 561 B with clock connected to J 101 on 561 B ; with clock cable connected to J102. time digits will be recorded in the five left-had columns of the 561 B , without the tens-of-hours digit.
Weight; net 20 lbs (9 kg) ; shipping $28 \mathrm{lbs}(13 \mathrm{~kg}$).
Power ac and dc supplied by digital recorder, approximately 15 wats (normally wired to operate on 60 cps).
Price: hp 570A, \$1050; hp 571B, \$1000.
Because of the many option arrangements for the 570 A and 5718 , please concact your nearest hp sales office for assistance when ordering or tequesting quotations.

Data acquisition systems

DATA ACQUISITION SYSTEMS

Instrumentation systems can be categorized into two basic classes: digital and analog. An analog system usually consists of a set of signal conditioning, measuring and recording equipment for each transducer. In a digital instrumentation system, the measuring and recording equipment arc sequentially used by the reansducers; and for a given type of measurement, signal conditioning equipment may be shared. Depending on measurement specifications, scanning. equipment also may be shared.

Analog data systems are used when wide bandwidth is required or when less accuracy can be tolerated. Digital data acquisition systems are used when the physical process being monitored is slowly varying (narrow bandwidth) and high accuracy and low per-channel cose are required.

Digital systems range in complexity from economical single-channel de voltage measuring and recording systems to sophisticated, totally automatic multiple. channel systems that measure all electrical parameters, compare against preset limits and even perform limited computation. Systems are available with a wide range of speed and accuracy. Applications span individual data logging to high-speed automatic checkout of space vehicle, missile and airctaft systems.

Since measurement requirements can change rapidly, data acquisition systems must have the fexibility needed for frequent change to cope with new problems. Data systems produced by HewlettPackard's Dymec Division employ standard system-oriented instruments, permitting system modification or expansion to be made simply by changing instruments of adding appropriate new instruments.

Where and why data systems are used

Data acquisition systems, in general, are applied in many of the same situations as digital voltmeters. Systems are generally used to measure anaiog signals originating in two different ways:

1) Direct measurement of electrical quantities. This includes $d c$ and ac voltages. frequency and resistance, and applies rypically to areas of electronic component and subassembly testing, en. vironmental and QA testing.
2) Signal inputs from transducers which are in common use, i.e., strain gage, pressure transducer and thermocouples, and including tachometry and flow metering.

Digital systems are generally found wherever multiple installations of transducers or electrical pickups are employed and are trequently referred to as data
logging systems, whether measured data is prepared for computer entry or logged for manual study.

There are several reasons why data systems are widely used; however, most can be reduced to economic consideca. tions. Data acquisition systems, such as the Dymec DY-2010 and DY. 2013 Series, perform functions which otherwise would be done manually. When the total number of measurements to be made is small and records simple and routine, operating personnel can manually perform the measurement and recording. As the number of measurements increases and arithmetic operations for converting the measurements to usable form become necessary, manual techniques are subject to human error and are time-consuming. Automated data sysrems used in conjuncrion with or employing digital computers are the solution for these situations.

They accomplish the measuring, scaling and recording operations in a fraction of the time. Systems are available ranging in capability from simple data gachering to the most complex tasks, at prices from as low as $\$ 3000$ to several hundred thousand dollars.

Dymec dara acquisition systems in. clude four basic series of standard pack. ages engineered for a variety of input and output situations. Specific advantages sesulting from standard system design include:

Quick delivery: Since systems are com. posed of standard instruments and cables, standard production techniques can be employed.

Better specifications: In that each sys. tem is a thoroughly engineered and com. pletely tested package, Dymec can guar. antee top system specifications. Systems are completely specified on a data sheet. Moreover, ease of system expansion is assured with a wide variety of options.

Greater reliability - through the use of production techniques as applied to standard Hewlett-Packard and Dymec instruments. These techniques have obvious advantages over the "one shot" system that has to be custom engineered and produced.

Low price: Systems are composed ex. clusively of standard, systems-oriented instruments. Special system engineering prices are not required.

The DY. 2010 Series of systems (pages 82-85) measure dc voltage and frequency with both visual readout and permanent output recorded on printed strip. punched card or tape or magnetic rape. Optional equipment permits measurement of ac voltage, resistance, plus dc measurements
of t上 10 mv full scale. Programmable high-low limit comparison can be accom. plished on any of the above parameters. System operation can be controlled by either pin-board or punched tape programming. In this series the measuring element (analog-to-digital converter) is the foated and guarded DY-2401C Integrating Digital Voltmeter, which permits accurate low-level measurement even in the presence of severe common mode noise and noise superimposed on the measured signal.

The DY-2013 Series (pages 86, 87), which incorporate the hp 3440 A Digital Voltmeter as the measuring device. provide multiple-point scanning capability with output on printed strip, typewritren record or punched card or tape-at an economical price.

The DY- 2015 Series incorporate the hp 3460A Digital Voltmeter (pages 146. 147) as the analog to digital converter The systems employ the input scanners and output devices common to the DY2010 Series, and feature high system speed and new clean-signal accuracy.

DY-2017 Series systems parallel the DY. 2010 Series (pages 84, 85) in regard to input and oueput devices and system auxiliary equipment. All systems incor. porate the DY-2417A Data Linearizer (page 83) to permit direct readout in familiar measurement unics. These systems apply primarily to areas of transducer measurement where, for example. display of thermocouple outputs in degrees rather than millivolt is needed. The systems eliminate the need for conversion tables and computer conversion.

Dymec data plotting systems

Data plothing instrumentation systems produce graphical plots from digital information stored in punched cards, perforared tape or magnetic tape as produced by a Dymec DY-2010, 2013 or similar data acquisition system. The DY. 2031 (page 88) acceprs data directly from magnetic or perforated tape, or operates from a punched card reader. Data also can be entered manually on a keyboard.

When digital data is more meaningful in graphical form a paper tape editor. DY-2734B (page 88) is available to provide direct $x \cdot y$ graphical outpur of data recorded on punched tape. With any of the DY- 2010 and 2013 Systems providing a recorded output on punched paper tape, you can measure data-then the data can be played back immediately on a DY-2031 Plotting System. No com. puter or other equipment or intermediate steps are required.

DY-2010 SERIES DATA ACQUISITION SYSTEMS

Digital data system elements

Elements making up a Dymec digital system may include all or part of those listed and illustrated. Essential functional operations within a digital system include handling analog signals, making the measurement, handling digital data and internal programming and control. The function of each of the system modules illustrated is:

Transducer: Translates physical parameters to electrical sig. nals acceptable by the data acquisition system. Typical paramerers include temperature, pressure, acceleration, weight, displacement and velocity. Elecrrical quanticies such as voltage, frequency or resistance also may be measured directly.
Scanner: Accepts multiple analog inputs and sequentially connects the signals to one measuring instrument. Inputs may be in the form of millivolt or high level ac or dc voltage, resistance, frequency. period, time interval or events occurring in a specified time interval.
Signal conditioner: Translates the analog signal to a form acceptable by the analog.to-digital converter. An example is amplification of low-level signals from thermocouples or strain gage bridges.
Analog-to-digital converter (or digidizer): Converts the analog signal to its equivalent digital form. Output is a visual display and voltage outputs for further processing or recording on a digital recorder.
Auxiliary equipment, programmer: Performs subordinare system programming and digital data processing functions within a system. Typical functions include hi.lo limit comparison, linearizing. manual data entry, time.
Coupler: Receives digital information from the analog-to-digital converter and translates it to the proper form-for entry into a digital recorder.
Digital recorder: Records digital information on punched cards, perforated paper tape, magnetic tape, continuous printed paper strips or typewritten pages.

Input scanners

DY-2901A scans 25 3-wire inputs, programs all system functions. May be expanded to 100 channels with DY- 2902 Slave Units, Easy system set-up with individual quick-release input connectors and pushbutton selection of channels to be scanned. System functions and measurement delay are programmed with pinboard inside scanner. Max. scanning rate 15 channels $/ \mathrm{sec}$. ond. Visual channel indication and BCD output. Panel height 7" (177 mm). Prices: Dymec DY-2901A Master, \$2175; Dymec DY-2902 Slaves (25 channels each), $\$ 1975$.

DY-2911 Guarded Crossbar Scanner for rejection of common mode noise. User may select 600 1-wire, 3002 -wire, 2003 wire or 1006 -wire inputs. Lower and upper scan limits select. able, random access to any channel. Channel being monitored indicated by in-line digital display tubes and BCD output. Roller-mounted switch withdraws from rear for easy cabling. Max. scanning rate 25 channels/second. Panel height 14" (355 mm). Price: Dymec DY-2911, \$1650.

Signal conditioners

DY-2410B AC/Ohms Converter (pages 148,149) used in conjunction with DY-2401C Digital Volmeter for measurement of as voltages and resistances. Converter features foated, guarded inpur similar to voltmeter. Combined common mode rejection is 110 db at 60 cps . DY-2410B is fully programmable for systems use. Converter function and range information included in voltmeter display and recording outputs. Panel height $7^{\prime \prime}$ (177 mm). Price: Dymec DY-24108, $\$ 2250$.

DY-2411A Guarded Data Amplifier (pages 148, 149). This foated and guarded amplifer provides the DY-2401C Integrating Digital Voltmeter with a full-scale input of $\pm 10 \mathrm{mv}$, overranging to $\pm 30 \mathrm{mv}$. Ideal for measurements of thermocouples, strain gage bridges and other low level signal sources. Inpur impedance is greater than 10^{11} ohms. Combined common mode rejection with DY.2401C is 134 db . DY. 2411 A features very low noise and zero drift, short settling time for fast dara sampling. Panel height $31 / 2^{\prime \prime}(88 \mathrm{~mm})$. Price: Dymec DY-2411A, $\$ 1150$.

Analog-to-digital converters

DY-2401C Integrating Digital Voltmeter (pages 148, 149). Features floated and guarded input and is average-reading, leading to an effective common mode noise rejection better than 140 db at all frequencies, including dc . Noise problems with grounded low-level transducers are eliminated with the DY-2401C. All operating functions may be controlled manually or by external contact closures to ground, enabling it to be used on the bench or in systems applications. BCD outputs provided for digital recording or comparison. Panel height 7" (177 mm). Price: Dymec DY•240IC. $\$ 3950$.

Auxiliary equipment, programmers

DY-2539A Digital Comparator compares BCD information against single or dual preset limits, providing (respectively) $\mathrm{Hi} / \mathrm{Go} / \mathrm{Lo}$ lamp indications and electrical ourputs. Comparisons take less than 3 msec . Instrument can be operated either manually or by external signals. The DY-2539A provides for 12 different comparison conditions, handles any combination of limit relative magnitudes and signs likely to be encountered in practical measurement situations. All solid state, features data storage for fast system operation. Panel height $31 / 2^{\prime \prime}$ (88 mm). Price: Dymec DY-2539A, $\$ 1850$ for 4 -digit comparison, $\$ 1950$ for 5 -digit, $\$ 2050$ for 6 -digit.
DY. 2417A Data Linearizer. Arithmetic conversion of electrical values produced by transducers into familiar units such as rpm , psi, degrees C or P, is usually accomplished after the measurement either with a computer or manually using charts or tables. The DY-2417A permits direct display and recording of transducer outputs in engineering units at the time of meas. urement. Corrections provided are scale factoring, transducer zero offset and linearization. Readout is annunciated at the DY. 2401C Digita! Voltmeter. Digital techniques are employed, and the capability introduces no significant error into the system accuracy. Panel height $51 / 4^{\prime \prime}(133 \mathrm{~mm})$. Price: Dymec DY. 2417A, $\$ 2750$.

DY-2509A Digital Clack is a precision time source used to supply time information to the data syscem and initiate measurements at predetermined intervals. Time-of-day is available visually and as an electrical output for connection to a recorder. Ir supplies time information on demand, withour ambiguiries due to time changes, permitting associated system to operate independently of clock. The instrument is all solid state, features pushbutton selection of timing outputs at intervals from 1 sec ond to 1 hour. Time reference derived internally from line frequency or from external 1 pps signal. Provision for 100 kc external reference optional. Easy manual or remore time set. $+-2^{\prime} \cdot 2 \cdot 1$ BCD output. Panel height $51 / 4^{\prime \prime}(133 \mathrm{~mm})$. Price: Dymec DY-2509A. \$2685.

DY-2911C Programmer is designed to operate with the DY-2911 Guarded Crossbar Scanner. It offers a convenient means of storing and selecting, by channel groups, the system measurement function (e.g., ac/dc volkage, resistance, frequency) and input range, and also enables channels so be skipped individually. Programming is accomplished by inserting diode pins into incernal program boards which are easily acces. sible from the front panel while the instrument is installed in position. DY-2911C is all solid state. Panel height $51 / 4^{\prime \prime}$ (133 $\mathrm{mm})$. Price: Dymec DY-2911C, $\$ 3280$.

DY-2560A Programmer reads instructions punched on paper tape and governs all aspects of system operation. Programmer selects measurement functions, scanner input channel on a specific channel or group-channel basis and controls data recording. Aiso programs system comparator and governs dara recording in accordance with comparison cesult. Optional rapesearch capability allows programmer to search for different instructions on tape in eesponse to comparison results and/or time information supplied by a digital clock. Operation of the entire system can be changed simply by changing programming tape. DY-2560A is all solid state. Panel height $S^{1 / 4 "}$ " 133 mm). Price: Dymec DY-2650A, $\$ 3425$ to $\$ \$ 25$. depending on options. Ptice includes tape reader.

Output couplers, recorders

DY-2545 Coupler operates witl Teletype BRPE 12 Tape Punch (Tally 420 Punch optional). Recording speed 110 char. acters/second. Data storage feature permits new reading during recording cycle, for faster data sampling. Standard model accepts 10 input characters, produces IBM 8 -level code. Up to 16 input characters and other 5 to 8 -level output codes optional, Simultaneous printer operation optional. All solid state. Panel height $83 / \mathbf{4}^{\prime \prime}(222 \mathrm{~mm})$. Price (including punch) : Dymec DY. 2545, $\$ 3900$.

Tape punch and spooler available in rack-mount form (DY. 2545C). Panel slides up for access. Assembly rolls forn'ard for easy tape loading and unloading. Panel height $121 / 4^{\prime \prime}$ (310 nm). Add $\$ 800$ to price of DY- 2545 set.

DY- 2526 Coupler operates with IBM 526 Summary Punch. Standard model accepts 10 input characters, stores data to allow new reading during recording cycle for faster system operation. Format fexibility through IBM patchboard. Op. tional simultaneous operation of printer. All solid stare. Panel height (incl. junction panel) $101 / 2^{\prime \prime}(266 \mathrm{~mm}$). Price: Dymec DY-2526, \$3100.

DY. 2546 Coupler operates with a Cook Model 150 Incremental Magneric Tape Recorder. Records in standard 1BM 7.channel NRZ code, with tape format completely fexible as controlled by a diode pinboard. Accepts up to 12 BCD characters and records at 150 characters/second, asynchronous. Data storage permits fast data sampling. Simultaneous printer operation optional. All solid state. Panel height $51 / 4^{\prime \prime}(133 \mathrm{~mm})$ for coupler, $241 / 2^{\prime \prime}(621 \mathrm{~mm})$ for rape deck. Price: Dymec DY-2546. $\$ 8465$.

DY-2010 SERIES DATA ACQUISITION SYSTEMS

Rapid, accurate measurement of analog signals

Dymec DY-2010 Data Acquisition Systems measure analog data decived from a number of sources and display and record this information in digital form. The serics comprises a basically different systems numbered from 2010A through 2010J. All incorporate the noise-rejecting DY-2401C Inregrating Digital Voltmeter (pages 148, 149) as the analog-to-digital converter, bur differ in input and output capabilities.

To present the recorded information in its most useful form, systems are available with a choice of ourput recording devices. For direct reading by the operator, a print-out on paper tape is provided. If the data is to be entered into a computer, it may be recorded on punched paper tape, punched cards or digital magnetic rape. as appropriate.
Typical inputs are de and ac voltage, frequencies and resistances. Dymec data systems may be employed to measure any combination of physical parameters that are convertible by transducers to these analog forms.
Digital techniques obtain high measurement resolution and accuracy, high sampling speeds and the ability to transfer the measured information easily to a wide variety of digital recorders. In particular, the DY-2401C integrating Digital Voltmeter used as the digitizer in the DY-2010 Series features a floated and guarded inpur, permiting accurate low-level measurements in the presence of severe common mode noise-a common problem with grounded transducers.
All DY. 2010 Systems are capable of scanning and logging data from a number of sources either continuously or upon demand. A digital clock can be added for data logging at predetermined time intervals. By virtue of a large choice of standard optional features, the DY-2010 Systems can be tailored to suit a wide range of measurement applications, and it is likely that your requirements can be met by a fully specifed standard system. Meeting your needs with standard equipmeat means modest cost, fast delivery, high reliability derived from standard design and construction, and proved performance. If a standard DY. 2010 System does not exactly match your requirements, Dymec will supply modified versions, or advise you about other systems in the Dymec line that may be closer to your needs. (See pages 86, 87 for information on the modestly priced DY-2013 Series.)

Systems provide direct readouf

Special requirements for direct readout of transducers in familiar units (such as psi, rpm. ${ }^{\circ} \mathrm{C}$) is accomplished by systems including the DY-2417. Data Linearizer. This series of systems, numbered the DY-2017, is specifically designed for application to transducer measurement, and provides the maximum in readout convenience.

Instruments common to all DY-2017 Systems are the DY-2417A Data Linearizer, the guarded crossbar scanner and DY-240iC Integrating Digital Voltmeter. Systems offer a choice of outputs as follows: DY-2017A. printed paper tape: DY-2017B, perforated paper tape; DY-2017C. punched card; DY-2017D, digital magnetic rape.
Standard programming and signal conditioning equipment is available; measurement accuracy is unaffected.

Specifications, DY-2010 Series

DC voltage measurements

Nolse rejection

Overall effective common mode rejection (ratio of common mode signal to its effect on digital display): 2010A, B. E, $\mathrm{H}: 105 \mathrm{db}$ at all frequencies, 100 db at $\mathrm{dc} ; 2010 \mathrm{C}, \mathrm{D}, \mathrm{F}, \mathrm{J}$: 130 db at all frequencies, iacluding dc (0.1 sec sample period); amplifer option reduces <mr by less than 6 db .
Common mode rejection (ratio between common mode signal and voltage it superimposes on soucce): 2010A, B, E, H: 85 db at $60 \mathrm{cps}, 100 \mathrm{db}$ at $\mathrm{dc}: 2010 \mathrm{C}, \mathrm{D}, \mathrm{F}, \mathrm{J}: 110 \mathrm{db}$ at $60 \mathrm{cps}, 130 \mathrm{db}$ at dc, with 1000 ohms between ground and low side of input (resistances up to 10 K).
Superimposed noise rejection (ratio of superimposed noise to its effect on digital display) : on 0.1 sec sample period, noise

rejection is infinite to $60,120,400 \mathrm{cps}$ gad all common noise frequencies.
Voltage ranges: five ranges from 0.1 v to 1000 v full scale; polarity sensed and indicated automatically; amplifier (option) provides 10 mv full scale; auto-ranging available.
Overranging; to 300% of full scale except on 1000 v tange; input atrenuator switched to 1000 v range if overload exceeds 310%; reset automatically as scaaner advances to gext channel, or manually.
Inout kmpedance: 10 megohms on 10. 100.1000 v ranges; 1 megohm on 1 v range; 100 K on 0.1 v range: 10^{9} ohms with amplifier option for inputs up to 10 v .
Resolution: three fixed sample periods of $0.01,0.1$ and 1 sec .
Internal calibration source: $=1 \mathrm{v}$ internal standard provided for self-calibration; voltage reference is derived from temperaNre stabilized zener diode; drift less than $\pm 0.01 \%$ in 6 months; internal standard may be compared against external standard; factory adjusted to better than $\pm 0.005 \%$ absolute accuracy at $25^{\circ} \mathrm{C}$: temperature effect $\pm 0.002 \% /{ }^{\circ} \mathrm{C}$.
Overall dc accuracy for DY-2010 Systems: (specifications hold for $\pm 10 \%$ line voltage change)
Basic accuracy: $\pm 0.01 \%$ reading $\pm 0.005 \%$ full scale ± 1 digit (0 to full scale) : $\pm 0.02 \%$ reading $\pm 0.005 \%$ full scale ± 1 digit (at 2X full scale); $\pm 0.025 \%$ reading $\pm 0.005 \%$ full scale ± 1 digit (at 3 X full scale); applies to all ranges, 6 months' operation: assumes daily calibration against internal standard, operation at $25^{\circ} \mathrm{C}$.
Temperature coefficlent: $\pm 0.001 \%$ reading per ${ }^{\circ} \mathrm{C}, 10$ to $40^{\circ} \mathrm{C}$; $\pm 0.0015 \%$ reading pee ${ }^{\circ} \mathrm{C}, 40$ to $50^{\circ} \mathrm{C}$; when calibrated against internal standard at operating temperature: $\pm 0.002 \%$ reading $\pm 0.0005 \%$ full scale per ${ }^{\circ} \mathrm{C}(0.1 \mathrm{v}$ range $) ; \pm 0.002 \%$ reading $\pm 0.0002 \%$ full scale per ${ }^{\circ} \mathrm{C}$ ($1 / 10 / 100 / 1000 \mathrm{v}$ ranges) ; when not calibrated at operating cemperature, over range 10 to $50^{\circ} \mathrm{C}$.

Frequency measurements

Range: 5 cps to 300 kc .

DY.2010J

Sample period: 0.01, 0.1 or 1 sec .
Accuracy: ± 1 digit \pm time base accuracy; srability of internal time base, $\pm 2 / 10^{\circ}$ per week over $\pm 5^{\circ} \mathrm{C}$ temperatute range: temperature effect. $\pm 100 / 10^{\circ}$ over 10 to $50^{\circ} \mathrm{C}$ range; rear BNC and swich provided for external frequency standard: level. 2 v peak to peak into 1.2 K .
Input sensitivity: 0.1 to 100 v rms (front-panel adjustment), or $1 \vee$ negative puises, $2 \mu \mathrm{sec}$ min. width.
Impedance: 1 megohm shunted by 250 pf.

AC voltage measurements (optional)

Nolse relection

Common mode rejection: 2010A, B, E, H: 85 db at 60 cps ; 2010C, D, F, J: 110 do al 60 cps , with 1000 ohms between ground point of source and low side of system input.
Voitage ranges: same as for dc voltage measurements (optional amplifier not applicable) ; max, input. 750 v peak.
Input impedance: I megohm on all ranges, shunted by 400 pf .
Accuracy (steady state): 50 cps to $10 \mathrm{kc}, \pm 0.05 \%$ full scale $\pm 0.2 \%$ of reading; 10 kc to $30 \mathrm{kc} . \pm 0.06 \%$ full scale $\pm 0.4 \%$ of reading; 30 to $100 \mathrm{kc},=0.1 \%$ full scale $\pm 0.6 \%$ of reading.
Transient error: normal response (frequencies below 400 cps) ourput settles to $\pm 0.25 \%$ of final value in 550 msec : fast response (frequencies above 400 cps) : output settles to $\pm 0.25 \%$ of final value in 250 nsec .

Resistance measurements (optional)

Noise rejection: resistance measurement circuit is guarded; ac common mode pickup on resistance measurements can be reduced to negligible level by connecting guard to grounded end of test resistance.
Ranges: six ranges from 0.1 K to 10 megohms full scale.
Overranging: to 300% of full scate on all ranges except 10 megohm: input atrenuator switched automatically to 10 megohm range if overload exceeds 310%; reset automatically as scanner advances to next chanael, or manually.
Resistence measurement accuracy

Range	Measurbment ourrent	Aecuracy $(\%$ of (ull scala)
0.1 K	$\frac{10 \mathrm{ma}}{0.5 \%}$	
1 K	1 mz	0.05%
10 K	$100 \mu \mathrm{a}$	0.04%
100 K	$10 \mu \mathrm{z}$	0.04%
1 M	$1 \mu \mathrm{a}$	0.15%
10 M	$1 \mu \mathrm{a}$	0.5%

General

Display: 6 -digit in-line readout; polarity, decimal point, neasurement units, and overload; storage holds dispiay between readings, switch permits display during count if desired; scanner provides in-line digital indication of channel being monitored

Major specifications, DY-2010 Series

Dymeo model	2010A	20108	2010E	2010	2010 C	2010 D	20809	2010 J
Number of input channels	stepping-switch scanner; up to 253 -wire inputs; to 100 channels with slave scanners				guarded crossbar scanner; up to 2003 -wire inpuls; also accepts 1006 -wire, 2003 -wire and 6001 -wire inputs			
Programming	self-programming capability permits measurement of mixed types and levels of signals				punched tape or pinboard programmer may be added to handle mixed types and levelis ol signals			
Effective common mode rejection	1050				130 db			
Measurement speed (max. de volts meas.)	5 channels per sec	10 channels per sec	1 channel per sec	10 channels per sec	5 channels per sec	10 channels per sec	1 channel per sec	10 channels per sec
Output	printed paper tape	perforated paper tape	punched card (on IBM 526)	digita! magnetic tape	printed paper tape	perforaled paper tape	punched card (on IBM 526)	digital magnetic tape
Price	\$8,675	\$10,800	\$9,885	\$15,365	\$10,965	\$12,850	\$12.175	\$17,415
Options	time of day; ac voltage, resistance measurements; 10 mv full-scale sensilivity: Imil comparison; programmers; cabinet							

DY-2013 SERIES DATA ACQUISITION SYSTEMS

Measure multiple dc or ac voltages automatically, economically

Advantages:

Constant 10 -megobm input impedance
30 db rejection of 60 cps noise
Channel number and measurement data displayed on front-panel digital readour

Uses:

Digital measurements of de inputs from millivolts 80750 volts
Optional ac voltage measurements from 50 cps to 100 kc Automatically log measurement function, voltmerer reading, decimal point and chaninel number for each channel
Optional 24 -hour digital clock for periodic data logging

Dymer DY-2013 Series Data Acquisition Sysiems seqentially scan many analog sources, convert the dara co digital form and measure and record it digitally. Ten different individual systems comprise the series and are numbered 2023A through E and 2013 J through N. All DY-2013 Systems use the hp Model 34-40A Digital Voltmeter (pages 190-152) as the analog-todigiral converter. (See page 82 for descriptions of basic system functions.) All provide a visual readout and permanent fecord of the measurement and channel identification.

Advantages common to all DY- 2013 Systems, arising from use of standard, proved system elements in fully engineered systems: lowest cost, quick delivery, completely specified sys. rem performance, high reliability.

For maximum usefulness，systems in the series differ in input accommodations and output recording devices．Models DY． 2013A，B，C，D，E all use a DY－2900B Scanner with scan upper limit control to confine scanning to occupied channels．Input capacity is 252 －wire or 501 －wire channels．DY－2013J，K，L，M，N use a modified version of the DY－2901A Scanner（page 82） with input capacity of 253 －wire channels（expandable to 100 with slave scanners）．
Models DY－2013A and J record on printed paper strip．Each printed line contains the data for one system input channel， including channel identification，data，function（polarity）and indication of decimal point location．DY－2013B and K provide a perforated tape output，using an output coupler（DY－2540－ Milo）and a Friden SP－ 2 Tape Punch，to produce tape punched in standard IBM 8 －level code．Models DY－2013C and L log typewritten records，using a coupler（DY－2540－M111）and an

IBM Model B output writer．Record up to 25 channels per line．
DY－2013D and DY－2013M produce elecrrical outputs suit－ able to drive IBM 024 or 026 Card Punch equipment，incor－ porating a DY－2540－M112 Coupler to serialize the binary． coded decimal output of the digital voltmeter，and present it in a form suitable for the card punch．
DY－2013E and N terminate in a junction panel which is directly suitable for connection to an IBM 526 Card Punch（not supplied with the Dymec system）．A DY－2526A－M3 Card Punch Coupler is employed，and a DY－25268 Junction Panel mates directly to the IBM Card Punch input terminal plug．

Many standard options are available．Any DY－2013 System will record 6 digits of time information by adding a 24 hour digital clock．Options also provide input ranges of 100 mv and 1 v ，auto－ranging capability，and ac measurement capability．

Specifications

DC voltage measurements

Voltage ranges： $10,100,1000 \mathrm{v}$ full scale（max．input 750 v ）； optionally $0.1,1$ ，plus above．
Overranging： 5% all tanges except 1000 v ，indicated in dis． play window and recorded．
Range selaction：manual at froot panel standard models； optionally manual or automatic for all or the upper three voltage ranges．
Auto－range change polnts：upwards at decade，down at 9% full scale．
Input impedance： 10.2 megohms all ranges．
Resolutlon： 4 digits．
Accuracy（for $\pm 10 \%$ line voltage change）

Voltage range	$0.1{ }^{*}$		$1 \downarrow^{*}$		10． $100.1000 \sim$	
Max．error	士友 6 s；	$\pm \%$ ros	$\pm \%$ is	\pm \％rdg	\pm \％is	$\pm \% \mathrm{rdg}$
Scabllity （per day，alter 1 hour warm－up）	0.03	－－	0.03	－	0.03	－－
Linearity （raferried to straight IIne thraugh zero and fuil gcala）	0.03	－－	0.03	－－	0.01	－－
Nolse （includes scan－ nar offset．土） count ambigutty）	0.015	－	0.015	－－	0.01	－－
Tamperature＊＊ （por ${ }^{\circ} \mathrm{C}, 10$ io $50^{\circ} \mathrm{C}$ ）	0.01	－	0.01	－	0.01	－
	－－	0.05 0.002	－－	0.05 0.002	－－	0.05 0.002

－Whth optionst hp 3443 DVM Plug－in
＊Typlcal

AC voltage measurements（optional）

Ranges： $1,10,100,1000 \mathrm{v}$ full scale（max．input 300 v rms）．
Overranglng： 5% all ranges except 1000 v ．
Range selection：manual．
Frequency range： 30 cps to 100 kc ．
Input Impedance： 1 megohm shunted by 500 pf ．
Accuracy：（average－reading，calibrated for rms value of sinusoidal input） 50 cps to $50 \mathrm{kc}, \pm 0.3 \%$ of reading $\pm 0.001 \mathrm{v} \pm \mathrm{de}$ accuracy（above）； 90 kc to 100 kc ， $\pm 0.75 \%$ of reading $\pm 0.001 \mathrm{v} \pm$ de accuracy（above）．

General

Input：single－ended（signal low must be connected to ground either at source or voltmeter）all models；DY－2013A through E． 25 switched wire－pairs or 50 single wires， barrier strip：DY－20133 through N． 25 3－wire shielded pairs（Cannon XLR－3－11C－A9s supplied）．
Optlons： 10 to 1000 V auto／manual range selector，add $\$ 135$ ； 0.1 to 1000 v auro／manual range selector，add \＄450：ac voltage measurements（includes 0.1 to 1000 v selector）， add $\$ 950$ ；time recording once each scan，add $\$ 2500$ ；time recording once each channel（2013A and J only），add $\$ 1775$ ；output for simultaneous paper tape printer（2013E and N），add $\$ 375$ ；rack mount Friden tape punch（2013B and K），add $\$ 800$ ．

Accessorles：cabinets： $3060-2445$ and $5060-2446$ include power strip，switch，indicator lamp and cord，caster base， fan assembly，rear door，instrument－mounting rails and blank panels for unoccupied space， $5060-2445$ ．$\$ 565$ ： 5060 － 2446， 8735 ； $5060-2451$ same style，but includes only rails and blank panels，$\$ 300$ ； $5060-3760$ is hp 1117A Testmobile （page 304）modifed to accept instrument mounting rails， \＄200．

Dymea Model	DY－2013A	DY－20138	DY－2013C	DY－2013D	DY． 2013 E	DY．2073	DY－2018K	DY－2013L	DY－2013M	DY－2013N
Scannel input	25 2－wire or 50 l－wire，single－ended inputs；under limit scen selection					up to 253 －wire signal sources；to 100 channels with slave scan－ ners，single－ended inputs；channels individually selected				
Display	4 digits of data，range，polarity all included in ceadout and output recording									
Speed	100 chan． nels／min	60 chan－ nels／min	40 chan－ nels／min	40 chan－ nels／min	100 chan． $\mathrm{n} / \mathrm{l} / \mathrm{min}$	100 chan－ nels／min	60 chan－ nels／min	40 chan－ nels／min	40 chan－ nels／min	100 chan－ nels／min
Oulput	printed paper tade	perforated tape	typewritten sheet	$\begin{aligned} & \text { punched } \\ & \text { c8rd } \\ & \text { (IBM 024, } \\ & 18 M 026) \end{aligned}$	$\begin{gathered} \text { punched } \\ \text { card } \\ \text { (IBM 526) } \end{gathered}$	printed paper tape	perforated tape	typowritten shaet	$\begin{gathered} \text { punched } \\ \text { cgrd } \\ (18 \mathrm{M} 024, \\ 18 \mathrm{M} 026) \end{gathered}$	punched card （IBM 526）
Price	54330	\＄4985	\＄5390	\＄4190	\＄5660	\＄4960	\＄5590	\＄5995	\＄4795	\＄6225

DY-2031 SERIES DIGITAL PLOTTING SYSTEMS

X-Y displays of digital information

The Dymec DY-2031 Digital Data Plotting Systems provide easily read graphical presentations of digital data stored on punched card, paper tape or magnetic rape. A DY-2031 System is a valuable accessory to any computer installation, for both quick visual checks of the computer data and the production of accurate finished curves. Systems may also be used to plot data recorded on perforated tape or magnetic tape by a Dymec DY-2010 or DY-2013 Series Data Acquisition System. This allows measurements to be examined immediately after acquisition without waiting for computer analysis.

Six basic systems are available, Models DY-2031A through F. as outlined in the table. The punched card and tape systems can accept the complementary input simply by addition of the appropriate input device.

The heart of the DY-2031 Systems is the DY-2701A PointPlot X.Y Translator or DY-2702A for line plots. These units convert digital information to analog voltages, and include control circuits to initiate card or tape readout and actuate the functions of the $x-y$ recorder. Iastruments are all solid state and feature modular plug-in construction.

Dymmos Model	20314	2031B	20310	20310	2031 E	20315
Type of input	punched cards		perforated taps		magnetic tapa	
Plotling area:in. (mm)	$\begin{gathered} 10 \times 15 \\ (254 \times 381) \end{gathered}$	$\begin{array}{r} 30 \times 30 \\ (762 \times 762) \\ \hline \end{array}$	$\left(\begin{array}{c} 10 \times 15 \\ (254 \times 381) \end{array}\right.$	$\begin{gathered} 30 \times 30 \\ (762 \times 762) \end{gathered}$	$\begin{gathered} 10 \times 15 \\ (254 \times 381) \end{gathered}$	$\begin{gathered} 30 \times 30 \\ (762 \times 762) \end{gathered}$
Price	from approx. $\$ 7500$ for perforated tape system to $\$ 17,000$ for magnetic lape systems					
Options	lape editor (2031C thru F), line generation, programmable character printer, cabinet					

Scandard DY-2031 Systems plot data as a series of discrete points. The plottes is equipped with a character printer for plotting each point: up to six characters may be selected manually. Line plotting is optionally available, allowing the system to interpolate automatically from coordinate data supplied for successive points, and draw smooth straight lines to connect the points Lines are drawn at high speed with minimum overshoot. The line segment generator employs digital techniques which contribute no degradation to system accuracy. No adjustments for line length and circuit balancing are required.

Data acquired by Dymec DY-2010 (page 82-85), DY-2013 (page 86,87) or DY- 2017 Series Data Acquisition Systems with punched tape or magnetic tape output can be plotted directly on a DY-2031 Plotting System. To select the desired informa. tion from the data tape, a DY-2734B Tape Editor is added to the plotting system. The editor offers these plotting modes: (1) data in any two channels can be plotted against each other in x - y form; (2) data in any channel can be plotted against time-of day recorded on the tape.

The DY-203IE, F Plotting Systems include a digital mag. netic tape reader and are used to plot data from these tapes. Dymec data acquisition systems are available with computercompatible punched tape or card or digital magnetic tape output. Computer plotting sub-routines also can be furnished to allow tapes to be prepared by most IBM computers for plotting by a DY-2013E,F System. With suitably prepared tapes, a tape edicor is not required.

A serial-entry keyboard is supplied with each system for manual plotring of tabular data and for calibrating the $x-y$ plotter. The keyboard is integral with both $10^{\prime \prime} \times 15^{\prime \prime}$ and $30^{\prime \prime} \times 30^{\prime \prime}$ plotters.

Specifications

Punched card Input (DY-2031A,B): DY-2736A Card Reader reads 80 .column punched cards in any format.
Punched tape input (DY-2031C,D): code: IBM 8 -level; system can be modified to accept any code in 5 . through 8 -level at extra cost ; tape size: $1^{"}$ standard; front-panel control allows tape reader to handie $7 / 8^{\prime \prime}$ or $11 / 16^{\prime \prime}$ tape for non-standard codes.
Magnetle tape input (DY-2031E,F): recording standards: IBM compatible; tape width: $1 / 2^{\prime \prime}$; reel: 101/2" jiameter, IBM cype; code: IBM BCD; format: as prepared by Dymec data acquisition system or standard computer subroutines.
Kayboard input (all systems): manual keyboard for entering 4 digit coordinates into x and y axes; key for sign included.
Resolution: 4 digits (10,000 counts), sign accepted for both axes.
Accuracy: overall spstem accuracy better thas $\pm 0.15 \%$ f.s.; repeat ability better than $\pm 0.05 \%$ f.s.
Point plottling speed: punched cards: 50 pis./minure max.; perfor ated and magnetic tape: $120 \mathrm{pts} . /$ minute max. ($1 / 8^{\prime \prime}$ spacing)
LIne plottlng speed (option): lines between poiats are drawn at 4 inches per second; speed autorratically reduced to 2 inches per second as point is approached, minimizing overshoot.
Diglt selectlon: any 4 consecutive digits from up to 11, supplied for each coordinate.
Scale factor: continuous adjustment up to X20 for each axis (full scale may be varied from ± 9999 to 1000 counts).
Zero shift: cootinuously-adjustable offset up to two full scale lengths for each axis.
Zero suppresslon! switch-selected 2000-count intrements.
Operating condjtlons: specifications apply for ambient operating temperatures from +10 to $+50^{\circ} \mathrm{C}$; relative humidity up to 95% at $40^{\circ} \mathrm{C}$; full accuracy after 30 -second warm-up.
Power $115 \mathrm{v} \pm 10 \%, 60 \mathrm{cps}, 250 \mathrm{w}$ maximum.
Optional modiflcatlons: (prices on request) sequential character selection: D. 2 Character Printer; zutomatic character selection: DY-2733A Character Printer and programming modification to $x-y$ translator and recorder; automatic paper advance: includes automatic drive circuitry, for $10^{\prime \prime} \times 15^{\prime \prime}$ recorder (bench mount) only; card inpur: can be added to DY-2031C, D tape input systems to allow operation with punched card input: tape readerspooler to 2031C, D; rack mount recorder: $10^{\prime \prime} \times 19^{\prime \prime}$, no additional charge; line ploting, DY-2702A X.Y Translator; tape editor: DY.2734B, can be added to DY-2031C,D,E,F Systems: no change to system required.

Frequency and time standards, instruments and systems

FREQUENCY AND TIME STANDARDS

Hewlett-Packard frequency and time standard systems are used for frequency and time control or calibration at manufacturing plants, physical research lab. oratories, calibration centers, astronomical observatories, missile and satellite tracking stations and radio monitoring and transmitting stations. System applications include the following: distributed standard frequencies in factories or research facilities ("house standards"), control of standard frequency and time broadcasts, synchronization of electronic navigation systems, investigation of radio transmission phenomena, frequency synthesizer control and adjustment of singlesideband communications equipment.
Because units of time or frequency cannot be kept in a vault for reference purposes, frequency and time standards require regular comparisons to a recog nized primary standard to maintain their accuracy. Hewlett-Packard offers frequency and time standard systems which not only provide locally generated frequencies and time intervals, but also in clude means for relating these frequencies and time intervals to frequency/time standards such as the United States Frequency Standard (USFS).
While accuracy may be the primary concern, the degree to which a high accuracy system is useful is a direct function of system reliability. For this reason, increased accuracy and increased reliability are considered inseparable design objectives at Hewlett Packard. Necessary equipment characteristics provided by Hewlett-Packard systems are: (1) suitable oscillator stability, (2) high-accuracy comparison capability, (3) reliability and (4) operational simplicity.

Frequency standards

Standard broadcast stations make national standards of time and frequency available throughout the world. In the United States, the Bureau of Standards and the Navy operate standards stations whose frequencies are maintained as constant as possible with respect to the United States Frequency Standard. The new Hewlett-Packard cesium beam frequency standard provides an accuracy of 2 parts in 10^{11}, which compares favorably with USFS and is a primary frequency standard. The ease with which required system accuracy may be achieved locally depeods primarily on the stability of the oscillator used as the local standard. Improved long-term stability directly increases the permissible timc between oscillator adjustments required to main- ${ }^{-}$ tain a given absolute accuracy.

Figure 1

The cesium beam frequency standard utilizes a cesium beam tube to generate a very accurate atomic frequency which is used to stabilize the output of a high. quality quartz oscillator. Thus, this in strument combines the excellent shost. term characteristics of a quartz oscillator with the long-term stability of an atomic resonator. The block diagram in Figure 2 illustrates the technique used in genesating the spectrally pure 5 me signal.
Long-term stability of the hp quartz oscillators is conservarively rated ± 5 parts in 10^{10} per day for the hp 107 BR , and substantially better performance is experienced under normal operating conditions. Such performance results from use of (a) carefully tested, high-quality crystals, (b) precision temperature-controlled ovens, (c) inherently stable circuitry and (d) low power dissipation in the crysta) (approximately 0.2 microwatt). Design of the Hewlett-Packard oscillators includes attention to such details as shock and vibration isolation, shielding, load isolation and stability with respect to supply voltage variations.
In addition to good long. and shortterm stability, many applications also require a signal baving high spectral purity. This is essential where a high order of frequency multiplication is performed. The hp 106A,B and 107AR,8R were designed specifically for these applications. Spectra less than two cycles wide may be obtained in the \mathbf{X}-band region by multiplication of their 5 mc output. Sig. nal-to-noise ratios of 23 db or better, as measured in a 6 cps bandwidth, may be obtained at 10 gc .
Hewletr-Packard frequency and time standard systems can be used in several configurations, depending both on principal systems use (i.e., providing accusate frequency or providing accurate
time) and on the source of master time or frequency signals (i.e., hf radio traos. mission or lf/vlf radio transmissions).

Frequency comparison using vlf transmissions

The low-frequency and wlf standard frequency broadcasts reduce the slight shifts in frequency that are caused by changes in ionospheric refiections that are characteristic of hf broadcasts. Thus, low-frequency and vif broadcasts have become the preferred media for frequency standard transfer. The new hp 117A VLF Comparator is a complete comparison system which provides a record of the frequency difference between a local standard and the WWVB 60 kc frequency. Figure 1 illustrates the technique used in the 117 A . The WWVB 60 kc standard broadeast signal is first amplified and filtered. Schmitt trigger and shaping circuits derive a 60 ke pulse train from the vlf signal for triggering the phase-comparator fip-flop. The 100 ke output of the Iocal frequency standard likewise is converted to a pulse train, divided to 20 kc , multiplied to 60 ke and used to reset the lip-lop.
The width of the lip-flop output pulse is proportional to the phase difference between the received vif and derived 60 ke signals. These pulses are converted to dc. The de is applied to the recorder, with the resulting plot indicating local oscillator frequency with respect to the reference signal. The dsift rate can be resolved from the rate of change in slope of the recording. The instantaneous slope gives the frequency offset of the local staodard. The offset in parts in 10^{10} provides the correction to bring the local oscillator back to proper frequency. The fine tuning adjustment of the 106A.B, 107AR.BR Oscillators has a

Figure 2
digital indicatoc, calibrated in parts in 1010, which greatly facilitates making these corrections.

Other systems may be used, depending on the user's requirements and equip. ment availability. For example, an hp 115BR Frequency Divider and Clock, an hp 5275A Time Interval Counter and an hp recorder can be connected with a local frequency standard driving the clock. The clock output pulse is used as a start trigger to the time interval counter. The time interval measurement is stopped by the zero-axis crossing of the next-occurring cycle of the signal from the vif receiver. The counter reading is proportional to the phase difference between the local standard and the received standard and is recorded on the system recorder.

HF time comparison methods, clock synchronization

If accurate time-keeping is of para. mount importance, the high-frequency standard broadeasts can be used to synchronize a local clock to an accuracy of betrer than 1 millisecond. HF time-comparison techniques, although serving primarily for clock synchronization, also are used for USFS frequency transfer. The amount by which the Time Reference control on the clock must be adjusted to re-establish the reference condition indicates the time drift of the local oscillator. By plotting the data obtained over a period of time, drift rate and frequency error may be determined accurately, and the oscillator frequency
can be readjusted to keep it within predetermined accuracy limits. This method requires many days to achreve a high degree of precision, in contrast to vif techniques, which require less than 24 hours. Time comparisons made by highfrequency techniques over several days can yield a comparison accuracy of only a few parts in 10^{10}.

Reliability and fail-safe operation

Minimum down time in any system is important, but the accuracy attained in a frequency or time standard depends directly on continuity of operation. Furthermore, the system must be fail-safe to prevent accumulation of frequency or time errors. Hewlett-Packard frequency and time standards employ simplified, optimized designs displaying a high order of inherent dependability.
Fail-safe operation results mainly from three Hewletr-Packard equipment characteristics: (1) a standby power supply employs batteries to provide continued operation in event of line failure; (2) dividers in hp quartz oscillators and frequency divider and clock will not respond to spurious signals and (3) the divider output signals stop and remain sropped upon any interruption of driving signal or supply power.

Power supply considerations

Interruptions in primary power to a quartz oscillator can cause serious changes in output frequency. When the power interruption is of sufficient length. cooling causes strains in the crystal which can cause a frequency offser and
alter the aging rate. The new aging cycle thus incurred may last for days, or even weeks, since the strains can be relieved only with time at the proper operating temperature. Because the accuracy attained in time comparison measurements depends directly on the length of time over which the measurements are made, power interruptions to conipatison equipment, such as the frequency divider and clock, aiso are undesirable.
Hewlert-Packard standby power supplics operate over a range of ac line voltage and frequency and supply cegulated de to operate the quartz oscillator and frequency divider and clock. The batteries in the supplies assume the load immediately, when ac line power fails. Alarm systems include local indication of operating conditions and provisions for remote alarms.

Fail-safe, regenerative dividers

Hexlett.Packard frequency and time standard equipment uses regenerative frequency dividers to insure that short interruptions in porer or other irregu. larities do nor affect the time indication. These circuits, when interrupted, will not start unless reset by a pushbutton swirch. Since properly designed regen. erative dividers have no output in the absence of an input signal, the presence of outpur from a regenerative divider of the non-self-starting type is a posi. tive indication that the divider outpur has not "lost" time with respect to the driving signal.

5100A-5110A FREQUENCY SYNTHESIZER, 10511A SPECTRUM GENERATOR

Five billion discrete signals, dc to 50 mc

Advantages:
 Remote programming - 1 millisecond switching speed
 Frequency increments from 0.01 cps to 10 mc Search oscillator lends additional versatility
 High stability - all signals derived from single quartz oscillator
 Spectral purity - spurious signals 90 db down
 Solid-state, modular construction
 Uses:
 Broad range of applications, including:
 Accurate doppler measurements Microwave spectroscopy
 Narrow-band telemetry
 Stable local oscillator for transmitter/receiver Automatic testing of frequency-sensitive devices
 Harmonics available to 500 mc with hp 10511A Spectrum Generator

The Hewlett-Packard 5100A-5110A Frequency Synthe. sizer and Driver provide a stable output frequency (0.01 (ps to 50 mc) which is adjustable in steps as small as 0.01 cps . The accuracy of the selected output frequency depends on the accuracy of the driving source, since direct synthesis methods are used. The driving source can be the stable internal quartz oscillator provided or an external 1 me or $5 \mathrm{mac}_{\mathrm{c}}$ frequency standard. Spurious signals are 90 db or more below the selected output frequency. Output level at the front-panel jack is 1 v rms into 50 ohms for frequencies between 50 cps and 50 mc . Below 50 cps , a rear-panel jack provides 15 mv ms minimum into an open circuit.
The frequency synthesizer system consists of the 5100A Frequency Synthesizer and the 5110A Synthesizer Driver. The 5110 A supplies the 5100 A with 22 fixed, spectrally pure signals derived from a 1 megacycle internal quartz oscillator or an external 1 mc or 5 mc frequency standard. The 5100 A receives the fixed frequencies from the 5110A and provides independent digital synthesis of the output frequency as selected by front-panel pushbuttons or remote programming. An accurate, voltage tuned search oscillator may be selected which permits continuously variable frequency selection in the vertical column searched. The search oscillator may be substituted for any of the eight right-hand columns on the synthesizer keyboard.

Simple operation

Operation of the frequency synthesizer is straightforward. The output frequency may be selected locally by 10 columns of pushbuttons. Any frequency that can be selected by the pushbutrons can be programmed remotely. Additional versatility results from the combination of local and remote programming. Three $50-\mathrm{pin}$ connectors on the 5100 A rear panel provide the connections for remote selection. A Local. Remote switch determines control precedence when both methods are employed.

The Lock. Operate switch prevents accidental operation of the pushbuttons. A Circuit Check switch and meter on both the 5100 A and 5110 A provide quick and easy checks of internal circuits. The Frequency Standard switch selects either the 1 mc internal quartz oscillator or an external 1 mc or 5 mc frequency standard.

Spectral purity

Synthesizer design and construction make possible output signals whose spurious content is 90 db or more below the selected frequency. Signal-to-noise ratio in a 3 kc band centered on the selected signal is more than 60 db . Particular care in Model 5100A. 5110 A design results in a very clean outpur signal over the full 50 mc range.

The high order of spectral purity permits accurate doppler measurements, microwave spectroscopy, narrow-band telemetry, stable local oscillator for a transmitter and/or receiver, automatic testing of crystal filter response and many other applications, Figure 1 itlustrates a wave analyzer's response to the synthesizer signal multiplied to 8.75 gc . Spectral purity is maintained when the hp 10511A Spectrum Generator is used to generate harmonic frequencies to 500 mc .

Remote programming

The frequency synthesizer easily lends itself to remote programming. Any search oscillator position or output frequency that can be selected from the synthesizer keyboard can be programmed remotely. Solid-state switching is readily applicable; no actual relay contact closure is required. Since no phase-locked loops are involved, switching from one output \{requency to another can be accomplished very rapid)'s, either from the front-panel pushbuttons or remotely.

Less than 1 millisecond is required for any frequency change. Figure 2 illustrates the rapid, stable switching capabilities of the synthesizer. The synthesizer is switched from 23 mc to 26 mc by the lower waveform. Sreep setting is 200
$\mu \mathrm{sec} / \mathrm{cm}$. Dead time and transients are well within the 1 millisecond specification.

Search oscillator

The search oscillator can be selected either locally or remotely and swept either locally or remotely. Besides facilirating searching for an unknown frequency, the search feature permits smooth frequency modulation of the output at a maximum rate of 1000 cps , phase-locking the synthesizes into another system, or sweep operation with a sweep range as small as 0.1 cps . The incremental range of the search oscillator is between 0.1 cps and 1 mc , dependent upon the verical column selected for search. Any of the aight-hand eight columns may be searched.

Specifications, 5100A

Output frequency: dc to 50 mc .
Digital Prequency selection: 0.01 aps through 10 mc per step; selection by front-panel pushbutton of by remote switch closure; any change in frequency may be accomplished in less than 1 millisecond.
Output voltage: $1 \mathrm{v} \mathrm{mms} \pm 1 \mathrm{db}$ from 100 kc to $50 \mathrm{mc} ; 1 \mathrm{v}$ $\mathrm{rms}+2 \mathrm{db},-4 \mathrm{db}$, from 50 cps to 100 kc , into a 50.0 hm resistive load; nominal source impedance is 50 ohms; 15 mv rms minimum open circuit from 100 kc down to dc . at separate rear output connector, source impedance of 10 K ohms with shunt capacitance approx. 70 pf .

SIgnal-to-phase nalse ratlo: greater than 54 db in a 30 kc band centered on the signal (excluding a 1 cps band centered on the signal).

Signal-to-AM nolse ratio (above 100 kc): greater than 74 dt in a 30 kc band.

RMS fractional frequency deviation (with a 30 ke noise bandwidth):

	Outpunt huguency			
Averaging thme	1 ms	6 ma	10 mo	60 mo
10 milliseconds	$3 \times 10-8$	$6 \times 10-9$	3×10^{-9}	$6 \times 10-10$
3 second	$3 \times 10-10$	$6 \times 10-11$	$3 \times 10-13$	$1 \times 10-11$

Spurlous signalsi non-harmonically related signals are at least 90 db below the selected frequency.

Note: when the $3110 A$ Driver utilizes an external frequency standard, this will affect the stability and spectral purity of the output; performace data stated above are based on internal frequency standard, also indicate synthesizer contribution to overail performance with externa! standard.

Harmonic signals: 30 db below the selected frequency (when terminated in 50 ohrns).

Dimenslons: $101 / 2^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $183 / 8^{\prime \prime}$ deep (265 x $425 \times 467 \mathrm{~mm}$).
Weight: net $75 \mathrm{lbs}(34 \mathrm{~kg})$; shipping $136 \mathrm{lbs}(62 \mathrm{~kg})$.
Additlonal data: search oscillator provides continuously variable frequency selection with an incremental range of 0.1 cps through 1 mc ; namual or external voltage (-1 to - 11 volts) control with linearity of $\pm 5 \%$.
Prlce: hp $5100 \mathrm{~A}, \$ 10,250$ (requires 5110 A).

Specifications, 5110A

Output frequencles: 22 fixed frequencies to the 5100A; 3 through 3.9 mc in 0.1 mc steps ($50 \mathrm{mv}+1,-3 \mathrm{db}$), 30 through 39 mc in I mc steps, 24 mc , and 3 mc (100 mv $\pm 1.5 \mathrm{db}$), 50 ohm system; 1 mc buffered output (1 v $\pm 1.5 \mathrm{db}$ into a $50-\mathrm{hm}$ resistive load) available at rearpanel connector.
Internal frequency standard: 1 me quartz oscillator.
Aging rate: less than ± 3 parts in 10^{\oplus} per day.
Stability: as a function of ambient temperature, $\pm 2 \times 10^{-20}$ per ${ }^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$; as a function of line voltage, $\pm 5 \times 10^{-11}$ for a $\pm 10 \%$ change in line voltage (rated at 115 or 230 .volts rms line voltage); shost term, adequate to provide the 5100 A performance noted above (1×10^{-11} rms for 1 second averaging on direct output for 30 kc noise bandwidth).
Phase locking capablliky: a voltage control feature allows 5 parts in 10^{8} frequency control for locking to an external source; -5 volts to +5 volts required from phase detector (not supplied).
External frequency standard: input requirements: 1 or 5 mc , 0.2 v m ms min., 5 v max. across 500 ohms; stability and spectral purity of 5100A will be partially determined by the characteristics of the external standard if used.

Operating temperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Interterence: complies with MIL-1-6181D.
Power: 115 or 230 volts $\pm 10 \% 50$ to 400 cycles, 35 watts each unit (independent supplies).
Dimenslons: $51 / 2^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $163 / 8^{\prime \prime}$ deep (140 x $425 \times 475 \mathrm{~mm}$).
Weight: net $54 \mathrm{lbs}(25 \mathrm{~kg})$; shipping $60 \mathrm{lbs}(27 \mathrm{~kg})$.
Accessorias avallable: 50 -ohm BNC termination (10501 A), 22 required for each set of outputs not connected; e.g., max. requirements would be 66 when Option 04 . is selected, but only one 5100 A is being driven; price, $\$ 5$ each.

Note: If Option 02, 03, or 04, is selected, the additional outputs must be terminated in 30 ohms when not connected to a 5100 A if full specified spurious performance is required.

Price: hp 5110A, $\$ 5000$.
Options: the 5110A Spnthesizer Driver is capable of driving up to four 5100A Frequency Synthesizers.
02. Outputs for driving two $5100 \mathrm{~A}, \$ 125$.
03. Outputs for driving three 5100A, $\$ 235$.
04. Outputs for driving four $5100 \mathrm{~A}, \$ 345$.

10511A Spectrum Generator

The Hewlett-Packard 10511A Spectrum Generator is a passive device which generates a series of 1 nanosecond pulses when driven by a signal source. The narrow pulses permit applications where fast, positive triggering is required. Any harmonic to 500 mc can be selected with appropriate flters. The 10511A was designed specifically for use with the 5100 A , but also may be driven by a $50-0 \mathrm{hm}$ source with input signals between 10 mc and 75 mc .

Specifications, 10511A

Input requirements

Frequency range: 25 to $50 \mathrm{mc}^{*}$.
Drive level: 1 to 3 volts rms available to 50 ohms.

Output

Pulse widt: 1 nanosecond, $\pm 15 \%$ at mid-amplitude.
Pulse helght: 0.75 volt minimum for minimum drive level. Impedance: 50 ohms (nominal).
Avallable harmonic power: - 19 dbm minimum for any harmonic number between 1 and 10.

General

Dimenslons: $3^{\prime \prime}$ long, $19 / 8^{\prime \prime}$ dia. ($76 \times 41 \mathrm{~mm}$).
Weight net $30 z(85 \mathrm{~g})$; shipping $1 \mathrm{lb}(0.45 \mathrm{~kg})$.
Price: hp $10511 \mathrm{~A}, \$ 150$.

[^8]
FREQUENCY SYNTHESIZER APPLICATIONS

The Hewlett-Packard 5100A/5110A Frequency Synthesizer is a signal source (essentially a multiple frequency stand. ard) whose outpur frequency can be selected by either manual or electronic command to a very high resolution in less than a millisecond. Such an instrument with its extremely high spectral purity and stability constitutes a powerful tool in a wide range of systems and scientific applications.

Communications

The high spectral purity of the s100A/s110A output signals makes it ideal as a local oscillator in receiver ap. plications where very low levels of rf gain are available in the circuitry before the mixer stage.

The very stable output frequencies of the $5100 \mathrm{~A} / 5110 \mathrm{~A}$ make it suitable for use in homodyne receiver circuitry. The advantages of using it in this application are simplicity and freedom from image problems, both of which plague many receiver designs.

Data handling systems in all areas of industry and military applications use magnetic tape as a storage media, linking the receiver to the data processing and analysis equipment. However, magnetic tape is not withour fault, introducing certain distortions to the data. The $5100 \mathrm{~A} / \mathrm{s} 110 \mathrm{~A}$ may be used to eliminate the degrading effects wow and flutter have on information that is received and stored on magnetic tape. This use is facilitated by the ability of the user to bypass the internal crystal filter in the synthesizer driver section (the 5110 A). The input reference frequency may be offset by as much as 0.25% with the same percentage offset translated to any output frequency. Thus, a recorded reference channel on the tape can be used as the reference frequency of the symthesizer, and wow and flutter can be removed by comparing the data channel with a convenient synthesizer output frequency derived from the reference channel.

A surveillance receiver system which monitors multiple data channels by rapidly switching between channels is an ideal ares of application for the Hew. lett-Packard frequency synthesizer. With its rapid, highly repeatable switching capability, the $5100 \mathrm{~A} / 5110 \mathrm{~A}$ will serve as the local oscillator in this type of receiver, providing the proper local oscilla. tor frequency for each channel under surveillance. A similar application arises in radio sounding applications, used to determine the maximum usable frequency allowed by ionospheric condi-
tions. Since these conditions are always in a stace of change, the ability of the $5100 \mathrm{~A} / 5110 \mathrm{~A}$ to generate test transmis. sions rapidly over the entire hf spectrum makes it an imporrant tool for radio sounding.

In multiple transmitrer installations a single synthesizer may be used to sequence through the desired transmitting frequencies rapidly, providing automatic calibration to all transmitters. The arrangement can phase Jock the transmitter frequencies to the synthesizer, using a circuit with a time constant long enough to maintain the transmitter frequencies for the duration of the sequencing cycle.

The synthesizer may be used in a laboratory receiver as the local oscillator in conjunction with a balanced, broad. band mixer and a narrow-band amplifier such as the Hewlett-Packard 415D Tuned Voltmeter. This arrangement, using the tuned voltmeter, can exhibit an exceedingly flat response, 50 kc to 50 mc and better than 10^{-16} watts sensitivity.

Radar

The $5100 \mathrm{~A} / 5110 \mathrm{~A}$ is capable of switching between ourput frequencies in 0.01 increments at a very fast rate; thus it is capable of making very good approximations of frequency versus time functions. This performance feature finds application in high performance "chirp" radar insrallations, which require a very linear sweep.

In doppler radar applications the Hew-lett-Packard frequency synthesizer easily supplies a!l the necessary requirements for precise velocity measurements. The excellent stability of the synthesizes makes it ideal as the basic signal source in the transmitter, which requires stability capable of staying within a receiver bandwidth only a few cycles wide in the microwave region. For accurate velocity measurements, the transmitted source frequency must be exactly the same after the round trip to the vehicle under serutiny. A S100A/5110A also is well suited for use as the local oscitlator in the dop. pler receiver, where the local oscillator must be capable of rapid change in ordes to keep the returning signal of different frequency within the narrow receiver bandwidth.

NMR applications for the 5100A/5110A

Nuclear magnetic resonance spectroscopy methods are used to determine the qualitative and quantitative structure of molecules. In NMR, the strength of an applied de magnetic field and the fre-
quency of simultaneously applied of feld uniquely determine the spin-interaction of nuclei. Sophisticated NMR systems use spin-decoupling techniques to neutralize interactions between nuclei and simplify the structural analysis. The s100A/s110A Frequency Synthesizer finds application in spin-decoupling sys. tems supplying the rf signal through a power amplifier necessary for saturatíng the ouclei of interest. In this application the broad frequency range and precise 0.01 cps increments of frequency are very valuable.

In NMR systems constructed to analyze a large number of nuclei, the synthesizer is ideally suited to provide rapid accurate band switching. In multi-nuclei NMR analysis each nucleus requires a unique if frequency and resonant probe (detector). In past systems many chernical analysts have used a probe of trans. mitter-receiver set for each nucleus to be analyzed. Now with the s100A/5110A acting as the master rf oscillator in the transmiter and as the local oscillator in the receiver, the user has at his command an instrument with superior repeatability, frequency selection, frequency stability, and signal-to-noise levels that will provide all if signal requirements in one unit.

Frequency and level s\{ability measurement

Excellent frequency stability makes the $5100 \mathrm{~A} / 5110 \mathrm{~A}$ an ideal variable.fer. quency standard in systems measuring short-term frequency stability. Shortterm stability, often denored as phase noise, can then be characterized by three measures: a phase noise vs frequency of offset plot, a total measurement of in. stability over a frequency band, and statistical parameters. The $5100 \mathrm{~A} / \mathrm{sl10A}$ is ideal for use in systems capable of making all three measurements on either signal sources (such as oscillators) or components (such as filters and crys. tals) which must be excited. In these rest systems the $5100 \mathrm{~A} / 5110 \mathrm{~A}$ Frequency Synthesizer may be used as the reference frequency standard and also as the source of excitation for the component under test.

Measurements involving the calibration of voltmeters, power meters and attenuators must depend on a signal source with high stability of output level. The level stability (typically 0.01% over a few-minute period) of the synthesizer is about an order of magoitude better than that available from high quality genera. tors operating on a regulated power line.

5102A, 5103A FREQUENCY SYNTHESIZERS

Broad frequency coverage, dual-range

The Hewlett-Packard Models 5102A and 5103A Frequency Synthesizers increase synthesizer capability, provid. ing instruments with dual-output frequency ranges of 100 kc and 1 mc (5102 A), and 1 mc and 10 mc (5103A).

The 5102 A provides output frequencies from 0.01 cps to 100 kc and from 0.1 cps to 1 mc in increments of 0.01 cps and 0.1 cps respectively. Output frequencies from 0.1 cps to 1 mc in increments of 0.1 cps , and from 1 cps to 10 mc in l cps increments are provided by the 5103A. Both instruments synthesize the output frequency from a single frequency source, translating the stability of the source to the output frequency via a direct synthesis technique. A very stable quartz oscillator, provided with each synthesizer, or an external 1 mc (or 5 mc) frequency standard may be used as the frequency source.

A Level control on the front panel allows continuous adjustment from 300 mv to 1 volt rms, of frequencies (greater than 50 cps) available at the front-panel BNC. For frequencies below 50 cps, the signal is taken from a rear-panel Low Level output BNC. Frequencies available at the rear-panel BNC have a signal strength of approximately 80 mv for the 5102 A and 20 mv for the 5103 A .

Dual-range feature

The two distinct (dual) frequency ranges of the 5102 A and 5103A provide the user with extended capability at minimum cost and without sacrifice of hp's convenient module size. The upper range extends the frequency capability of each model, at the same time retaining high levels of stability and spectral purity. The higher frequency capability has frequency increments that are the same percentage of the range maximum as in the lower frequency range.

The choice of frequency range is dependent on the maximum frequency required and is selected by the Range switch located on the front panel. The Range switch also positions a moveable label bar, conveniently indicating the decimal value of each column of pushbuttons. For both ranges the output frequency is selected three ways.

With the Frequency Select switch in the Local position, the output frequency is selected by seven columns of pushbuttons, arranged for rapid frequency selection. A locking switch is provided to prevent accidental operation of the pushbuttons once they are set. In addition, the full range of each column may be contínuously varied either manually or externally by a search oscillator. Any frequency or search oscillator position locally controlled may be remotely selected via rear-panel connectors to each of the front-pane\} pushbuttons. The Frequency Select switch is positioned in Remote for remote control. Combined local-remote operation also is possible with the switch in the Local position. Any column not locally selected may be remotely controlled. Less than 20μ seconds are required to switch between frequencies in the local mode of selection and also in the remote mode if proper impedance levels are selected for the remote controller. The switching speed is very rapid and accurate, due to the direct synthesis technique used, which eliminates slower, hard to synchronize phase-locked loops.

The search oscillator provides continuous kuning in any selected column plus an external sweep capability. This is an L.C oscillator which allows the operator to continuously "seacch" any signifcant column from 1 me to 0.1 cps either manually by a front-panel control or remotely by application of a suitable voltage. The typical voltage vs frequency characteristic is shown in Figure 1. The approximate slope is

10% of the selected column's range per volt. The search oscillator may be frequency modulated from an external source at a maximum sine wave rate of 1 kc while retaining the voltage control calibration.

If the search oscillator is used, the stability of the synthesizer output is determined by either that of the standard instrument or that of the search oscillator-depending on the column which is "searched."

Outputs from the 5102A and 5103A are very clean over the full frequency ranges. Careful design and sotid-state modular construction yield the high order of spectral purity essential for accurate doppler measurements, narrow-band relemetry or communications, NMR studies, vlf receiver/ transmitter work and many similar applications requiring clean and stable frequencies.

Figure 1.

Specifications

hp Model	6102A	61034
Output frequency:	100 kc range : 50 cps to 100 kc ; 1 mc range: 50 cps to 1 mc	1 mc range: 50 cps to 1 mc ; 10 mc range: 50 cps to 10 mc
Output volitages:	continuously adjustable from 300 mv to 1 volt rms; $\pm 1 \mathrm{db}$, into a 50 -0hm resistive load; source impedance 50 ohms nominal (front-panel Outpul BNC)	
Auxiliary outputs:	(1) Low Level: dc to value of range, both ranges (rear panal BNC); (2) fo +30 mc (fo is selected frequency, de to 1 mc , both ranges) rear-panel BNC; (3) 1 mc frequency standard (rear-panel BNC)	
Auxiliary output voltage:	(1) Low level 80 mv rms (minimum) open circuit (2) $\mathrm{f}_{0}+30 \mathrm{mc}: 1$ volt $\mathrm{rms}, \pm 2 \mathrm{db}$ Into a 50 ohm resistive load (3) 1 mc : 1 volt $\mathrm{rms}, \pm 1.5 \mathrm{db}$ into a 50 -ohm resistive load	
Digital frequency selection:	100 kc range: 0.01 cps 1010 kc sleps; 1 mc range: 0.1 cDs to 100 kc steps salection by front-panel pushbution or by remot be accomplished in <20 msec, provided front-pan	1 mc range: 0.1 cps to 100 kc steps; 10 mc range: 1 cps to 1 mc steps contact clasure; any change in fraquency may pushbution or appropriate rear-panel connection d
Switching time:	$<20 \mu$ sec for any change in frequency	
Search oscillator:	search oselllator provides continuously variable frequency selection in any desired column (by depressing "the " S " button in that column) over the complats range of that column; manual coverage by a front-panel control or control by an externally applied voltage (-1 to -11 volts)	
Signal-10-ohase noise ratio (output)*:	100 kc range: $>74 \mathrm{db} ; 1 \mathrm{mc}$ range $:>64 \mathrm{db}$	1 mc range: $>64 \mathrm{cb}$; 10 mc range: $>54 \mathrm{db}$
Signal-to-AM noise ratio (output)*:	100 kc range : $>80 \mathrm{db} ; 1 \mathrm{mc}$ range $:>74 \mathrm{do}$	1 mc range: $>74 \mathrm{db} ; 10 \mathrm{mc}$ range: $>74 \mathrm{db}$
BMS fractional frequency deviation:		
Spurious signals:	100 ke range: $>90 \mathrm{db} ;$ 1 mc range: $\gg 70 \mathrm{db} ;$ 1 mc rangee: $>70 \mathrm{db}$ 10 mc range: $>50 \mathrm{db}$ (below seiected output for non-harmonically related signa s)	
Harmonic signals:	$>35 \mathrm{db}$ on all ranges, all outputs	
Internal frequency standard:	1 mc quartz oscillator	
Internal frequency standard aging rate:	less than ± 3 parts in 109 per 24 hours	
Stability of internal frequency standard (as function of ambient temp.): (as function of line voltage):	$\begin{aligned} & =2 \times 10-10 \mathrm{per}{ }^{\circ} \mathrm{C} t 0+55^{\circ} \mathrm{C} \\ \pm 5 \times 10 & -11 \text { for } a \pm 10 \% \text { change in line voltage } \end{aligned}$	
External frequency standard:	1 mc or $5 \mathrm{mc}, 0.2 \mathrm{v}$ to 5 v mms across 500 ohms	
Standard input requirements:	stability and spectral purity of synthesizer will be partially determined by the characteristics of external standard if used	
Operating temperature range:	0 to $+55^{\circ} \mathrm{C}$	
Oimensions:	$163 / 4^{\circ}$ wide. $10-15 / 32^{\prime \prime}$ high, $163 /$ " $^{\prime \prime}$ deep $(425 \times 266 \times 416 \mathrm{~mm})$	
Weight:	net 75 lbs (34 Kg) ; Shipping $127 \mathrm{lbs}(58 \mathrm{~kg}$)	

* In a 30 kc band centered on the carrier, excluding a 1 cps band centered on the carpler, and measured on high-level output only.

5060A CESIUM BEAM FREQUENCY STANDARD

Compact primary standard with 2 parts in 10^{11} accuracy

Advantages:

Accuracy of ± 2 parts in 10^{11}
Stable quartz oscillator for short-term stability Circuit-check meters and lights monitor operation All solid-state circuits, low power consumption Compact - $83 / 4$ inches high, 63 pounds

Uses:

Primary frequency standard
Adjustable UT-2 or A-1 time scale with simple conversion

The Hewlett-Packard Model 5060A is a compact, selfcontained primary frequency standard of the atomic beam type, utilizing Cesium 133. A new cesium beam tube resonator stabilizes the output frequency of a high quality quartz oscillator. Solid-state design is used throughout, and the closed-loop, self-checking control circuit yields exceptional accuracy of $\pm 2 \times 10^{-11}$. The $83 / 4$-inch high cabinet occupies only 1.4 cubic feet, weighs less than 63 pounds, and rack-mounting hardware for a standasd 19 inch rack is supplied.

In the atomic resonator of the 5060 A a neutral beam of Cesium 133 atoms passes through a microwave cavity. When the frequency of the microwave magnetic field is near 9,192. $631,770 \mathrm{cps}$ (the hyperfine transition frequency of Cesium 133, defined in A-1 time) it induces transitions from one hyperfine energy level to another, Those atoms which have undergone such a transition are then detected by a hot wire ionizer and electron multiplier. The microwave field, derived from a precision quartz oscillator by frequency multiplication and synthesis, is phase-modulated at a low audio rate. When the microwave frequency deviates from the center of atomic resonance the current from the electon multiplier contains a component alternating at the modulation rate and proportional to the frequency deviation. This component is then filtered, amplified and synchronously detected to provide a de voltage proportional to the frequency deviation. The integral of this de voltage is then
used to automatically tune the quartz oscillator to zero fre. quency error.

The control circuit provides continuous monitoring of the output signal. Automatic logic circuitry and front-panel lights are arranged to present an indication of correct operation. The new, compact cesium beam tubes exhibit frequency perturbations so small that independently constructed tubes compare within a few parts in 10^{12}. Outstanding reliability is obtained from these tubes with a guaranteed life of 10,000 hours. Either A-1 or UTT-2 time scale can be supplied on order. A simple change of one component is all that is required for field conversion of the time scale, or for UT-2 offset corrections.

The quariz crystal oscillator used exhibits superior characteristics even without control by the atomic resonator. Drift rate is less than 5×10^{-10} per 24 hours, and shortterm stability is better than $\pm 1.5 \times 10^{-11}$ for one second averaging time. The 5 me quartz crystal is housed in a twostage, independently chermistor-controlled oven of unique design. Output variation due to temperature is less than $\pm 1 \times 10^{-10}$ from 0 to $50^{\circ} \mathrm{C}$.

Output signals provided by the Model 5060A include sine wave $5 \mathrm{mc}, 1 \mathrm{mc}$, and 100 kc with an additional 100 ke clock output. Signal-to-noise ratio for the 5 roc signal

Figure 1

is grearer than 83 db below the rated output. Harmonic distortion is down at least 40 db for all outputs except the clock signal. The block diagram in Figure 1 indicates the system used in the 5060A. The cesium beam tube is connected as a passive resonator to stabilize the quartz oscillator frequency. The quartz oscillator output may be used alone with the cesium bearn tabe switched of or in standby. Either method of operation provides output signals with excellent short-term stability and extends the useful life of the cesium beam tube. Two circuit check switches and meters permit quick and easy checks of 5060 A circuits with power applied. The 5060 A operates from 115 of 230 vac power lines or a dc source of 22 to 30 volts. Since the complete instrument is compact and weighs less than 63 pounds, it does not require a permanent, complex installation.

Figure 2 illustrates the hyperfine transitions that occur in the cesium beam tube. Note that the energy level ($\triangle W$) changes for any hyperfine transition (e.g., 0.0) as the magnetic field (X) changes. In the 5060A this rela. tionship is used when the fixed field (" C ") is set to a value which ensures that only desiced atoms contribute to atomic resonance.

Figure 2

Specifications

Accuracy: $\pm 2 \times 10^{-11}$.
Long-termi stablity: $\pm 1 \times 10^{-11}$.
Shortterm stablity:

Warm-up time: 1 hour (time to reach specified accuracy, if oscillator warm); 4 hours (cold start).
Nolse-to-slgnal ratio (5 mc): at least 83 db below rated 5 mc output; output filter bandwidth is approximately 125 cps .
Harmonic distortion: ($5 \mathrm{mc}, 1 \mathrm{mc}, 100 \mathrm{kc}$) down more than 40 db from rated output.
Non-harmonically related output: ($5 \mathrm{mc}, 1 \mathrm{mc}$, and 100 kc) down more than 80 db from rated output.
Output trequencies: $5 \mathrm{mc}, 1 \mathrm{mc}, 100 \mathrm{kc}$ sinusoidal, 100 kc clock drive.
Output volkages: I v oms into 50 ohms; clock drive suitable for hp frequency divider and clocks (page 104).
Output terminals: $5 \mathrm{mc}, 1 \mathrm{mc}, 100 \mathrm{kc}$, front and rear BNC connectors; 100 kc clock drive, rear BNC connector.
Ceslum beam tube: life, $10,000 \mathrm{hr}$, guaranteed (operating).
Time scele: A-1 or UT. 2 supplied to order; simple change of one component enables field conversion of time scale or adjustment for UT-2 offset corrections.

Quartz osclilator only (with cesium beam tube switched off)
Aging rate: ± 5 parts in 10^{70} per 24 hours after 30 days con. tinuous operation.
Stability: as a function of ambient temperature: less than $\pm 1 \times 10^{-11}$ from 0° to $+50^{\circ} \mathrm{C}$; as a function of load: less than $\pm 2 \times 10^{-11}$ for any resistive load change: as a function of supply voltage: less than $\pm 5 \times 10^{-11}$ for 22 to 30 v dc .
RMS deviation of 5 mc output (due to noise and frequency fluctuations):

Averagling tme	Max. ims fractionaltrequancy deviation $(\triangle t / t)$	Max. 7ms phase devialian (milliradant)
1 msec	$8 \times 10-10$	0.03
10 msec	$1.5 \times 10-10$	0.04
0.1 sec	$1.5 \times 10-11$	0.04
1 sec	$1.5 \times 10-11$	0.4
10 sec	$1.5 \times 10-11$	4

All data dased on at least 100 samples: data taken ovar a 20 -second interval for $1 \mathrm{msec}, 10 \mathrm{msec}$ and 0.1 sec averaging times, oyer 200 and 2000 -second Intervals respectlvely, for 1 and 10 sec averaging tmes; crystal aging rate has been removed from these data.

Frequency adjustments; fine adjustment: 5 parts in 10^{8} total, 1 part in 10^{9} per revolution, 1 part in 10^{19} per division at 10 divisions per revolution; coarse adjustment: 500 parts in 10^{4}; coarse and fine controls are screwdriver adjustments, recessed from front panel.
Operating temperature: 0 to $50^{\circ} \mathrm{C}$.
Power: 115 or 230 volts ac $\pm 10 \%, 50$ to 1000 cps or 22 to 30 volts dc; approximately 50 watts operating.
Dimensions: $83 / 4^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $163 / 8^{\prime \prime}$ deep (222 x $425 \times 416 \mathrm{~mm}$).
Weight: net $63 \mathrm{lbs}(28,6 \mathrm{~kg}$); shipping $105 \mathrm{lbs}(48 \mathrm{~kg}$).
Price: hp 5060A, \$15,500.

106A,B AND 107AR,BR QUARTZ OSCILLATORS

Pius 100E, 101A Oscillators

Models 106A,B and 107AR,BR Quartz Oscillators provide state-of-the-art application in primary frequency and time standard systems because of their excellent long. and short-term stability characteristics, spectrally pure outputs, unexcelled reliability and ability to operate under a wide range of environmental conditions.

Models 107 AR,BR are rugged, hermetically sealed oscil. lators, employing 5 mc quartz crystal resonators. The 107 has been designed and tested to meet the stringent shock and vibration requirements of MIL-E-16400E. The oscillators are totally impervious to moisture and will remain stable within ± 1 part in 10^{10} between $0^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$.

The heart of the $106 \mathrm{~A}, \mathrm{~B}$ is an extremely stable 2.5 mc quartz crystal. The 106 is distinguished by its unprecedented long.term stability of ± 5 parts in 10^{11} per day (24 hours) and excellent short-term stability over a wide range of environmental conditions.

Models 106A and B are identical in every respect except for their power requirements. The 106 B operates from 115
or 230 volts ac line or from an external dc power supply (hp 7248R recommended) and contains an emergency standby power supply capable of sustaining opecation for 8 hours. The 106A requires an external supply voltage of 22 to 30 v $d c$, such as the hp 724 BR or $725 A R$ (page 104).

100E, 101 A Quartz Oscillators-These instruments ace very stable oscillators for applications requiring something less than the stability provided by highly sophisticated frequency standards such as the $106 \mathrm{~A}, \mathrm{~B}$ or the $107 \mathrm{AR}, \mathrm{BR}$. The 100 E has short-term stability of 5 parts in 10^{8} and is ideal for test, production and lab use. Output frequencies are $10 \mathrm{cps}, 100 \mathrm{cps}, 1 \mathrm{kc}, 100 \mathrm{kc}, 1$ moc sinusoidal and 10 cps, $100 \mathrm{cps}, 1 \mathrm{kc}, 10 \mathrm{kc}$ pulse. Output pips from the timing comb are at 100,1000 and $10,000 \mu \mathrm{sec}$ intervals Price: hp 100E, $\$ 1100$ (cabinet); hp $100 \mathrm{ER}, \$ 1100$ (rack mount). The hp 101A One MC Oscillator is designed as a time base for the hp 5275 Time Interval Counter (page 62). Stability is 5 parts in 10^{8} per week. Price: hp $101 \mathrm{~A}, \$ 600$ (cabinet with rack hardware).

Specifications

Modats	107AR, BR	106A, ${ }^{\text {B }}$
Output frequencies	$5 \mathrm{mc}, 1 \mathrm{mc}, 100 \mathrm{kc}$ sinusoidal; 100 kc clock drive	
Oulput vollages	$5 \mathrm{mc}, 1 \mathrm{mc}$, and $100 \mathrm{kc}, ~ I \mathrm{v}$ rms into 50 ohms; 100 kc for driving ho frequency divider and clocks, 0.5 v rms into 100 ohms	
Slability (long term)	$< \pm 5 \times 10^{-10} \mathrm{per} 24 \mathrm{hrs}$	$< \pm 5 \times 10-11$ per 24 hrs
As a function of ambient temperature	$< \pm 1 \times 10-10$ from $0^{\circ} 10+50^{\circ} \mathrm{C}$	$< \pm 1 \times 10-10$ from $0^{\circ} 10+40^{\circ} \mathrm{C}$
As a function of humidity	instruments are hermetically sealed	basic oscillators are sealed
As a function of load	$< \pm 2 \times 10-11$ for any resistive load change	
As a function of supply voltage	(L07AR) $< \pm 5 \times 10-11$ for 22 to 30 vdc	$(106 A)< \pm 3 \times 10-11$ for 22 to $30 \vee d \mathrm{c}$
As a function of line voliage	$(107 \mathrm{BR})< \pm 1 \times 10-11$ for 10% change from 115 or $230 \vee 3 \mathrm{c}$	(106B) $< \pm 1 \times 10^{-11}$ for $\pm 10 \%$ change from 115 or 230 vac
RMS deviation of 5 mc (short. term stability)	averaging time max. rms f devia 1 msec 8. 10 msec 1.5 0.1 sec 1.5 1 sec 1.5 10 sec 1.5	ional-frequency max, rms phase deviation (mililradians) $(\Delta 1 / 1)$ 0.03 -10 0.04 $10-10$ 0.04 $10-11$ 0.4 $10-11$ 4
Noise-to-signal ratio (5 mc)	at least 87 db below rated 5 mc output; out	filter bandwidth is approximataly 125 cps
Harmonic distortion 5 mc , 1 mc , and 100 kc)	down more then 40 do from raled outpul	
Non-harmonically related outpul (5 mc, 1 mc . and 100 kc$)$	down more than 80 db from rated output	
Output terminals	$5 \mathrm{mc}, 1 \mathrm{mc}, 100 \mathrm{kc}$, front and rear BNC connectors; 100 kc clock drive, rear BNC connector	
Frequency adjustments Fine adjustment Cogrse adjustment	$\$$ parts in 108 total; 1 part in 109 per rey; 1 part in 1010 per division at lo divisions per revolution I part in $108(\pm 0.5 \times 10-6)$	2 parts in 108 total; 1 part in 1010 per rev: I part in 1011 per division at 10 divisions per revolution 5 parts in $107\left(\pm 2.5 \times 10^{-7}\right)$
Environmental Storage temperature Operating temperature Humidify Vibration and shack	$-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (mfr, specifies $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ limit tor 1078R baltery storage) $0^{\circ} \mathrm{C} 10+50^{\circ} \mathrm{C}$ instrument is hermetically sealed, will operate under water without degradation of periormance completely passes vibration and shock requirements of MIL-E. 16400 E	$-40^{\circ} \mathrm{C} 10+75^{\circ} \mathrm{C}$ (mfr. specifies $-80^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ limil for 106B battery storage) $0^{\circ} \mathrm{C} 10+40^{\circ} \mathrm{C}$
Weight	107AR: net $20 \mathrm{los}(9 \mathrm{~kg})$, shipping $38 \mathrm{lbs}(17 \mathrm{~kg}) ; 1078 \mathrm{R}$: nat $35 \mathrm{lbs}(16 \mathrm{~kg})$, shipping $53 \mathrm{lts}(24 \mathrm{~kg})$	106A: net 25 lbs ($11,3 \mathrm{~kg}$) shipping 38 lbs (17 kg): 1068 : net $35 \mathrm{lbs}(16 \mathrm{~kg})$, shipping $53 \mathrm{lbs}(24 \mathrm{~kg})$
Dímensions Height Width Depth	5-7/32" (133 mm) $19^{\circ}(483 \mathrm{~mm})$ $16^{3 / 8}{ }^{*}(416 \mathrm{~mm})$	$\begin{aligned} & 6-31 / 32^{\mu}(177 \mathrm{~mm}) \\ & 163 / 4^{\mu}(425 \mathrm{~mm}) \\ & 163 / \mathrm{g}^{\prime}(416 \mathrm{~mm}) \end{aligned}$
Power	107AR: 22 to 30 v de, approx. 12 w operating, 15 w during warm-up; 107BR: 115 or 230 vac $\pm 10 \%$, 50 to 1000 cps , approx. 25 W operating with battery on trickle charge (30 w on last charge), 33 w during warm-up (38 w on tast charge)	106A: 22 10 30 vdo approx. 9 w operating, 14 w during warm-up; 1068: 115 or 230 vac $\pm 10 \%, 50$ 10 1000 cps , approx. 20 w operating with ballery on trickle charge (25 w an last charge), 30 w during warm-up (35 w on fast charge)
Price	ho 107AR, $\$ 2400$ ho 107BR, $\$ 2750$	hp 106A, 8 on tequest

117A VLF COMPARATOR

Useful for accurate frequency comparisons

117A VLF Comparator

Advantages:

Complete system for frequency comparison
Operating phase stability of $\pm 1 \mu \mathrm{sec} ; 0$ to $50^{\circ} \mathrm{C}$
Phase-locked 100 kc output 1 microvolt signal ensures phase lock Comparison accuracy of 1 part in 10^{10}

Uses:

Accurate comparison between WWVB and local standard
Quick and easy check of counter time base accuracy Applicable throughout continental U.S.
Secondary frequency standard from 100 kc output
The hp 117A VLF Comparator provides accurate phase comparisons between the 60 kc U.S. frequency standard at Fort Collins, Colorado, (WWVB) and a local standard. Using the 117 A , frequency standard comparisons to an accuracy of 1 part in 10^{20} can be approached in an 8 -hour period, depending upon the length and condition of the propagation path. The transmitted 60 kc signal has an effective radiated power of 5 kw and provides the primary U.S.F.S. service to the continental U.S. at a precision of about 5 parts in 10^{11} during a 24 -hour period. The 117 A is readily applicable to checking the accuracy of 100 kc derived from the time base in electronic counters. When accurate frequency measurements are to be performed, the 117 A can compare the counter time base frequency with WWVB and the time base frequency can be corrected. The 117A is easily portable and thus could be used in several different locations for several different comparisons.

Method of operation

The operatiog priociple of the 117 A is to phase-track a voltage-controlled oscillator with WWVB, using an electronic servo control system. The local frequency standard is compared with the phase tracking oscillator and a continuous phase difference recording is made on a strip-chart recorder. The 117A receives the 60 kc from WWVB and makes a continuously cecorded phase comparison of this 60 kc against a local standard input of 100 kc . The amplified

WWVB signal and the voltage-controlled oscillator frequency provide two inputs to a phase detector which drives an integrating operational amplifier and then the voltagecontrolled oscillator.

The operation of this system is electronically equivalent to an electromechanical servo system, and it functions with zero steady state phase error and negligible long-term total phase error. This servo systern is equivalent to having a circuit of very narrow bandwidth in the amplifier section of the 117A. The narrow bandwidth of the servo loop has the important advantage that the center frequency tracks WWVB, and the bandwidth restriction is accomplished with simple resistive and capacitive components. Temperature variations cannot cause the center frequency to shift. Consequently, tempecature-dependent phase shifts are minimized. The servo loop and phase-locked oscillator operated in this manner provide a continuous output signal during noise and interfering signals.

The chart width of the phase comparison trace may be either $50 \mu \mathrm{sec}$ or $162 / 3 \mu \mathrm{sec}$, and the 117 A recorder chart is calibrated one μ sec per small division. Frequency offset templates are included which permit rapid interpolation of the chart trace. Readability of the trace and overall stability of the compacator easily provide a resolution of better than one microsecond under normally encountered laboratory conditions. Rear-panel galvanometer and potentiometer recorder outpues provide phase comparison and relative

signal level information for an external recorder. The galvanometer recorder may be calibrated with controls on the 117 A rear panel.
The 60 ke narrow-band antenna and amplifier supplied with the 117 A mount easily with standard 1 inch galvanized pipe. The narrow 30 cycle bandwidth of the amplifier minimizes spurious signal interference. The $1 \mu \mathrm{v}$ sensitivity of the $117 \AA$ with antenna and amplifier permics operation anywhere in the continental United States.

Crystal oscillator stability check

Showa below is a partion of a 24 -hour phase comparison recording made on the 117 A , of the 5245 L Electronic Counter 1 mc time base crystal oscillator against the 60 kc WWVB standard broadcast. This record was made on 19 September 1964. As shown above, the effect of the diumal shift on the 60 kc propagation path can be seen around 6:00 a.m. and 6:00 p.m. The crystal time base, during a 6 -hour sunlight period, was checked and found to be aging positively at a rate of approximately 4×10^{-10} per 24 hours. (This was easily computed using the frequency offset templates provided with each instrument.) At 8:15 a.m. the slope of the frequency offset plot was -7.5×10^{-10} and at 3:00 p.m. was -6.5×10^{-10}. This shows a positive drift rate of approximately 1×10^{-10} per 6 hours or +4 parts in 10^{10} per 24 hours. A 24 -hour check would increase definition and reduce diurnal effects.

The phase shifts occurring shortly after the hour, are identification transmissions by WWVB by a 45 degree phase shift in the 60 kc signal.

Templates

Frequency offset templates calibrated for use with the 117 A for either $50 \mu \mathrm{sec}$ chart width or $162 / 3 \mu \mathrm{sec}$ chart width are provided with each instrment. The overlay on Page 102 shows the $162 / 3 \mu \mathrm{sec}$ Template. These templates provide a fast, accurate check on phase comparison record by showing instantaneous frequency offiset. Frequency offiset for at least two separate chart times are required to derive the drift characteristic (rate of change of slope) of the standard under study.

NBS

Anyone concerned with standard frequency calibration techniques using the U.S.F.S. broadcast by WWVB should contact NBS to be placed on their mailing list. This is extremely helpful in keeping curcent on all activities relating
to WWVB (and WWVL) broadcasts. NBS can be contacted at the following address: National Bureau of Standards, Frequency-Time Broadcast Services 91.20 , Boulder. Colorado 80301.

Specifications, 117A

U.S.F.S. input frequency: 60 kc (WWVB carrier).

Sensitivity: $1 \mu \mathrm{v}$ rms into 50 ohms.
Local standard Input: $100 \mathrm{kc}, 1 \mathrm{v}$ rms into 1000 ohms (divider to accept 1 mc available at extra cost).
100 ke phase-locked output: 5 volt rectangular positive pulses into 5000 ohms.
Recorder outputs: phase comparison and relative signal strength: 0 to 1 ma de into 1400 ohms and 0 to 100 mv de from 2000 ohms.
Overall phase stability: $\pm 1 \mu \mathrm{sec}, 0$ to $50^{\circ} \mathrm{C}$.
Chart width: $50 \mu \mathrm{sec}$ or $162 / 3 \mu \mathrm{sec}$.
Chart speed: $1 \mathrm{in} / \mathrm{hr}$, standard (chart speeds of 6 or $12 \mathrm{in} / \mathrm{hr}$ available upon request).
Meter remdings; three switch positions: 1) Relative Signal Level; 2) Phase Comparison-calibrated scales 0 to so $\mu \mathrm{sec}$ full scale and 0 to $162 / 3 \mu \mathrm{sec}$ full scale; 3) Phase Lock-indicated range ensures oegligible phase error in the phase-locked oscillator.
AdJustments: front-panel control adjusts free-runaing fre. quency of the voltage-controlled oscillator to compensate for crystal aging and achieve optimum phase lock over temperature range 0 to $50^{\circ} \mathrm{C}$; three rear-panel calibration adjustments provide calibration of phase comparison, full. scale adjustment for internal recorder, internal meter and external galvanometer recorder.
Storage temperature: -50° to $+75^{\circ} \mathrm{C}$.
Operating temperature: 0 to $50^{\circ} \mathrm{C}$.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $3-15 / 32^{\prime \prime}$ high, 131/4" deep ($425 \times 88 \times 337 \mathrm{~mm}$).
Weight: 117 A : net $20 \mathrm{lbs}(9,1 \mathrm{~kg}$), shipping $22 \mathrm{lbs}(10 \mathrm{~kg})$; anteona: net $12.5 \mathrm{lbs}(5,7 \mathrm{~kg})$, shipping $21 \mathrm{lbs}(9,5 \mathrm{~kg})$.
Power: 115 or 230 volts $\pm 10 \%, 60$ cycles, 40 warts.
Accessories furnished: 10509A Loop Antenna, 43" diameter (1090 mm) ; 10512A Antenna Cable, 50 ohms, 100^{\prime} and mounts on $1^{\prime \prime}$ pipe thread, operating temperature: -60° to $+80^{\circ} \mathrm{C}$; 10512A Coxxial Lead-in Cable: 50. ohm, BNC-BNC connectors, $100^{\prime}(30,5 \mathrm{~m}$) long.
Price: hp 117A with 10509A Anrenna/Pre-Amp and 10512A Lead-in Cable, \$150.

$115 B R, C R$ FREQUENCY DIVIDERS, CLOCKS 724BR, 725AR POWER SUPPLIES

For comparison of signals with broadcast standards

The Model 115BR or 115CR Frequency Divider and Clock permits adjustment of frequency or time standards for maximum absolute accuracy by making precise comparisons with broadcast standard time and frequency signals. Derailed records of oscillator drift rates, as well as time or frequency dif. ferences between oscillators can be conveniently obtained.
Overall time comparison accuracy is $\pm 10 \mu \mathrm{sec}$, and jitter is negligible in the output of these compact battery-operated units. The 115BR is designed to meet performance requirements of MIL-E-16400 and is well suited ro mobile applications.

For convenience and maximum efficiency in operation, the $115 B R$ and $115 C R$ provide in-line display of time in hours, minutes and seconds, with an additional drum revolving once per second to permit time resolution of 0.1 second or, by stroboscope or camera to 0.01 second. Use of non-self-starting regenerative dividers aroids noise and spurious signal problems, for maximum rotal accuracy.

Specifications, 115BR,CR

Input frequency: 100 kc for soiar time, input bandwidth $=300$ cps; 100.3 kc for sidereal time, on special order.
Input voltage: 0.5 to 5 v rms.
Pulse outputs: (see charr).
Accuracy: same as input frequency.
Input impedance: 300 ohms nominal.
Auxilliary output: (1198 R only) : amplitude, 0.25 v rms minimum; source impedance, approx. 1200 ohms; frequency, 100, 10 and 1 kc (60 cps on special order).
Time reference: continuously adjustable, calibrated in $10 \mathrm{\mu sec}$ increments; numerical display from 999.9 msec to 000.0 msec, in-liae vernier in $10 \mu \mathrm{sec}$ incrernents.
Effect of transients: will not gain or lose time because of: (1) $\pm 300 \mathrm{v}$ step function on 100 kc inpur; (2) 0 to 50 v pulses, 0 to 5000 pps . 1 to $10 \mu \mathrm{sec}$ duration on 100 kc input: (3) $\pm 4 \mathrm{v}$ step in 26 vdc iaput.

Characterlatic	Positive tlok	Neqativo tick	Auxillary pulsa*	Porlitva** 1 ke plps
Pulse rale amplitude	$\begin{aligned} & 1 \text { pos } \\ &+ 10 v^{* * *} \\ & \text { min. } \end{aligned}$	$\begin{gathered} 1 \mathrm{pps} \\ -10 \mathrm{v}^{* * *} \\ \mathrm{~min} . \end{gathered}$	1 pps $+4 \vee \mathrm{~min}$. $0 p \mathrm{ckr}$, $+2 \vee \mathrm{~min}$. into 50 ohms	$\begin{gathered} 1000 \mathrm{\rho} \mathrm{\rho s} \\ +4 \mathrm{pmin} . \end{gathered}$
Rise time	$2 \mu \mathrm{sec}$ max.	$2 \mu \mathrm{Sec}$ max.	$1 \mu \mathrm{sec}$ max.	$2 \mu \mathrm{sec}$ max.
Duration	$20 \mu \mathrm{sec}$ min.	$20 \mu \mathrm{sec}$ min.	$200 \mu \mathrm{sec}$	20μ see min.
Jitter	$1 \mu \mathrm{sec}$ max,	$1 \mu \mathrm{sec}$ max.	$1 \mu \mathrm{Sec} \mathrm{max}$.	$1 \mu \mathrm{sec}$ max.
Recommended load impedance	4700 ohms min, shunted by 200 pf max.	1 megohm min. shanted by 100 pt max.	50 ohms min. shumled by 5000 pf max.	1000 ohms min, shunted by 1000 pi max.

-Standard for 115日R, avalable for 115 CR
**Negative pulses avallable on special order.
*. For any load impedance higher than mimimum recommended.
Monltor meter: (LISBR only), checks supply volage, divider operation ($100 \mathrm{kc}, 10 \mathrm{kc}, \mathrm{l} \mathrm{kc}$) and total clock current.
Power: 22 to 30 vdc , negative ground for operating with 106A,B or L07AR,BR (see page 101) (may be selected by a switch), approximately 2.5 watts, recommeaded supply, 724 BR or 725AR (positive grouad).
Dimenstons: $115 B R$: $19^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $12^{\prime \prime}$ deep behind panel ($483 \times 133 \times 356 \mathrm{~mm}$) ; 115 CR : $19^{\prime \prime}$ wide, $31 / 2^{\prime \prime}$ high, $12^{\prime \prime}$ deep behind panel ($483 \times 89 \times 305 \mathrm{~mm}$)
Weight: $115 B R$: net 35 lbs ($15,8 \mathrm{~kg}$), shipping $49 \mathrm{lbs}(22,2 \mathrm{~kg}$); 115 CR : aet $1 \mathrm{slbs}(6,8 \mathrm{~kg})$, shipping $21 \mathrm{lbs}(9,5 \mathrm{~kg})$
Accessorles fumlshed: $113 \mathrm{~A} \cdot 16 \mathrm{E}$ Cable, 6 feet long (1830 mm), connects $115 B R$ or $115 C R$ to 724 BR , or 725 AR .

Accessortes avallable: 114 BR Time Comparator: allows comparison of local time standards to standard time broadcasts, $\$ 1200$. Price: hp $1158 \mathrm{R}, \$ 2750$; hp $115 \mathrm{CR}, \$ 1500$.

724BR, 725AR Supplles

Hewlett-Packard standby power supplies, Models 724 BR and $725 A R$, provide improved performance and reliability of frequency or time standard systems by enabling continued operation in the event of ac line failure.

The hp 724 BR and $725 A R$ are designed to operate with standby batteries floating across the regulated ourput to assume the load automatically in case of ac failure. The hp frequency/ time standard system is not affected by transfer of load from any external supply to standby or back again, since switching is nor used. When ac power is restored, the supply reassumes the load, and the batteries are recharged automatically.

Specifications, 724BR, 725AR

Output voltage: $24 \mathrm{v}, \dot{1},-2 \mathrm{vdc}$.
Rated current (total external load): 500 ma .
Short circuit protection: prevents damage from momentary short circuirs (e.g, whea connecting loads) and from overloads of up to twice rated output; contiauous overload reduces instrument's life expectancy.
Alarm indicators: panel lamps indicate operating voltage as (1) ac line or (2) battery: additional lamps indicate ac liae fuse failure (cemore alarm provision is included).
Panet meters: voltmeter and ammeter indicate battery voltage and battery charge/discharge current.
Power: 115 or 230 vac $\pm 10 \%, 50$ to 1000 cps .
Battery supplied: 724 BR : 28 ampere-hour vented nickel-cadmium; 725AR: 2 ampere-hour sealed nickel-cadmium.
Output connectors: MS type female connectors ar rear mate with 106A, B, 107AR.BR, 11SBR or 115CR connectors.
Accessory furnished: power cable, 54 in. long (1372 mm), with NEMA line plug and MS3106A10SL-3S plug for rear-chassis power connectot.
External battery provision: MS3102145-2S female connector at reac.
Dimenslons: 724BR: 19 " wide, $7^{\prime \prime}$ high, $141 / 4^{\prime \prime}$ deep behind panel ($483 \times 177 \times 361 \mathrm{~mm}$) ; 72SAR: $19^{\prime \prime}$ wide, $31 / 2^{\prime \prime}$ high, $123 / 4^{" 1}$ deep behiad panel and allowing for connectors ($483 \times 89 \times 323$ mm).
Welght: 7248 R : net $75 \mathrm{lbs}(34 \mathrm{~kg}$), shipping $102 \mathrm{lbs}(46,3 \mathrm{~kg}$), including battery; 725 AR : net $27 \mathrm{lbs}(12,2 \mathrm{~kg}$), shipping 45 jbs ($20,4 \mathrm{~kg}$), includiag battery.
Price: hp 724 BR with 28 amp-hr vented Ni-Cad battety, \$950; hp 725AR with 2 amp-hr sealed Ni-Cad battery, \$645.
Option 01:: 724BR without battery, $\$ 600$.

IMPEDANCE MEASURING INSTRUMENTS

Q and RX meters

These instruments directly indicate Q and indirectly yield the value of the constituents of Z.

The Q of a sesonant circuit, comprising a variable known capacitor (C_{n}) con. tained in the Q meter and an external inductor (L_{x}), is measured by impressing a signal of known voltage (E_{1}) and variable known frequency in series in the

The output of the 0.5 to 250 mc test oscillaror (F_{1}) is fed into a Schering bridge. When the impedance to be measured is connected across one amm of the bridge, its parallel resistance and reac. rance unbalance the bridge, and the resulting voltage is fed to the mixer. The output of the 0.6 to 250.1 mc oscillator (F_{2}), tracking 100 kc above F_{1}, also is fed to the miver, resulting in a 100 kc difference frequency proportional in level

Figure I. Q meter
circuit, and measuring the voltage (E_{0}) across the capacitor when the circuit is resonated to the chosen frequency of the impressed voltage. Q of the circuit is the ratio E_{q} / E_{1}. With E_{f} known, the voltmeter measuring E_{0} can be calibrated directly in Q . By inserting low impedances in series with the inductor L_{x}, or high im. pedances in parallel with the capacitor C_{q}, the constants of unknown circuits or components may be measured in rerms of their effect on the original circuit Q and tuning capacitance.

To calibrare these meters, HewiettPackard's Boonton Division provides Q standards which are standard inductors of calibrated Q. A series of convenient reference inductors also is available from the Boonton Division for use as known constants or substitutes in the L_{x} position.

There are two Q meters in the Boonton family. Model 260A is for the fre. quency range 50 kc to 50 mc , which may be extended down to 2 kc by using a suitable external oscillator with a Model 564A Coupling Unit. Model 190A serves the range 20 mc to 260 mc .

The Model 250A RX Meter from Boonton directly presents the parallel resistive and reactive conslituents of Z, for two-terminal networks, in the range from 0.5 to 250 mc .

Figura 2. RX meter
to the bridge unbalance. This is amplified selectively to provide desired balance sensitivity. When the bridge R and C controls are nulled, their respective dials accurately indicate the parallel imped. ance components of the test sample.

The instrument's range of measurement is is to 100,000 ohms for parallel resistance (0 to 15 ohms by indirect means), 0.1 to 100 pf (120 pf by indirect means) for C, and 0.001 ah to 100 mh for L. Access to the measurement circuit through Type N coaxia! connectors may be had by installing the Model 515A Adapter Kit.

Figure 3. VHf impedance bridge

Phase and \mathbf{Z} measurements at vhf

The Hewlett-Packard Model 803A VHF Bridge directly indicates Z and phase angle in coaxial circuits, in the range $\$ s$ to 500 mc .

The instrument measures impedance by separately sampling the electric and magnetic felds in a transmission line. Two attenuator systems are controlled simultaneously. One responds to the electric field, the orber only to the magnetic field. The combination is adjusted for equal output from each attenuator. These equal signals are applied to opposite ends of a transmission line. Phase is derermined by finding their points of cancellation. At null, one dial reads the unknown impedance directly in ohms, and the other dial reads phase angle. The Mode! 417A VHF Detector was specifically designed as a sensitive ($5 \mu \mathrm{v}$) companion null detector; or an swr meter (hp Models 415B, 415D, pages 232, 233) may be employed to advantage. A suit. able signal generator is the hp Model 608C (pages 182,183). The Model 803A's measurement range, in the band 39 to 500 mc , is 2 to 2000 ohms impedance magnitude, -90° to $+90^{\circ}$ phase angle.

NEW

Phase and Z measurements,

5 cps to 500 kc

Completely automatic readings of Z and $\angle \theta$ are directly presented on ad. jacent meters by the unique new Boon. ton 4800A Vector Impedance Meter.

This instrument requires only that fre. quency (and range) be selected, as the unknown is connected across front-panel terminals. The magnitude of Z is read in ohms directly on one meter, while the secand meter, centered on zero, indicates phase angle and, by its direction, if the reactance is capacitive or inductive. Outputs at the reas present dc analog signals proportional to meter deflections, for Z and $\angle \theta$, as well as frequency for con. venient recording. Operating range of Model 4800A is 5 cps to 500 kc . 1 ohm to 10 megohms, $\pm 180^{\circ}$ phase angle.

Impedance measurements above 500 mc

Facilities for instrumentation of impedance measurements in the ranges above 500 mc are described in the Micro. wave section of this catalog. pages 230 , 231 and following.

Hoden	Fran, retion	Hp rasan	Cyrang	L4 Y414
$\begin{array}{\|c\|} \hline \text { Boonton } \\ 250 \mathrm{~A} \end{array}$	500 ke to 250 mc	$\begin{gathered} 00 \text { to } \\ 100 \mathrm{~K} \end{gathered}$	$\begin{aligned} & 0.1 \text { to } \\ & 120.0 f \end{aligned}$	$\begin{gathered} 0.00) \mu h 10 \\ 1000 \mathrm{mh} \end{gathered}$
Chald	Frat ranas	0 rinfo	Li rang	L rampa
$\begin{gathered} \text { E00nton } \\ 260 \mathrm{~A} \end{gathered}$	$\begin{gathered} 50 \mathrm{kc} \mathrm{c}^{*} \text { to } \\ 50 \mathrm{mc} \end{gathered}$	10 to 625	$\begin{aligned} & 30 \text { to } \\ & 460 \mathrm{of} \end{aligned}$	$\begin{gathered} 0.09 \mu h \text { to } \\ 130 \mathrm{mh} \end{gathered}$
$\begin{gathered} 800 n t 0 n \\ 190 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 20 \mathrm{mcto} \\ & 260 \mathrm{mc} \end{aligned}$	5 to 1200	$\begin{aligned} & 7.5 \mathrm{to} \\ & 100 \mathrm{pt} \end{aligned}$	$\begin{aligned} & 4 m \mu h \text { to } \\ & 8,5 \mu 6 \end{aligned}$
Modd	Fraq, rampd	1 rabda	$\angle 0$ ranes	
$\begin{gathered} \hline \text { Boomion } \\ 4800 \mathrm{~A} \end{gathered}$	5 cps to 500 kc	$\begin{aligned} & \text { ln to } \\ & 10 \mathrm{ma} \end{aligned}$	$\begin{aligned} & -180^{\circ} 10 \\ & +180^{\circ} \end{aligned}$	
$\begin{gathered} \mathrm{hp} \\ 803 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 55 \mathrm{mc} \mathrm{c}^{\boldsymbol{*} \cdot \mathrm{e}} \text { to } \\ & 500 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 20 \text { to } \\ & 20000 \end{aligned}$	$\begin{gathered} -90^{\circ} 60 \\ +90^{\circ} \end{gathered}$	

Fmay oxtanded downward to $\& k c$ with extemal oscillator

* useiul over range 5 me to 1000 me with reduced $\angle 8$ sange and securacy

Figura 4. Measurement range-hp Q maters, RX meter, UHF and RF Impedance bridges

4800A VECTOR IMPEDANCE METER

Provides direct-reading impedance measurements continuously, 5 cps to 500 kc

Advantages:

Direct-reading $Z<\theta$ measurements 5 cps to 500 kc over 10^{7} impedance range
Direct-reading L-C measurements over 10^{11} range
No balance or nulling required
Analog outputs for automatic impedance/ frequency plotting
Provides Q measurements by Δf method
Minimum rest signal for measuring non-linear devices
Solid-state modular plug-in construction
The Boonton 4800 A Vector Impedance Meter is a unique self-contained instrument providing direct-reading impedance measurements continuously from 5 cps to 500 kc . In operation, the unknown component or circuit is connected to the measuring terminals, the frequency of measurements is selected on the front-panel control, and an instantaneous readout of impedance magnitude (Z) and phase angle $(\angle \theta)$ is presented on the two front-panel meters. No balancing or nulling adjustments are required, permitting fast, accurate measurements over the instrument's entire range.

Analog outputs directly proportional to impedance mag. nitude (Z), phase angle ($\angle \theta$) and frequency also are provided, so that, by simple connection to an $x-y$ recorder, direct-reading plots of impedance as a function of frequency can be obtained. These outputs also may be used to actuate limit switches or operate digital or expanded scale voltmeters for special applications.

The 4800 A also will function as a direct-reading L-C meter covering ranges of inductance and capacitance of 10^{11}. In operation, one of several specific frequencies are selected as indicated on the front-panel dial and inductance (L) in microhenries or capacitance (C) in microfarads is determined by multiplying the reading of the impedance magnitude (Z) meter by an appropriate power of 10.

The 4800A also will function as a Q Meter over the entire range from 5 cps to 500 kc by employing the " Q by delta $\mathrm{f}^{\prime \prime}$ approach. In this method, the 3 db frequency bandwidth is measured and Q is readily computed as the ratio of this bandwidth to the center frequency $\left(Q=\frac{\text { fo }}{\triangle f}\right)$. For convenience, the impedance magnitude (Z) meter includes an additional scale calibrated directly in $d b$, and an oscillator monitor output is provided to permit precise frequency measurements on an external frequency counter.

Functionally, measurements are performed on the lower impedance ranges by applying a constant curcent to the unknown and reading the voltage developed across it, which is proportional to impedance magnitude (Z). On the higher impedance ranges, a constant voltage is applied across the unknown, and the cucrent Bow is measured. The voltage level applied across the unknown has been cacefully minimized so that non-linear devices may be measured under small-signal conditions. Phase angle is measured with a spachronous detector reading the difference between the
phase of the current bowing through the unknown and the phase of the voltage across it.

Solid-state circuitry is employed throughout for maximum reliability. All active circuits are designed on plug.in printed wiring boards for convenient accessibility.

Tentative specifications

Frequency characterlstics

Total range: 5 cps to 500 kc ; number bands: 5 ; band sanges: 5 to $50 \mathrm{cps}, 50$ to $500 \mathrm{cps}, 0.5$ to $5 \mathrm{kc}, 5$ to 50 kc , 50 to 500 kc .

Monitor output

Level: 2 volts rms minimum; source impedance: 600 ohms.
Recorder output: available as Option 01., voltage source suitable for driving external x - y recorder.

Impedance measurement characteristics
Total range: 1 ohm to 10 megohms; number ranges: 7 ; ranges (Full-scale): 10 ohms, 100 ohms, 1000 ohms, 10 K ohms, 100 K ohms, 1 M ohms, 20 M ohms.
Recorder output: available as Option 01., voltage or current source for driving external $x-y$ recorder.

Phase angle measurement characteristics
Total range: 0 to 360°; number ranges: 2; ranges (full scale): $0 \pm 90^{\circ}, 0 \pm 180^{\circ}$.
Recorder output: available as Option 01., voltage or current source for driving external $x-y$ recorder.

Inductance measurement characteristlcs
Total range: $1 \mu \mathrm{~h}$ to 100,000 henries; number ranges: 11 ; ranges (full scale): $10 \mu \mathrm{~h}, 100 \mu \mathrm{~h}, 1 \mathrm{mh}, 10 \mathrm{mh}, 100$ $\mathrm{mh}, 1 \mathrm{~h}, 10 \mathrm{~h}, 100 \mathrm{~h}, 1 \mathrm{Kh}, 10 \mathrm{Kh}, 100 \mathrm{Kh}$.

Capacitance measurement characteristics

Total range: 0.1 pf to $10,000 \mu f$; number ranges: 11 ; ranges (full scale): $1 \mathrm{pf}, 10 \mathrm{pf}, 100 \mathrm{pf}, 0.001 \mu \mathrm{f}, 0.01$ $\mu \mathrm{f}, 0.1 \mu \mathrm{f}, 1 \mu \mathrm{f}, 10 \mu \mathrm{f}, 100 \mu \mathrm{f}, 1000 \mu \mathrm{f}, 10,000 \mu \mathrm{f}$.

Input (terminal) characteristics
Input configuration: unbalanced high and low measuring terminals, plus common and separate chassis ground permitting dc biasing of measuring circuit against case.

Physical characterlstics

Mounting: cabinet for bench use; readily adaptable for $19^{\prime \prime}$ rack mounting.
Finlsh: gray engraved panel; blue cabinet (other finishes available on special order).
Dimenslons: $163 / 4^{\prime \prime}$ wide, $5.7 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep ($425 \times 133 \times 416 \mathrm{~mm}$).
Welght net $25 \mathrm{lbs}(11,3 \mathrm{~kg})$; shipping $36 \mathrm{lbs}(16,2 \mathrm{~kg})$.
Power: 100 to 130 or 200 to $260 \mathrm{v}, 50$ to $60 \mathrm{cps}, 15 \mathrm{w}$.
Price: available on request.

260A Q METER
 Direct-reading expanded scale for \mathbf{Q} measurement to 10

The direct-reading expanded scale of the Boonton 260A Q Meter permits measurement of Q down to 10 and also permits reading of very small changes in Q resulting from the variation of the test parameter.

The Q meter was first designed and introduced as a means of measuring the Q or "figure of merit" of coils. Improved models and broadened applications have kept pace with new measuring needs, and today the Q meter is recognized as a flexible general-purpose device with a large number of uses.

Circuit technique

The Q meter consists of a self-contained, continuously variable, stable oscillator, whose controlled and measured output is applied in series with a series-tuned, resonant circuit. A vacuum tube voltmeter with high input impedance is connected across the internal variable capacitor portion of the tuned circuit to measure the reactive voltage in terms of circuit Q. The coil portion of the tuned circuit is connected externally and represents the unknown to be measured. By inserting low impedances in series with the coil or high impedances in parallel with the capacitor, the parameters of unknown circuits of components can be measured in terms of their effect on the circuit Q and resonant frequency.

Usefulness, special features of the 260A

The 260A is typical of these instruments. It is useful for direct reading of circuit Q on its parallax-free meter. From such measurements, the distributed capacity, effective inductance and self-resonant frequency can be determined. On capacitors, capacitance from 0.1 pf to $100 \mu \mathrm{f}$ and Q from 10 to 10,000 can be evaluated from measurements made with and without the component connected. Capacitor selfresonant frequency also can be determined.

Effective if resistance, inductance or capacitance, and Q of resistors also may be determined, and, used on IF and rf transformers, the 260A will measuce effective impedance, Q, coefficient of coupling, mutual inductance and frequency response. The Q meter also is useful for making measurements of dielectric constant and dissipation factor on insulating materials.

The Boonton 260 A utilizes a rugged thermocouple operating at half rated power; oscillator output is factory. adjusted to avoid overload. Both these features guard against accidental thermocouple overload. Through the use of an internal regulating transformer and an electronically regulated power supply, the operation of the instrument is not affected by normal power line fluctuations.

Teflon insulation has been provided for 260A terminals, providing mechanical stability and low electrical loss. The oscillator output is controlled by varying the screen grid voltage of the oscillator tube to obtain smooth operation, as well as good waveshape. A 0.02 -ohm annular insertion resistor is used to improve 260A accuracy. Provision is made for use of an external oscillator to supply the Q meter through a matching transformer (Boonton 564A) to provide operation below 50 kc down to 1000 cps . A scale also is provided to read inductance directly at selected frequencies.

Specifications

Radlo frequency characteristics

RF range: cotal range: 50 kc to $50 \mathrm{mc}, 1 \mathrm{kc}$ to 50 kc (with external oscillator); number bands: 8; band ranges: 50 to $120 \mathrm{kc}, 120$ to $300 \mathrm{kc}, 300$ to $700 \mathrm{kc}, 700$ to 1700 kc , 1.7 to $4.2 \mathrm{mc}, 4.2$ to $10 \mathrm{mc}, 10$ to $23 \mathrm{mc}, 23$ to 50 mc .

RF accuracy: $\pm 1 \%$ approximately.
RF callbration: increments of approximately 1%.
Q measurement characteristics
Q range: rotal range: 10 to 625 : low range: 10 to 60 ; \triangle sange: 0 to 50.
Q accuracy: $\pm 5 \%, 50 \mathrm{kc}$ to $30 \mathrm{mc} ; \pm 10 \%, 30 \mathrm{mc}$ to 50 me (for circuit Q of 250 read directly on indicating meter).
Q callbratlon: main scale: increments of 5 from 40 to 250 : low scale: increments of 1 from 10 to $60 ; \Delta$ scale: increments of 1 from 0 to 50 ; XQ scale: increments of 0.1 from 1 to 1.5 and increments of 0.3 from 1.5 to 2.5 .
Inductance measurement characteristles
L range: $0.09 \mu \mathrm{~h}$ to 130 mh (effective inductance), direct reading at six specific frequencies.
L accuracy: $\pm 3 \%$ (for resonating capacitance $>100 \mathrm{pf}$ and inductance $\gg \mu \mathrm{b}$).
Resonating capacitor characteristics
Capacltor range: main: 30 to 460 pf ; vernier: -3 to +3 pf .
Capactor accuracy: main: $\pm 1 \%$ or 1 pf . whichever is greater; vernier: $\pm 0.1 \mathrm{pf}$.
Capacitor callbration: main: 1 pf increments 30 to 100 pf, s pf increments 100 to 460 pf ; vernier: 0.1 pf increments.

Physical characterlstles

Mounting: sloping front cabiner, for bench use.
Finlsh: gray wrinkle, engraved panel (other finishes avail. able on special osder).
Dimensions: $20^{\prime \prime}$ wide, $121 / 2^{\prime \prime}$ high, $81 / 2^{\prime \prime}$ deep ($508 \times 317 \times$ 216 mm).
Welght net $40 \mathrm{lbs}(18 \mathrm{~kg}$); shipping $5 S \mathrm{lbs}(24.8 \mathrm{~kg})$.
Power: 260A: 95 to 130 volts, $60 \mathrm{cps}, 65$ watts; 260 AP : 85 to 130 volts, $50 \mathrm{cps}, 65$ watts.
Accessorles available: 103A Inductors, 513/518A Q Stand.
ards, 564A Coupling Unit.
Price: Boonton 260A, AP, $\$ 990$.

103A INDUCTORS, 513A, 518A Q STANDARDS, 564A COUPLING UNIT

Reference inductors, calibration standards, coupling transformer for Q meters

103A Inductors

The Boonton 103A Inductors are designed specifically for use in the Q circuit of the 160 A and $260 \mathrm{~A} Q$ Meters, for meas. uring the of characteristics of capactors, insulating materials, resistors, erc. Price: Boonton 103A, $\$ 17.75$ each: set of 16 inductors for $260 \mathrm{~A}, \$ 255$; set of 17 inductors for $160 \mathrm{~A}, \$ 270$.

Specifications, 103A

Boenton madel	Induotanoe	Approx. resomant frequengy for tunling oapaclance of:			Approx. 0	Cagacttenoe g1
		400 pf	100 pf	50 pf		
103.41	- $1 \mu \mathrm{~h}$	8	16	20 mc	180	6
103.A2	- $2.5 \mu h$	5	10	14 mc	200	6
103-A5	$5 \mu \mathrm{~h}$	3.5	7	10 mc	200	8
103 - 111	$10 \mu h$	2.5	5	7 mc	200	δ
103.A12	25 uh	1.5	3	4.5 mc	200	6
103.A15	$50 \mu \mathrm{~h}$	1.1	2.2	3 mc	200	6
103-A21	$100 \mu \mathrm{~h}$	800	1600	2000 kc	200	5
103-A22	$250 \mu \mathrm{~h}$	500	1000	1400 kc	200	6
103.A25	$500 \mu h$	350	700	1000 ke	170	7
103.A31	1 mh	250	500	700 kc	170	7
103.A.32	2.5 mh	150	300	450 kc	170	8
103.A35	5 mh	110	220	300 kc	160	8
103.A41	10 mh	80	160	200 kc	140	9
103-A42	25 mh	50	100	140 kc	110	9
		100 pf		35 pl		
103.A50	- $0.5 \mu \mathrm{~h}$	20 mc		35 mc	225	5.5
103.A51	$\bigcirc 0.25$ 山h	30 mc		50 mc	225	5.5
103-A52	$0.1 \mu h$	45 mc		75 mc	225	3.5

513A Q Standards

Boonton $513 \mathrm{~A} Q$ Standards arc shielded reference inductors which bave accurately measured and highly stable inductance and Q characreristics. Specinca!ly designed for use with rhe 160A and 260A Q Meters. the Q standards are particularly useful as a means for checking the overall operation and ac. curacy of these instruments, as well as for providing precisely known supplementary Q circuir inductance desirable for mant impedance measurements by the parallel method. Price. Boonron 5i3s, 597 each.

Nomlnal valuas for Boonton 613A			
$\mathrm{L}-250 \mu \mathrm{~h}$ $\mathbf{C d . 8} \mathrm{nt}$ 0.5 mc l mc Q_{θ} 190 250 O_{i} 183 224			

Actual values of all these quantites are mapred on the nome plate of the o standand: with the unit in the 0 clreult, approximate resonant ireouencles of 500. 1000 and 1500 kc are obtsined with funling capacilances of 400, 100 and 50 pf , respectively.

518A Q Standards

Boonton 518A Q Standards, used in conjunction with the s13A Q Standards, provide frequency coverage from 50 kc to 50 mc - the entire tange of the 260 A Q Meter. These units are useful as precision inductors and as a fast, convenient means for checking the overall operating accuracy of Q meters. Price: Boonton 518A, 897 each; set of five 518 A and one 513A, s525.

Specifications, 518A

Boonton model	518-41	$518 . \mathrm{A}^{2}$	618-A3	518.A4	818-A6
Inductance	$0.25 \mu \mathrm{~h}$	$2.5 \mu \mathrm{~h}$	$25 \mu h$	2.5 mh	25 mh
Low frea. data fiequency	15 mc	5 mc	1.5 mc	150 kc	50 kc
Resonating C	420 pl	395 pt	$440 \mathrm{p}{ }^{\prime}$	440 Df	400 pl
Indicated Q	175	195	175	170	90
Middle-fiea. data Frequency	30 mc	10 mc	3 mc	300 kc	100 kc
Resonating C	100 pf	95 pl	105 pr	100 pf	85 of
Indicated Q	235	235	225	180	130
High-freq. datá Fiequency	45 mc	15 mc	4.5 mc	450 kc	150 kc
Resornating C	80 pl	40 ol	45 pl	40 pl	35 pl
Indicated 0	225	205	230	135	125

(Table shows nominal values)

564A Coupling Unit

The 56ta Coupling Transformer Unit is designed to couple the output of an external oscillator into the 160 A or 260 A Q Meter for the purpose of extending the operation range of the Q meter to the low•frequency region. By means of the coupling unit and an auxiliary oscillator, the Q meter may be operated down to a low.frequency limit of 1 k . . The oscillaror should supply a variable voltage of 22 volts maximum into an imped. ance of 500 ohens Price: Boonton $56+\mathrm{A}, 539.75$.

190A Q METER, 590A INDUCTORS

Direct Q measurements, 20 to 260 mc

190A Q Meter

The Boonton 190A Q Meter finds applications similar to those described for the 260A Q Meter (page 108), but in the uhf range of frequencies. This instrument does not have a thermocouple, but employs a special coupling impedance to introduce volrage across the serses-tuned, resonant circuit. This voltage, as well as the reactive voltage developed across the internal Q capacitor, is measured by two high-impedance, low input capacitance vacuum tube voltmeters and indicated on a single front-panel parallax-free meter.

Specifications, 190A

Radio frequency characteristlcs
RF range: total range: 20 to 260 mc ; number bands: 4; band ranges: 20 to $40 \mathrm{mc}, 40$ to $80 \mathrm{mc}, 80$ to 160 mc , 160 to 260 mc .
RF accuracy: $\pm 1 \%$.
RF callbration: increments of approximately 1%.

Q measurement characteristics

Q range: total range: 5 to 1200 ; low range: 10 to 100 ; \triangle range: 0 to 100.
Q accuracy: $\pm 7 \% 20$ to $100 \mathrm{mc} ; \pm 15 \% 100$ to 260 mc (for circuit Q of 400 read directly on indicating meter).
Q calibratlon: main scale: increments of 10 from 50 to 400; low scale: increments of 2 from 10 to 100; \triangle scale: increments of 2 from 0 to $100 ; \mathrm{XQ}$ scale: increments of 0.1 from 0.5 to 1.5 , inccements of 0.5 from 1.5 to 3.

Resonating capacitor characterlstics
Capacitor range: 7.5 to 100 pf .

Capacitor accuracy: $\pm 0.2 \mathrm{pf}, 7.5$ to $20 \mathrm{pf} ; \pm 0.3 \mathrm{pf}$. 20 to 50 pf ; $\pm 0.5 \mathrm{pf}, 50$ to 100 pf .
Capacitos calibration: 0.1 pf inccements.
Accessories available: 590A Inductors.
Physical characteristics
Dimensions: $131 / 8^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $91 / 2^{\prime \prime}$ deep (333x $267 \times 241 \mathrm{~mm}$)
Weight: net $25 \mathrm{lbs}(11,3 \mathrm{~kg}$); shipping $32 \mathrm{lbs}(14,4 \mathrm{~kg})$. Power: 190A: 95 to 130 volts, 60 cps , 55 watts; 190 AP : 95 to 130 volts, $50 \mathrm{cps}, 55$ watts. Price: Boonton 190A, AP, $\$ 1075$.

590A Inductors

Boonton 590A Inductors are designed specifically for use in the Q Circuit of the 170A and 190A Q Meters for measuring the radio-frequency characteristics of capacitors, resistors, and insulating materials. They have general usefulness as reference coils and may be used for periodic checks to indicate any considerable change in the performance of the Q meters.

Specifications, 590A

$\begin{aligned} & \text { Boon- } \\ & \text { ton } \\ & \text { model } \end{aligned}$	Induotanea $\mu \mathrm{h}$	Capasitanca pf	Approx. Pasonant treq mo.	Approx. Q	Approx. distelburted C pf
590.Al	0.05	95-7.5	70-230	350	1.5
590-A2	0.1	95-7.5	50-160	320	1.7
$590 \cdot \mathrm{~A} 3$	0.25	100-7.5	30-100	380	2.3
590.A4	0.5	80-7.5	25-70	360	2.3
590-AS	1.0	60-7.5	20-50	350	2.9
590-A6	2.5	15-8.0	20-30	330	2.9

Price: Boonton 590A, $\$ 17.75$ each; $\$ 95$ for complete set of six.

250A RX METER

Completely self-contained rf bridge, 500 kc to 250 mc

The Boonton 250A RX Meter is a completely selfcontained instrument for use in measuring the equivalent parallel resistance and capacitance or inductance of two terminal networks. The instrument's design includes an accurate, continuously tuned oscillator, high-frequency bridge, amplifier-detector and null indicating meter.

The oscillator, which is carefully designed to minimize temperature effects, is mounted inside a rigid casting in order to obtain a high degree of accuracy, stability and low leakage. A long-life sub-miniature triode is used, and the unit is cacefully shielded to ayoid any leakage of signal to the amplifier-detector by any path other than through the bridge. The high-frequency bridge is also mounted inside a
casting and is specially designed to minimize the effects of coupling between arms.

Quality variable components

All calibrated variable elements of the bridge are special low-inductance, high-quality variable capacitors driven by anti-backlash gears. Connections to the unknown impedance are arranged for almost zero lead length. Convenient, easily adjusted bridge balance controls are available.

The amplifier-detector null indicator has high, automatically controlled gain and a very low noise level. The power supply is internally regulated.

Specifications

Radio frequency characteristics

RF range: total range: 500 kc to 250 mc ; number bands: 8; band ranges: 0.5 to $1 \mathrm{mc}, 1$ to $2 \mathrm{mc}, 2$ to 4 mc , 4 to $9 \mathrm{mc}, 9$ to $21 \mathrm{mc}, 21$ to $48 \mathrm{mc}, 48$ to $110 \mathrm{mc}, 110$ to 250 mc .
RF accuracy: $\pm 1 \%$.
RF calibration: increments of approximately 1%.

Resistance mbasurement characterlstics

Resistance range: 15 to $100,000 \mathrm{ohms}$.
Resistance accuracy: $\pm\left[2+\frac{\mathrm{F}}{200}+\frac{\mathrm{R}}{5000}+\frac{\mathrm{Q}}{20}\right] \%$ ± 0.2 ohm; $F=$ frequency (mc),$R=R X$ Meter R_{p} reading (ohm), $Q=\omega C R \times 10^{-12}$, where $C=R X$ Meter C_{p} reading (pf).
Resistance calibration: increments of approximately 3% throughout most of range.

Capacitance measurement characteristics

Capacitance range: 0 to 20 pf (may be extended through use of auxiliary coils).
Capacitance accuracy: $\pm\left(0.5+0.5 \mathrm{~F}^{2} \mathrm{C} \times 10^{-5}\right) \%$ $\pm 0.15 \mathrm{pf} ; \mathrm{F}=$ frequency (mc), $\mathrm{C}=\mathrm{RX}$ Meter C_{p} reading (pf)
Capacitor calibration: 0.1 pf increments.

Inductance measurement characteristics

Inductance range: $0.001 \mu \mathrm{~h}$ to 100 mh (actual range depends upon frequency; auxiliary resistors employed).
Inductance accuracy: basic accuracy is capacitance accuracy given above.

Measurement voltage level

RF: 0.05 to 0.75 v approx., depending upon frequency (may be reduced to 20 mv by installation of auxiliary potentiometer).
DC: 0 v ; (external dc current up to a 50 ma , may be passed through RX meter terminals).
Accessories available: 515A Coax Adapter Kit (designed
to permit connection to the RX meter bridge circuit of
any coaxial transmission line or fixture fitted with a Type
" N " male connector), 549.50 ; 13510A Transistor Test Jig
(provides.a convenient means for measuring Y param-
eters $Y_{11 b}, Y_{11 e}$, and $Y_{2 m e}$ of transistors on the RX meter
over the frequency range of 500 kc to 250 mc), $\$ 195$.
Physical characteristics
Dimensions: $20^{\prime \prime}$ wide, $10^{\prime \prime}$ high, $12^{\prime \prime}$ deep ($508 \times 254 \times$ 305 mm).
Weight: net $40 \mathrm{lbs}(18 \mathrm{~kg})$; shipping $50 \mathrm{lbs}(22,5 \mathrm{~kg})$.
Price: Boonton 250A, $\$ 1795$.

803A VHF BRIDGE, 417A VHF DETECTOR

Fast, accurate impedance measurements

Model 803A VHF Bridge provides direct impedance measurements from 55 to 500 mc by sampling the electric and magnetic fields in a transmission line. Two attenuators are controlled simultaneously; one receives energy proportional to the electric field in the transmission line, and the other receives energy proportional to the magnetic field. The magnitude of the unknown impedance is determined by adjusting this combination for equal output from each attenuator. The two equal signals also are applied to opposite ends of another transmission line, and phase angle is found from theit point of cancellation. This method permits fast, accurate impedance measurements without the cumbersome calculations required to convert slotted line swe to impedance.

Specifications, 803A

Measuremant range: impedance magnitude, 2 to 2000 ohms; higher and lower values may be measured by using a known length of transmission line as an impedance transformer; phase angle from -90° to $+90^{\circ}$ at 55 mc and above.
Calibration: impedance, directly in ohms; phase angle, directly in degrees at 100 mc ; may be readily computed at other frequencies: phase angle (actual) $=$ phase angle (read) \times frequency (mc) $/ 100$.
Accuracy (over range 55 to 500 mc): impedance magnitude, better than $\pm\left(5+\frac{\text { frequency mc }}{500}\right) \%$;
phase angle, better than $\pm\left(3+\frac{\text { frequency } \mathrm{mc}}{500}\right)$ degrees; graphs are provided with each instrument so that magnitude readings may be corrected to better than $\pm 2 \%$ and phase angle to better than $\pm 1.2^{\circ}$ over the rated frequency range.
Frequency range: maximum accuracy 55 to 500 mc ; use. ful down to 5 mc and up to 1000 mc ; maximum measureable phase angle at 5 mc is -8.8° to $+8.8^{\circ}$.

External n generator: requires an amplitude-modulated rf signal source with at least 1 mw outpur; for better resolution, a $10 \mathrm{mw}, 100 \%$ amplitude-modulated, if signal source is recommended; (608 C VHF Signal Generator, pages 182, 183, is ideal for this purpose).
RF detector, requires a well shielded vhf receiver of better than $5 \mu v$ sensitivity; (417A VHF Derector is designed for this use).
Dimensions: $141 / 4^{\prime \prime}$ wide, $151 / 4^{\prime \prime}$ high, $9^{\prime \prime}$ deep ($362 \times$ $387 \times 229 \mathrm{~mm})$.
Weight: net $28 \mathrm{lbs}(12,6 \mathrm{~kg}$); shipping $41 \mathrm{lbs}(18,6 \mathrm{~kg})$.
Accessories furnished: one 803A-16D Cable Assembly; one 803A-16E Cable Assembly; one 11512A Shorting Plug. Price: hp 803A, \$1250.

Model 417A VHF Detector is a super-regenerative (AM) receiver covering all frequencies between 10 and 500 mc in 5 bands. Designed for use with the hp 803A VHF Bridge, the 417 A provides a high sensitivity of approximately S microvolts over the entire frequency band. It has a single, convenient frequency control directly calibrated in megacycles.

Specifications, 417A

Frequency range: 10 to 500 mc , continuous coverage, 5 bands; calibrated directly in mc.
Sensitivity: approx. 5 mv over entire frequency range.
Power: 115 or 230 volts $\pm 10 \%, 50$ to $1000 \mathrm{cps}, 35$ watts.
Dimenslons: $91 / 4^{\prime \prime}$ wide, $121 / 2^{\prime \prime}$ high, $9^{\prime \prime}$ deep ($235 \times 318 \times$ 229 mm).
Weight: net $18 \mathrm{lbs}(8,1 \mathrm{~kg})$; shipping $28 \mathrm{lbs}(12,6 \mathrm{~kg})$.
Accessories avaliable: 11001 A Cable Assembly, $\$ 5.50$; 10503A Cable Assembly, $\$ 6.50$; 803A-16E Cable Assembly. \$9.
Prlce: hp 417A, \$550.

803A

ANALOG MEASURING EQUIPMENT

Voltage, current and resistance measurements are easy, fast and accurate with electronic instruments using meter movements. Most electronic voltmeters, ammeters and ohmmeters use rectifiers, amplifiers and other circuits to generate a current proportional to the quantity being measured, which, in rum, drives a meter movement. Devices of this type are called analog instruments.

The meter movements in these instruments consist of a pointer artached to a coil, which usually is supporred by pivors and jewels. Hewletr-Packard substitutes a taut-band suspension, in place of pivors and jewels, in its high-accuracy instruments. The moving coil in the taut-band meter mechanism is suspended on a platinum alloy ribbon, eliminating friction and repeatability problems. In order to eliminate tracking error on mass-produced meters, an automatic system, developed by Hewlett-Packard, custom-calibrates and photographically prints meter faces to match exactly the linearity character. istics of each individual meter movement at all points. Figure i shows scales for two different meters printed by HewlettPackard's calibrator on one face. By combining in hp produced taut-band meter movement with custom calibration, outstanding ruggedness and precision are inherent in all meter movements which are produced, in volume, for Hew. lett-Packard's electronic instruments.

Figure 1. Scales for two different meters printed by Hewlett-Packard's calibrator on one tace.

Some of the operating principles of Hewlett-Packard's electronic instruments for measuring E, I and R are outlined briefly here to help the user select the proper instrument for his application.

DC voltage measurements

The dc voltmeter represents a straightforvard application of electronics to measuring instruments. This instrument usually has a direct-coupied amplifier preceding the meter movement, as shown in Figure 2. The amplifier performs two important functions. First, it increases the input impedance of the meter, so that the instrument draws negligible current from the circuit under rest. Because of the amplifier, the electronic volumeter
is a voltage-driven device, whereas the simple meter movement is a current-operated device. This distinction is important, since the voltage in many circuits can be altered by the current required for operating a meter movement alone.

Figure 2. Basle de voltmetar circult.
A second amplifier function is to increase the effective sensitivity of the meter movement. An amplifier changes the measured quantiry into a corrent of sufficient magnitude to deflect the merer. An amplifier also limits the maximum curcent supplied to the meter movement, so that there is little danger that unex. pected overloads will burn out the meter movement.

The hp 410 C is represencative of this class of instruments, including do voltage measurements among its capabilities. Input impedance is typically 100 megohms, offering negligible loading effect on most circuits under kest. The 410 C uses a chopper-stabilized amplifier which minimizes the drift characteristic of direct. coupled amplifiers. Because of the low drift rate of this circuit, no zero-set control is required. The measuring range of the 410 C is from 15 millivolts full scale. to 1000 volts.

A widely used rechnique for eliminating drift in low-level measurements is to convert the de into a comparable ac sig. nal by alternately applying and removing the de signal. The resulting chopped signal is amplified in ac amplifiers and then synchronousiy rectified at a high level for operating the merer movement. Overall de feedback assures accuracy of the de gain. DC drift is reduced to a value set by the input chopper. The hp 410 C uses this principle in its de mode of operation.

The chopper technique also is used in the hp 425A High-Sensitivity DC Voltmerer. The most sensitive scale on this instrument reads 10 microvoles end scale (the raut-band merer face on this instru-
ment has a center-scale zero, for use as a null indicator).

The 425A photo-conductive chopper converts the de to a comparable ac by shining light on phoro-sensitive resistors periodicaily. This results in a low-noise, high-impedance chopper action.

The same technique is used in the versatile 412 A Volt-Ohm-Milliammerer which, without a zero-set control, still mainains 1% voltage measurement accuracy. The same circuitry also is adapted to the 413 A DC Null Volmeter which. like the hp 425 A , has a center-scale zero. for use as a null detector.

The new hp solid state 419A DC Null Voltmeter has $0.1 \mu \mathrm{v}$ resolution, with 18 ranges from $3 \mu \mathrm{v}$ to 1000 volts. An internal adjustable bucking voltage allows the operator to null the inpur signal with a front-panel controt, to eliminate the effects of loading by the nullmeter on the $3 \mu \mathrm{v}$ to 300 mv ranges. This de null voltmeter is powered by rechargeable batteries. Refer to page 132 for details,

Automatic ranging dc voltmeter

The new solid-state Hewlett-Packard 414A Auromatic Ranging Volt-Ohm. meter provides the "touch-and read" convenience of a digital instrument with the economy of an analog instrument. Range changing and polarity selection both are automatic and take less than 300 milliseconds, providing rapid, accurate "hands ifree" measurement of voltage or resistance. A choppèr-stabilized de amplifier, input artenuator. gain attenuator and metering circuit form the basic circuit, which is illustrated in Figure 3. Range changing decisions are indicated by means of a lighted display and are based on two signal levels, one near full scale on a given range and the other ar one-fourth full scale. An amplitude comparator produces an "up-range signal" whenever the input voltage tends to rise above the level which is near full scale and a "down-range signal" whenever the input voltage tends to fall below the level near one-fourth full scale. Range switching and indicating logic are a set of four multivibrators, which define the twelve ranges of the instrument.

DC current measurements

For most measurements of appreciable amounts of dc current, the meter movement, by itself, serves the purpose admirably. In these cases, the meter coil requires relatively few rurns to generate sufficient magnetic flux for deflecting the meter pointer. For lower current meas. urements, though, the sensitivity of the meter movement must be increased, usually by using more turns in the coil.

Figure 3. 8lock diagram of ho 414A Automatic-Ranging Voltmeter.

These added turns increase the resistance of the current path, which can be troublesome in low-impedance circuits.

Electronic instruments overcome this difficulty by measuring the small voltage drop across a low value resistance placed in series with the current to be measured. The hp 412A and 425A Volemeters are equipped with interna! calibrated shunt resistors for reading dc currents in this way without accessory equipment. These instruments cover the range from 10 pa to 1 ampere full scale (412A, 1μ to 1 amp full scale; $425 \mathrm{~A}, 10$ pa to 3 ma full scale; 410C, 7.5μ a to 150 ma full scale).

Current measurements using a series resistor have the obvious disadvantage of interrupting the circuit under test. In many applications, insertion of a resistance in the line of current flow may alter the current being measured or even alter the circuit operation. To overcome this difficulty, the hp 4288 Clip-on DC Milliammeter uses current probes which simply clip around the current-carrying wire and measure direct currents from 0.1 ma to 10 amperes without interrupt. ing the circuit.

These probes use the second-harmonic flux gate principle to sense magnetic flux around the wire. (Refer to Figure 4.) The probe encircles the wire with a mag. netic core which is saturated periodically by a 20 kc driving current. Saturation interrupts the magnetic circuit, thus ef. fectively "gating" any flux induced in the core by current in the wire. This gated ac flux couples to sensing coils on the core, inducing a 40 kc voltage proportional to the current in the wrre. The instrument's circuitry amplifes the coil voltage and drives the indicating meter accordingly. High linearity is achieved by using negative de feedback current, balancing input ampere-turns against feedback ampererturns.

The hp 428 B enables current measure. ments to be made as easily as voltage measurements, requiring no alteration of the circuit under test.

The clip on probes are finding wide use in solid-state circuir measurements,
where current flow has to be monitored carefully. Sensitivity is such that even base current can be measured. There are a variety of other uses, such as measuring the current in ground loops, where the impedance is too low for the series-resistance technique to be applied.

A unique feature of these probes is that the sums and differences of currents in several wires can be determined by running the wires through the probe at the same time. This technique is useful for balancing push-pull amplifier stages, by running the two plate leads in opposite directions through the probe and then adjusting for a null on the current meter. The Model 3528A Current Probe allows current measurements in conductors up to $2 \frac{1}{2}$ inches in their maximum dimensions. Such conductors are not limited to wires, but can be pipes, multiconductor cables, leadsheathed cables or microwave waveguides. With this large aperture probe, difficult-tomeasure quantities, such as corrosion current in small structural members, circulating dc and low-frequency currents in ground straps and waveguides, can easily be determined. Low'frequency current to 300 cps is measured by connecting an oscilloscope or ac voltmeter to the 428B recorder ourput.

The hp 3529A Magnetomerer Probe is an accessory to the 428 B which allows measurements of magnetic feld intensity and direction. The conversion factor of the 3529 A is $1: 1$, producing a reading from the 428 B in milliamps which is

Figure 4. Simplified block diagram of clip-on milliammeter. Plus and minus signs indicate polaritios of voltages induced by gated flux. which is proportional to current in wire. Bridge is balanced for 20 kc driving slgnal but is not balanced for induced 40 ke slgnal.
directly equal to the measured field strength in milligauss. The hp 3529A is useful in acoustica! design and other Zeeman effect investigations.

Resistance measurements

Resistance is usually determined through the familiar Ollm's relation: $E=I R$. Traditionally, this is done by applying a known voltage, E, to the unknown resistance, R, and then measur. ing the cursent. I. passing through it. With E and I know'n, R can be com. puted.

A modified procedure for doing this with electronic voltmeters is shown in Figure 5. Here, the current flowing in the circuit depends on the series combination of the unknown resistor R_{λ} and the internal resistor R_{i}. This means, of course, that both the voltage and current in the external circuit will change according to the value of the unknown. Instruments which include the olimmeter functions, such as the hp $410 \mathrm{~B}, 410 \mathrm{C}, 412 \mathrm{~A}$ and 414 A have taut-band meters with scales individually calibrated to accounr for this. If R_{x} were infinite, the meter arould read the full battery voltage E_{1}. Full-scale deflection, therefore, would correspond to a resistance of infinity. If R_{x} were zero (short circuit) the merer would read zero. The mid.scale range then occurs when R_{x} equals R_{1}

Figure 5. Resistance measurement with on electronic voltmeter.

The resistance R_{i}, included as part of the ohmmeter, provides a convenient means of changing the range of the instrument. The 410 C has mid-scale resistance readings ranging from 10 ohms to 10 megohms in seven ranges. The 414 A employs a feedback stabilized current source which allows the use of a linear ohms scale and avoids a special meter scale for resistance measurements. The resulting meter scales are easy to read.

When values of low resistance are being measured, the finite resistance of the ohmmeter leads, included in the total resistance measurement, can concribute considerable error. To meet this problem (Figure 6) the resistance of the cucrent-carrying leads is calibrated as part of K_{i}, while the resistance in the voltmeter leads is insignificant, compared to the high input impedance of the meter. ing circuit. This arrangement, using four

Figure 6. Measurement of low-value resist. ances.
leads, is found in the hp Model 412A.
To measure extremely low resistances, such as found in short lengths of large wite or in relay contacts, a constant current source, such as the hp 726AR Power Supply, may be used to supply a fixed amount of current through the unknown resistance. A sensitive voltmeter (hp 425A, for example) then is used to meas. uce the voltage drop across the resistance being measured. With this combination, resistance measurements as low as one micro-ohm may be made.

High resistance measurements can be disturbed by the inpedance of the meas. uring voltmeter when this impedance is comparable to the resistance being measared. The 412 A accounts for this by adjusting the value of R_{1} on the highresistance ranges to compensate for the voltmeter imput impedance. On the 100 megohm scale, for example, R_{i} is actually 200 megohms. The parallel combination of the 200 -megohm R_{1} and the $200-$ megohm input impedance of the meter gives effective internal impedance of 100 megohms.
For very high resistances, a high voltage is applied to the unknown, and the current flow is measured on a sensitive current meter. For instance, the most sensitive current range of the 425 A , used with a 500 -volt supply, such as the hp 711 A , can measure resistances as high as 5×10^{14} ohms.

AC voltage measurements

Electronic instruments for measuring ac voltages also use an amplifer with the meter movement but add a rectifier circuit to convert the ac to dc. Meterindicating ac voltmeters built by HewlettPackard fall into three broad categories: average-responding. peak-responding and rms-responding meters.
The circuit principle of the averagereading meter is shown in Figure 7. Here, the ac sigual is amplifed in a gainstabilized ac amplifier and then is rectibed by the diodes. The resulting current pulses drive the meter. The meter deflection is proportional to the average value of the waveform being measured.
The peak-responding voltmeter, shown

Figure 7. Avarage-rasponding voltmeter.
diagrammatically in Figure 8, places the recrifer in the input circuit, where it charges the small input capacitor to the peak value of the input signal. This volt-

Figure 8. Peak-responding voltmeter.
age is passed to a de amplifier, which drives the meter. Meter deflection here is proportional to the peak amplitude of the input waveform.

Both of these meters (average. responding and peak-responding) have scales calibrated such that the rms value of a sine-wave input voltage is indicated, since the meters are used primarily for sine-wave measurements. The averageresponding type, therefore, reads 1.11 times higher than the average voltage, while the peak-responding type indicates 0.707 of the peak voltage. Consequently. both meters may be in error if the measured signal is not a pure sine wave. The amplitude and phase of the harmonics present affect the peak and average values of the waveform, upsetting the rms calibration. The average-reading voltmeter is not affected by distortion as much as the peak-reading type is. However, if highly complex waveforms are to be measured, then a true rms-responding voltmeter is recommended. Write or ask for hp Application Note 60 for additional information concerning measurement erros from barmonics or other sparious voltages.
The widely used hp 400 Series Vacuum Tube Voltmeters are average-responding meters. The 400 D is a low-priced precision voltmeter, offering voltage ranges from 1 mv to 300 v full scale, 2% ac. curacy and a frequency coverage from 10 cps to 4 mc . The 400 H is similar, but offers 1% accuracy and has a taut-band custom-calibrated sainch, mirror-backed meter.
The 400 L also bas the same circuitry and a s-inch miczor-backed scale, but, in this case, the meter movement is logazithmic. The 400 L scale is evenly divided into db units for the convenience of acoustical and communications engineers. The new 400 E and 400 EL Solid-State $A C$ Voltmeters are average-responding voltmeters offering voltage ranges from 1 mv to 300 v rms full scale, covering a frequency range from 10 cps to 10 mc .

The portable, solid-state, battery-operated 403 A and 403 B are, likewise, aver-age-responding meters.
The peak-responding meters are used for higher frequency measurements because of their lower input capacitance. The capacitance to ground of the input circuit and probe of a voltmeter must be included as part of the input impedance. This capacitance acts as a high-frequency by-pass to the input resistance and limits the frequency range of most ac voltmeters.
Since the diode rectifier of peak-responding voltmeters is placed in the probe tip preceding the amplifier, shortening the signal path, the ac capacitance is low. Input capacitances of one to three picofarads are characteristics of these instruments. The hp 410C general-purpose vacuum tube voltmeter uses a special probe for high-frequency ac measurements and employs a diode expressly designed for hp. The frequency range of this instrument is from 20 cps to more than 700 mc .

The extension of this technique into the millivolt range is impractical because of the non-linear response of diodes at low signal levels. A variation of the rectifying technique is required to eliminate the diode non-linearity. The 411A RF Millivoltmeter does this by using two diodes. The most sensitive scale on the hp 411 A is 10 millivolts over a range of 500 kc to 1 gc . Sensitivity of 1 millivolt over a range of Ikc to I gc will be available soon from Hewlect-Packard. This new instrument, designated the Model 3406A, uses broadband sampling techniques.

As mentioned previously, complex waveforms are measured most accurately by an rms-responding voltmeter, Mathematically, the root-mean-square (rms) value of any complex quantity is obtained by summing the squares of each component and then taking the square root of this sum.
This operation is performed by sensing rhe waveform's heating power, which is proportional to $\left(\mathrm{E}_{\mathrm{rmA}}\right)^{2}$. The indicating circuitry responds to the square root of the heating power. Heating power is measured by feeding an amplified version of an input waveform to the heater of a thermocouple, the voltage output of which is proportional to the waveform's heating power.

Previously, the primary difficulty with that technique has been the non-linear behavior of the thermocouple, slow response and burnout, which complicate the calibration of the indicating meter. The new hp 3400A True RMS Voltmeter overcomes this dificulty with the use of rwo thermocouples mounted in the same thermal environment. Non-linear effects
in the measuring thermocouple are cancelled by similar non-linear operations of the second thermocouple.

Figure 9. True rms-respanding voltmeter.
As shown in the block diagram of Figure 9, the amplified input signal is applied to the measuring thermocouple, and a dc feedback voltage is fed to the balancing thermocouple. The de voltage is derived from the voltage output difference between the thermocouples. The circuitry may be looked upon as a feedback control system which matches the heating power of the dc feedback voltage to the input waveform's heating power. Meter defection is proportional to the ds feedback voleage. which, in turn, is proportional to the rms of the input signal. The meter indication, therefore, is linear.

This arrangement allows the Model 3400A to provide highly accurate readings of the rms value of complex waveforms. Full-seale accuracy is maintained with waveforms having crest factors (ratio of peak-to-rms) as high as 10:1. At 10% of full-scale deffection, where there is less likelihood of amplifier satu-
ration, waveforms with crest factors as high as 100:1 are accommodated.

The 3.600 A reads voltages throughout a range of $100 \mu \mathrm{v}$ to 300 v tms within a frequency range of 10 cps to 10 mc .

AC current measurements

$A C$ current measurements can be made by the use of a sensitive ac voltmeter and a series resistance, as described under "DC current measurements." HewlettPackard calibrated shunt resistors are designed for use with the 400 series meters, making these instruments direct-reading in current units. The 11029A-11034A shunt resistors are described on pages 138, 139.

The hp 456A Current Probe enables ac current to be measured without disturbing the circuit. This probe clips around the wire carrying the current to be measured and, in effect, makes the wire the one-turn primary of a trans. former formed by ferrite cores and a many-turn secondary within the probe. The signal induced in the secondary is amplified in a battery-operated solid-state amplifier, and the amplifer's voltage output can be applied to any suitable ac voltmeter for measurement. The amplifier constants are chosen so that 1 ma in the wire being measured produces 1 mv at the amplifier output. Current, therefore, is read directly on the voltmeter.

The basic specifications for HewlettPackard analog volmeters are sum. marized in Table 1. These types of volt. meters may be summarized as follows:
(1) For measurements involving dc applications, select the instrument with the broadest capability meet. ing your requirements.
(2) For ac measurements involving sine waves with only modest amounts of distortion ($<10 \%$), the average-responding voltmeter provides the best accuracy and most sensitivity per dollar.
(3) For high-frequency measurements ($>1 \mathrm{mc}$), the peak-responding voltmeter with the diode probe input is the most economical choice. Peak-responding circuirs are acceptable if inaccuracies caused by distortion in the input waveform can be tolerated.
(4) For measurements where it is important to determine the effective power of waveforms that depart from a true sinusoidal form, the true rms-responding volmeter is the appropriate choice.
(s) For very wide bandwidths and high-sensitivity measurements of sinusoidal or non-sinusoidal wave. forms the new hp 3406A Sampling Voltmeter is the appropriate choice.

Table 1. Which voltmeter to select.

Instrument	Primary usas	Frequenay rangei Typleal aceuraoy	Voltage or ourtent range	Input mpedance	Refer to page
$\begin{aligned} & 400 \mathrm{D} .{ }^{*} \\ & 400 \mathrm{H}_{1}^{*} \\ & 400 \mathrm{~L}^{*} \end{aligned}$	Wide-range ac measurements, high sensitivity, amplifier, log voltages	$10 \mathrm{cps} 104 \mathrm{mc} ; 1 \%$	0.001 to 300 v full scale, 12 ranges	$10 \mathrm{meg} ; 25 \mathrm{pf}$ shunt	118, 119
$\begin{aligned} & 400 E^{\star} \\ & 400 \mathrm{E}{ }^{*} \end{aligned}$	Log voltages, linear db measurements, amplifier, converter	10 cps to $10 \mathrm{mc} ; 1 \%$	0.001 to 300 v full scale, 12 ranges	$10 \mathrm{meg} ; 25$ pf shumt	120, 121
403A ${ }^{\text {\% }}$	Battery-operafed portable; fast, accurate, hum-free ac measurements	1 cps to $10 \mathrm{mc} ; \pm 3 \%$	0.001 to 300 v fult scale, 12 ranges	2 mes; 40, 20 pf shunt	126
4038**	AC voltage measurements in lab or field, ac line or battery operation	5 cos to $2 \mathrm{mc} ;=2 \%$	I my to 300 v full scale	2 megohms	126
410B**	Audio, rf, whf measurements: dic voltages; resistances	$\begin{gathered} \hline \mathrm{dc} ; 8 \mathrm{zc}, 20 \operatorname{cps} \text { to } 700 \mathrm{mc} ; \\ \pm 3 \% \end{gathered}$	dc, I to 1000 v full scale ac, 1 to 300 v full scale	dc. 122 megohms ac, 10 megohms/l. 5 pf	129
4100**	DC voltage; resistance, current; audio, rf, whi measurements with ac probe	$\begin{gathered} \mathrm{dc}: \mathrm{ac}, 20 \cos \text { to } 700 \mathrm{mc} ; \\ \pm 2 \% \end{gathered}$	de v, 15 mv to 1500 v full scale, dc amps, 1.5 нa to 150 má full scale, ac $v, 0.5$ to 300 v full scale	$d c, v, 100$ megohms ac, 10 megohms $/ 1.5 \mathrm{pI}$	128
$411 A^{* *}$	Millivolt, dt readings to gC range	500 xc tolge $;=3 \%$	10 mv to 10 v full scale, 7 ranges	typically 200 K at $1 \mathrm{mc}, 1 \mathrm{~V}$	123
412A	Precision voltage, current resistance measurements	$d \mathrm{c} ; \pm 1 \%$	$\begin{aligned} & \text { I mv to } 1000 v \text { full scale, } 1 \mu \text { to } \\ & \text { l amp } \end{aligned}$	10 to 200 megohms, depending on range	134
413A	$\overline{D C}$ null meter, dC voltmeter, amplifier	de; $\pm 2 \%$	1 mv to 1000 v full scale، 13 ranges	10 to 200 megohms, depending on range	133
414A	Automatic ranging volt-ohm. meter	$d \mathrm{c} ; \pm 0.5 \%$	5 mv to 1500 v full scale, 12 ranges	10 to 100 megohms. depending on range	130
419A	DC nullmeter, de voltmeter, recorder, amplifier	$d \mathrm{~d}:=2 \%$	$\begin{aligned} & =3 \mu v \text { to }=1000 v, \text { I8 ranges } \\ & 0.1 \mu v \text { resolution } \end{aligned}$	100 K to 100 megohms, depending on range	132
425A	Read $\mu \mathrm{v}, \mu \mu \mathrm{a}$; 100 db amplifier; medical, biological, physical, chemical	de voltages: 100 db amolifier; $=3 \%$	$10 \mu \mathrm{v}$ to 1 V full scale, $10 \mu \mathrm{~B}$ to 3 ma full scale	$1 \mathrm{msgohm} \pm 3 \overline{\%}$	135
4288	Clipan milliammeter; ;ecorder output	dc on meter, de to 400 cps on recorder; $=3 \%$	I ma to 10 amps full scale, 9 ranges		136
3400A	True ims readings of complex ac waveforms;crest factor $10: 1$	10 cps to $10 \mathrm{mc} ;=1 \%$	0.001 to 300 v full scale	10 megohms, 15, 40 of shunt	122
3406*	Millivolt, db readings to gc range	l kc to $1 \mathrm{gc} ;$	1 mv to 1 volt rms, 7 ranges	100 K ohms at 100 kc	124, 125

400D, 400H, 400L VACUUM TUBE VOLTMETERS

Highest quality, highest accuracy linear and log voltmeters

Advantages:

Exceptional long-term stability
Large voltage range; high sensitivity
Broad 10 cps to 4 mc frequency coverage
$400 \mathrm{H}, 400 \mathrm{~L}$ custom-calibrated to eliminate tracking ecror
Taut-band meter
High 10 -megohm input impedance
Premium quality throughout; easy to service
Usable as a stable, high-gain amplifiet
Large overvoltage capacity

Uses:

Research and development laboratory
Production test
Communications
Service departments

On these pages Hewlett-Packard presents three of the industry's most widely used vacuum tube voltmeters. Basical. ly similar instruments, Models $400 \mathrm{D}, 400 \mathrm{H}$ and 400 L have specific characteristics which render them suited to given applications.

Model 400D is essentially a low-priced precision vole. meter offering wide voltage range, 2% accuracy and the broad frequency coverage 10 cps to 4 mc .
Model 400 H is an adaptation of Model 400 D but offering individual meter-face calibration and the extreme accuracy of 1% on an extra large $3^{\prime \prime}$ mirror-scale meter.

Model 400L, a logarithmic version of Model 400D, has an accuracy of $\pm 2 \%$ of reading or $\pm 1 \%$ of full scale, whichever is more accurate. The $5^{\prime \prime}$ meter is mirror-backed.

Custom-calibration

The Model 400 H and 400 L are custom-calibrated to eliminate tracking error. Scale tracking error is one of the major and inherent causes of inaccuracy in a voltmeter, but this has been eliminated, on a production basis and at $n 0$ extra cost to the buyer, in these precision hp iastruments. To eliminate tracking error, hp developed an automatic system which custom-calibrates and photographically prints a meter face to match the linearity characteristics of each individual meter movement. A taut-band meter movement (Instead of pivots and pivels, the moving coil in the tautband meter mechanism is suspended on a platinum alloy ribbon - eliminating friction and insuring excellent repeatability.) and custom-calibration offer ruggedness, precision and maximum accuracy.

General features

Models 400D, H , and L are engineered to give you the best possible combination of measuring accuracy, frequency and voltage range, and the trouble free service life you expect from hp - in short, perhaps the best multi-purpose voltmeters available.

An important feature of each is the hp-developed ampli. Ger providing approximately 60 db of feedback at midrange. This assures highest stability and freedom from calibration change due to external conditions.

High stability

Stability long term is such that a reduction in the G_{m} of the amplifier tubes to 75% of nominal value causes an error of less than 0.5%, 50 cps to 1 megacycle. And even line voltage variations as high as $\pm 10 \%$ cause negligible change.

Other features common to these three rugged voltmeters include a high 10 -megohm input impedance, preventing loading to circuits under test, generous overload protection guarding the instruments even against peaks of 600 volts, special circuitry minimizing transients during switching, premium quality construction throughout, and output circuitry permitting the voltmeters to be used as broadband, high.gain amplifiers throughout their full frequency range.

High-accuracy, log models

As indicated above, Model 400 H is similar to Model 400 D but offers 1% accuracy. Details of accuracy at various frequencies are found in the table.
Designed specifically for acoustical and communications engineers and for those working with decibel measurements, 400 L incorporates a special logarithmic meter movement. The log voltage scale and unusually long scale length provide an instrument of maximum readability and accuracy which is a constam percentage ($\pm 2 \%$) of reading. The decibel scale is more than $5^{\prime \prime}$ long, and voltage scales spread across the full scale length. The meter is mirror-backed for utmost accuracy. A range switch changes voltage sensitivity in 10 db levels. This feature, with the 12 db scale, provides the wide overlap desirable in decibel level measurements.

Special db-measuring options, accessories

As normally supplied, Models 400 D and 400 H read direct in volts and db , with the voltage scale uppermost. For greater resolution in db measuring, these instruments are available as Models 400 D Option 01. and 400 H Option 01. ($\$ 25$ extra) with the db meter scale uppermost.

See page 263 for line matching bridging transformers and page 139 for capacitive voltage dividers and other useful accessories for hp vacuum tube voltmeters. A complete voltmeter calibration system and an ac current probe are described on page 140.

Specifications

	4000, DR	400H, HR	400L, LR
Voltage range:	1.0 my to 300 v full scale, 12 ranges		
Frequency range:	10 cos to 4 mc		
Accuracy: (as 7 of full scale on 400D,DR and $400 \mathrm{H}, \mathrm{HR}$)	$\pm 2 \%, 20 \mathrm{cps} 101 \mathrm{mc} ;$ $=3 \%, 20 \mathrm{cps}$ to 2 mc ; $\pm 5 \%, 10 \operatorname{cps}$ to 4 mc	$\begin{aligned} & \pm 1 \%, 50 \mathrm{cps} 10500 \mathrm{hc} ; \\ & =2 \%, 20 \mathrm{cps} \text { to } 1 \mathrm{mc} \\ & \pm 3 \%, 20 \mathrm{cps} \text { to } 2 \mathrm{mc} ; \\ & =5 \%, 10 \mathrm{cps} \text { to } 4 \mathrm{mc} \end{aligned}$	$=2 \%$ of reading or $\pm 1 \%$ of full scale, whichever is more accurate, $50 \cos$ to $500 \mathrm{kc} ; \pm 3 \%$ of reading or $\pm 2 \%$ of full scale, $20 \operatorname{cps}$ to $1 \mathrm{mc} ; \pm 4 \%$ of reading or $\pm 3 \%$ of fuli scale, $20 \cos$ to $2 \mathrm{mc} ; \pm 5 \%$ of reading, 10 cps to 4 mc
Long-term stability:	reduction in G_{m} of amplifier tubes to 75% of nominal value results in error of less than $0.5 \%, 50 \mathrm{cps} 10 . \mathrm{mc}$		
Calibration:	reads ims value of sine wave; voltage indication oroportional to average value of applied wave; linear voltage seales 0 to 3 and 0 to 1 ; db scale -12 $\mathrm{to}+2 \mathrm{db}(0 \mathrm{db}=1 \mathrm{mw}$ in 600 hms$) ; 10 \mathrm{db}$ interval between ranges		reads ims value of sine wave: logarithmic voltage scales 0.3 to 1 and 0.8 to 3: Ifnear of scale, -10 db to +2 db (based on $0 \mathrm{db}=1 \mathrm{mw}$ in 600 ohms); 10 db intervals between ranges
Input impedance:	10 megohms shunted by 15 pf on ranges 1 to $300 \mathrm{v} ; 25 \mathrm{pt}$ on ranges 0.001 to 0.3 v		
Amplifier :	output approx. 0.15 v max; internal impedance 50 0hms; max. gain approx. 150 on 0.001 range		
Power:	115 or 230 volts $\pm 10 \%, 50$ to 1,000 cps ; approx. 80 watts (100 watts for $400 \mathrm{H}, \mathrm{L}$)		
Dimensions:	cabinet mount: $71 / 2^{\prime \prime}$ wide, $11 \frac{1}{2}{ }^{*}$ nigh, 12^{7} deep ($191 \times 292 \times 305 \mathrm{~mm}$): rack mount: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $10 / /^{*}$ deep behind panel ($483 \times 389 \times 276 \mathrm{~mm}$)		
Weight:	net $18 \mathrm{lbs}(8,1 \mathrm{~kg}$, shipping $23 \mathrm{los}(10,3 \mathrm{~kg}$) (cabinet mount); net $21 \mathrm{lbs}(9,45 \mathrm{~kg}$, shioping 30 lbs ($13,5 \mathrm{~kg}$) (rack mount)		
Price:	hp 4000, \$250* hp 4000R. $\$ 255^{* *}$	hp 400H, \$325* hp 400HR, $\$ 330^{* *}$	$\begin{aligned} & \text { hp 400L, } \$ 325^{*} \\ & \text { hp } 400 \mathrm{LR}, \$ 330^{* *} \end{aligned}$

*Cabinet **Rack Mount

400E,EL AC VOLTMETERS

Measure 10 cps to $10 \mathrm{mc}, 1 \mathrm{mv}$ to 300 v

Advantages:

10 megohms input impedance
Constant low input capacity
DC recorder output
High-gain amplifier
100-division individually calibrated
taut-band meters
Front-panel relative switch allows reference adjustments for relative measurements
Large overload capacity
Outstanding long-term stability
Solid state
Compact

The hp 400E,EL Solid-State AC Voltmeters are ruggedly built solid-state precision instruments for measuring ac voltages from 1 millivolt to 300 v rms full scale. They cover a frequency range from 10 cps to 10 mc and have constant 10 megohm input impedance on all ranges. The instruments are simple to operate and give direct voltage and dbm readings.
These ac voltmeters have exceptional long-term stability because their calibration is not dependent on active component parameters which are subject to aging. The $400 \mathrm{E}, \mathrm{EL}$ also may be used as stable, high-gain ac amplifiers or ac-to-dc converters.

The 400 E has all the characteristics mentioned above with 1% accuracy on a $41 / 2^{\prime \prime}$ mirror-backed taut-band meter. The meter scale is individually calibrated for its particular movement with 100 divisions to give an added measure of readability.

The $400 E L$ has all the characteristics above with 1% of reading accuracy on a linear db logarithmic voltage meter scale. This meter is also individually calibrated with 120 divisions and is ideal for db measurements.

The specifications in the chart on the next page show these compact, lightweight, solid-state voltmeters will give premium performance at an economical price.

Circuít description

The Model 400E,EL AC Voltmeters use high-gain amplifers having high stability and wide bandwidth. The solid-state metering circuit is stabilized by an overall feedback loop to provide maximum stability. The impedance converter circuit also uses a large amount of overall feedback. These features insure a high degree of accuracy independent of line voltage changes or other external effects. Additionally, the overall feedback technique provides a stable high-gain, wideband ac amplifier with a 50 -ohm output impedance.

AC-to-DC converter

The Models $400 E, E L$ provide a de output proportional to meter deflection which can be used to drive a potentiometer or galvanometer recorder. This de output is available at the rear paoel of the instrument.

Easy to use

A front-panel range switch which changes sensitivity in 10 db steps, combined with the db calibration of the meter, permits reading of dbm directly without calibration or conversion from -72 to +52 dbm ($0 \mathrm{dbm}=1$ milliwatt into 600 ohms). In addition, the 10 db range spacing provides 2 voltage scales so that readings are always greater than one-third full scale. Consequently, the highest possible readability and accuracy are provided.

Logarithmic model, 400EL

The hp 400 EL is designed for greater resolution in db measurements. This instrument is useful for acoustical and communications applications. It incorporates an hp tautband mirror-backed logarithlnic meter movement. For utmost accuracy, the meter scale is individually calibrated, using the new hp logarithmic metec calibrator. The meter scale provides maximum readability and a constant $\pm 1 \%$ of reading accuracy. The decibel scale is more than $43 / 8^{\prime \prime}$ long, and voltage scales spread across the full length. A range switch changes sensitivity in 10 db steps which, combined with the 12 db scale, provides the overlap desirable in decibel level measurements.

Options and accessories

Special db-measuring options-The Model 400 E reads directly in volts and db , with the voltage scale uppermost. The Model 400 E (Option 01.) with db scale uppermost is recommended for greater resolution in db measurements. Refer to figure 1.

Figure 1. Meter face on Model 400E (Option 01.),
Relative signal reading opiton-Available on special order, the 400 E , EL (Option 02.) provides a front-panel relative control allowing a 3 db reduction in sensitivity on each calibrated range. This feature enables the user to set the meter to a convenient level for relacive voltage measurements. The control is detented in the calibrate position to disconnect the relative circuitry and to ensure calibration accuracy.

Accessories-Refer to page 263 for line matching and bridging transformers; and page 139 for capacitive voltage dividers. Other useful accessories for the hp 400 series voltmeters are the 456A AC Current Probe described on page 140 .

AVAILABLE

LATE 1965

Tentative specifications

hp Model	4005						400EL					
Voltage range	1 mv 10300 vfull scale, 12 ranges											
Frequency range	10 cps to 10 mc											
Accuracy	per cent of full scale						per cent of reading					
	range	$\pm 1 \%$	$\pm 2 \%$	-3\%	* 5 \%	$=3 \mathrm{db}$	range	玉 1%	=2\%	=3\%	$\pm 5 \%$	$\pm 3 \mathrm{db}$
	1 mv	$\begin{gathered} 100 \mathrm{cps}- \\ 500 \mathrm{kc} \end{gathered}$	50 cos . 1 mc	$\begin{array}{r} 20 \mathrm{cos} \\ 2 \mathrm{mc} \\ \hline \end{array}$	$\begin{array}{r} 20 \mathrm{cps} \\ 4 \mathrm{mc} \\ 4 \end{array}$	$\begin{gathered} 10 \mathrm{cps} \\ 8 \mathrm{mc} \end{gathered}$	1 mv	$\begin{aligned} & 100 \mathrm{cps}- \\ & 500 \mathrm{kc} \end{aligned}$	$\begin{gathered} 50 \mathrm{cps}- \\ 1 \mathrm{mc} \end{gathered}$	$\begin{gathered} 20 \mathrm{cps}- \\ 2 \mathrm{mc} \end{gathered}$	$\begin{gathered} 20 \mathrm{cos}- \\ 4 \mathrm{mc} \end{gathered}$	$\begin{aligned} & 10 \mathrm{cps}- \\ & -8 \mathrm{mc} \end{aligned}$
	$3 \mathrm{mv}-100 \mathrm{v}$	$\begin{gathered} 40 \mathrm{cps}- \\ 1 \mathrm{mc} \end{gathered}$	$\begin{array}{r} 20 \text { cps } \\ 2 \mathrm{mc} \end{array}$	$\begin{gathered} 15 \mathrm{cps} \\ 4 \mathrm{mc} \end{gathered}$	$\begin{aligned} & 10 \mathrm{cps}- \\ & 10 \mathrm{mc} \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \mathrm{cps}- \\ & 15 \mathrm{mc} \end{aligned}$	$3 \mathrm{mv} \cdot 100 \mathrm{v}$	$\begin{aligned} & 40 \mathrm{cps}- \\ & 1 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 20 \mathrm{cps} . \\ & 2 \mathrm{mc} \end{aligned}$	$\begin{gathered} 15 \mathrm{cps}- \\ 4 \mathrm{mc} \end{gathered}$	$\begin{aligned} & 10 \mathrm{cos}- \\ & 10 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 10 \mathrm{cos}- \\ & 15 \mathrm{mc} \end{aligned}$
	300 v	$\begin{aligned} & 40 \mathrm{cps}- \\ & 500 \mathrm{kc} \end{aligned}$	$\begin{gathered} 20 \mathrm{cps}- \\ 1 \mathrm{mc} \end{gathered}$	$\begin{gathered} 15 \mathrm{cps} \\ 2 \mathrm{mc} \\ \hline \end{gathered}$	$\begin{gathered} 10 \mathrm{cps}- \\ 4 \mathrm{mc} \end{gathered}$	$\begin{aligned} & 10 \mathrm{cps}- \\ & 10 \mathrm{mc} \end{aligned}$	300 v	$\begin{aligned} & 40 \mathrm{cos} \\ & 500 \mathrm{kc} \end{aligned}$	$\begin{gathered} 20 \mathrm{cps}- \\ 1 \mathrm{mc} \end{gathered}$	$\begin{gathered} 15 \mathrm{cps}- \\ 2 \mathrm{mc} \end{gathered}$	$\begin{gathered} 10 \mathrm{cps}- \\ 4 \mathrm{mc} \end{gathered}$	$\begin{aligned} & 10 \mathrm{cps}- \\ & 10 \mathrm{mc} \end{aligned}$
Calibration	reads rms value of sine wave; voltage indication proportional to absolute average value of applied wave; linear voltage scales 0 to 1 and 0 to 3 ; db scale -12 to $+2 \mathrm{db}, 10 \mathrm{db}$ between ranges						reads ims value of sine wave; vollage indication propertional to absolute value of apolied wave; linear do scale, -10 dt to $+2 \mathrm{db}, 10 \mathrm{db}$ tetween ranges; logarithmic valtage scales 0.3 to 1 and 0.8 to 3					
Input impedance	10 megohms shunted by 25 pf on all ranges, 1 mv to 300 v											
AC-to-DC converter output	I v de for full-scale meter indication; output impedance, 1 K ohm											
Amplifier ac oulput	150 mv rms for full-scale meter indication; output impedance, 50 ohms											
AC power	115 or 230 volts $\pm 10 \%, 50$ to 1000 cps, approx. 5 watts											
External battery operation	terminals are provided on rear panel; positive and negative voltages between 28 v and 50 v are required; current drain from each voltage is 40 ms											
Dimensions	standard hp $1 / 3$ module, $51 / 8^{*}$ wide, $61 / 2^{2}$ high, 11^{*} deep ($130 \times 165 \times 279 \mathrm{~mm}$)											
Weight	net $71 / 4 \mathrm{lbs}(3,3 \mathrm{~kg}$) : shipping $11 \mathrm{lbs}(5 \mathrm{~kg})$											
Accessories available	IO110A BNC male-lo-dual-banana female, $\$ 5$; llo01A Cable, $45^{\prime \prime}$ long, male-8NC-to-dual-bananz plug, $\$ 5.50 ; 10503 \mathrm{~A}$ Cable, 4^{\prime} long, male $8 N C$ connectors, $\$ 6.50$; 11002A Test Lead, dual banana-plug-to-alligator clips, $\$ 7.50$; 1 1003A Test Lead, dual banena-plug-toprobe and alligator clip. $\$ 10 ; 456 \mathrm{~A}$ AC Current Probe, I mv/1 ma, $\$ 190$; Il056A Handie Kit for $400 \mathrm{E}, \mathrm{EL}$, $\$ 5$											
Price	on request											
Option 01.	read directly in volts and of with the of scale uppermost											
Option 02.	front-panel relative control allows a 3 db reduction in sensilivity on each calibrated range											

3400A RMS VOLTMETER

Fast, accurate true rms measurements

Model 3400A RMS Voltmeter is a rugged precision instrument which measures the actual root-mear-square value of ac voltages which are between $100 \mu \mathrm{v}$ and 300 v rms and in the frequency range of 10 cps to 10 mc . These voltages may be sinusoidal or non-sinusoidal and have crest factors (ratio of peak to ems) as high as 10 at full-scale deflection and as high as 100 at 10% of full-scale deflection. The ability of the hp 3400A to accept waveforms having such large crest factors insures that your measurements will be accurate, even when measuring non-sinusoidal waveforms such as noise and pulse trains, without the need for correc. tion factors.

Built-in protection

Model 3400A withstands overloads of 40 db (or 425 v tms, whichever is less) on each range. This reduces the possibility of damage to the instrument, and protective circuitry prevents thermocouple burnout. The 3400 A is extremely simple to operate because it requires no zero-set control and voltages are read from a linear voltage scale or in dbm . The voltmeter's 10 -megohm input resistance minimizes circuit loading. In addition, the meter scale has a mirror back for precise readings. Each meter face is customcalibrated in a Hewlett-Packard-developed servo system which prints the meter scales to the specific taut-band meter movement used in each hp 3400 A.

Model 3400 A supplies a dc voltage from a rear-panel connector that is proportional to the rms value of the input signal. Because of the high stability and linearity of this dc signal, you may use it to drive accessory equipment such as $x-y$ and strip-chart recorders for permanent records and plots, or to drive a digital voltmeter such as the hp $405 C R$ (page 153) or hp 3440A (pages 150-152) for high. resolution measurements. You also can measure the rms value of an ac current merely by using the hp 456A Current Probe (page 140). The jaws of the 456A, which sample the magneric field about a conductor, are simply clamped around the conductor without breaking the circuit and with. out disturbing the measured circuit. Model 456A produces a 1 mv - output for a 1 ma input; consequently, the 3400 A 's scales may be read directly withour scale conversion.

Specifications

Range: 12 full scale ranges from 1 mv to 300 v in a $1,3,10 \mathrm{se}$. quence; -72 to +52 dbm (usable indications to $100 \mu \mathrm{v}$).
Meter scales: voltage, 0.1 to 1 and 0.3 to 3 ; decibel, -12 to +2 $\mathrm{dbm}(0 \mathrm{dbm}=1 \mathrm{mw}, 600$ ohms $)$; scales are individually cali. brated to the meter movement.
Frequency range: 10 cps to 10 mc .
Accuracy: within $\pm 1 \%$ of foll scale, 50 cps to 1 mc ; within $\pm 2 \%$ of full scale from 1 to 2 mc ; within $\pm 3 \%$ of full scale, 2 to 3 mc ; within $\pm 5 \%$ of full scale from 10 to 50 cps and from 3 to 10 mc (usable readings to s eps and 20 mc).
Response: responds to rms value (heating value) of the inpur signal for all waveforms.
Crest tactor (ratlo of peak amplitude to rms amplitude): 10 to 1 at full scale, inversely proportional to pointer defection. e.g.. 20 to 1 at half-scale, 100 to 1 at tenth-scale.
Maximum input: 425 v ms .

Input Impedance: from 0.001 v to 0.3 v range: 10 megohms shunted by 40 pf ; from I v to 300 v range: 10 megohms shunted by 15 pf .
Response time: typically <2 sec to within 1% of final value for 'a step change.
Overload protection: 40 db or 425 v mm , whichever is less, on each range.
Output: negative 1 v de at full-scale deflection, proportional to poinrer defection open circuit (from 10 ro 100% of full scale); 1 ma maximum; nominal source impedance is 1000 ohms.
Power: I 15 or $230 \mathrm{v} \pm 10 \%$, 50 to 60 cps , approximately 7 w .
Dimenslons: $51 / 8^{\prime \prime}$ wide, $61 / 2^{\prime \prime}$ high, 11 " deep ($130 \times 165 \times 279$ mm).
Weight; net $7 \frac{1}{4}$ lbs ($3,3 \mathrm{~kg}$) ; shipping $11 \mathrm{Ibs}(5 \mathrm{~kg}$).
Accessary furnished: 10110A Adapter, BNC to dual banana jack.
Accessories avallable: 11001A Cable, 45" long, male BNC to dual banana plug, $\$ 5.50 ; 10503$ A Cable, 4 ' long, male BNC connectors, S6.50; 11002 A Test Lead, dual banana plug to alligator clips, $\$ 7.50$; 11003 A Test Leads, dual banana plug to probe and alli. gator clip, $\$ 10 ; 456 \mathrm{~A}$ AC Currenc Probe, $1 \mathrm{mv} / \mathrm{ma}$, $\$ 190$; 11056A Handle Kit for 3400A, $\$ 5$ each.
Price: hp 3400A. $\$ 525$; hp 3400A (Option 01.) spreads out the db scale by making it the top scale of the meter, add $\$ 25$.

411A RF MILLIVOLTMETER

"Touch-and-read" measurement, 3 mv to $10 \mathrm{v}, 500 \mathrm{kc}$ to 1000 mc

Two linear voltage scales in a $1: 3$ ratio and millivolt sensitivity up to 1 gc set the hp Model 411A RF Millivolt. meter apart from previous if voltmeters. Its temperaturecompensated probe results in low drift, even on the most sensitive range, so that you can measure millivolts of rf energy conveniently and with confidence. Model 411A sim. plifies your measurements of voltage from 0.5 to 1000 mc .

Full-scale sensitivity from 10 millivalts full scale to 10 volts full scale is selected in seven 10 db steps, so that most measurements may be made in the upper two-thirds of the scale for greater accuracy. Further, you can read db directly from -42 to +33 for convenient gain measurements. Ac-
cessory probe tips suit it for measurements in many different kinds of circuits.

Further, an output is provided for galvanometer record. ing. Five probe tips have been designed for use with the 411 A , ranging from the BNC open circuit probe tip, furnished with the instrument, to a pen-size probe having retractile alligator jaws for probing conveniently into restricted areas. The probe tips, available individually, are offered along with a spare diode cartridge as a complete set in a compact kit; it provides an immediare and versatile selection to meet all measurement requirements normally encountered.

Specifications

Voltage range: 10 mv rms full scale ro 10 v ms full scale in 7 ranges ; full-scale readings of $0.01,0.03,0.1 .0 .3,1,3$ and 10 v ms .
Frequency range: 500 kc to 1 gc with accessory probe tips; usable indications to 4 gc .
Accuracy: 500 kc to 50 mc , $\pm 3 \%$ of full scale; 50 mc to 150 mc $\pm 6 \%$ of full scale; 150 mc to $1 \mathrm{gc}, \pm 1 \mathrm{db}$ (using appropriate probe tips).
Meter scales: swo linear voltage scales, 0 to 1 and 0 to 3. calibrated in the rms value of a sine wave; db scale, calibrated from +3 to $-12 \mathrm{db} ; 0 \mathrm{db}=1 \mathrm{mw}$ in 50 ohms.
Input resistance: depends on probe tip, frequency and input voltage; trpically 200 K ohms at 1 mc and 1 v rms. (For specific information contact your local hp sales office.)
Probe tip furnished: 11025A BNC Open Circuit Psobe Tip, 500 kc to 500 mc ; shunt capacity: less than 5 pf ; maximum input: 200 V de and 30 v ac p-p; input resistance at 10 me typically 80 K ohms.

Accessories available at additional cost

 Probe tips11022A Pen Type Probe Típ, 500 kc to 50 mc ; shunt capacity: less than 5 pf; maximum input: 200 vdc and $30 \mathrm{\nabla} \mathrm{ac} \mathrm{p}-\mathrm{p}$; input resistance at 10 mc : typically 80 K ohms; $\$ 25$.
11023A VHF Probe Tip, 500 kc to 250 mc ; shunt capacity:
less than 2.5 pf : maximum input: 200 v dc and 30 v ac p-p; input resistance ar 10 mc : rypically 80 K ohmes: $\$ 20$.
11024A Type N "Tee" Probe Tip, 1 mc to 1 ge : swr is less than 1.15 when terminated in 50 ohms; maximum input: 10 vdc and 30 v ac p-p to 250 mc and $15 \mathrm{vac} \mathrm{p}-\mathrm{p}$ from 250 mc to $1 \mathrm{gc}: \$ 40$.
11026A 100:1 Capacity Divider Probe Tip, 500 kc to 250 mc ; division accuracy: $\pm 1 \%$; shunt capacity: 2 pf ; maximum input: ± 1000 volts peak ($\mathrm{dc}+$ peak ac) : 335 .
Probe kit: 11027A Accessory Probe Kit includes the 11022A, 11023A, 11024A, 11026A Probe Tips and a replacement diode carcridge, $5082-5004$. in a convenient storage case: price, $\$ 152.50$.
50.0hm termination: 908A Coaxial Termination, $\$ 35$.

Galvanometer recorder output: proportional to meter defection,
1 ma into 1000 ohms at full-scale deflection.
Power 115 or 230 volts $\pm 10 \%, 50$ to $60 \mathrm{cps}, 35$ warts.
Dimensions: cabinet: $113 / 4^{\prime \prime}$ high, $71 / 2^{\prime \prime}$ wide. $12^{\prime \prime}$ deep ($298 x$ $191 \times 305 \mathrm{~mm}$) ; rack mount: $6.31 / 32^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $10^{3} / 8^{\prime \prime}$ deep behind panel ($177 \times 483 \times 264 \mathrm{~mm}$).
Weight net $12 \mathrm{lbs}(5,4 \mathrm{~kg})$, shipping $18 \mathrm{lbs}(8,1 \mathrm{~kg})$ (cabinet);
net 15 lbs ($6,8 \mathrm{~kg}$), shipping $28 \mathrm{lbs}(12,6 \mathrm{~kg}$) (rack mound).
Price: h_{p} 411A, $\$ 450$ (cabiner) ; $h_{p} 411 A R, \$ 455$ (rack mount).

3406A SAMPLING VOLTMETER

Advantages:

Average-reading sampling voltmeter
Translator
Linear voltage scales
Wide-band operation
High input impedance
Resolve signals as small as $50 \mu \mathrm{~V}$
Retain measured indication
Taut-band meter

Uses:

Make measurements 1 kc to $1 \mathrm{gc}, 1 \mathrm{mv}$ to 1 volt full scale
Measure wideband signals accurately
Versatile probe tips for wide application
Use with true rms or peak-reading devices
The hp Model 3406A provides wide bandwidth (1 kc to 1 gc$), 1$ milfivolt full-scale sensitivity and exceptionally high input impedances through the use of a new incoherent sampling technique. The ability of this sampling voltmeter to accept waveforms having large crest factors insures that measurements will be accurate when measuring non-sinusoidal voltages. Full-scale sensitivity, from 1 millivolt to 1 volt, is selected in seven 10 db steps; signais as small as 50 $\mu \mathrm{V}$ may be resolved. DB may be read directly from - 62 dbm to +13 dbm for gain and power measurements.

Accessory probe tips make the 3406A suitable for measurement in many different kinds of circuits. Voltages in receivers, amplifiers and coaxial transmission lines may be messured. Depressing a pushbutton located on the probe retains the indication on the meter, making it possible to take measurements from awkward positions. A dic output is provided for an external recorder; an ac output is provided for connection to peak, or true rms voltmeters.

COLLECTION
OF PULSES
REPRESENTING

PULSES ASSEMBLED
 AFTER MIXING

Figure 1. New Incoherent sampling technique.

The hp 3406 A uses a new incoherent sampling technique which has many of the advantages of conventional sampling techniques combined with the economy of conventional analog voltmeters.

Figure 1 illustrates the technique used in the hp 3406A. The technique is best explained by representing each sample with a pulse whose height is proportional to the amplitude of the input signal at the instant the sample is taken. The average, rms or peak value of the collection of pulses in Figure 1 (b) differs from the input signal in Figure 1 (a) only by a scale factor. Imagine that these pulses are collected and scrambled. The order in which the pulses appear after being scrambled together results in a waveform similar to Figure I (c). Since the pulses are the same, the average, ims and peak values of this rearranged waveform are identical to the average, rms and peak values of the waveform in Figure 1 (b).

Figure 2. Block dlagram hp 3405A.
Figure 2 illustrates the basic block diagram of the hp 3406 A Sampling Voltmeter. Samples taken in the probe are fed through attenuators and amplifiers to the box-car (zero-order hold) circuit. The hold circuit stores each sample until the next sample is taken. The output of this circuit is available at rear terminals of the 3406A on the 10 mv range and above. This output may be used to obtain true rms measurements when used with an hp 3400 A rms voltmeter (page 122) or peak measurements when used with a peak-reading voltmeter. The output of the box-car circuit is also fed to a special signal processor which contains noise suppression circuits for the lower ranges.

Accessory probe tips are available for use with the 3406A, ranging from the blocking capacitor tip (furnished with the instrument) to a tee-connector for measurements in coaxial lines. The probe tips, available individually or in a complete kit, provide a versatile selection to meet most measurement requirements normally encountered.

The hp 3406A has a pushbutton located on the probe to retain the meter indication when the probe is removed from the circuit. When the pushbutton is released, the 3406 A is operational to make another measurement. This feature makes possible measurements in awkward positions, where it is difficult for the operator to place the probe in the circuit under test and at the same time read the meter.

Two voltage scales are used so that the meter may be read quickly and easily without the confusion of multiple scales. The two scales, calibrated from 0 to 1 and 0 to 3 , permit convenient measurements in the upper two-thirds of the scale and the convenience of 10 db range separation.

AVAILABLE LATE 1965

Tentative specifications

Voltage range: 1 mv to 1 volt full scale in seven ranges; decibels from -50 to $+10 \mathrm{dbm}(0 \mathrm{dbm}=1 \mathrm{mw}$ in 50 ohms); absolute average-reading instrument calibrated to rms.
Frequency range: 1 kc to 1 gc ; useful sensitivity from 100 cps to beyond 2 gc .
Full-scale accuracy: $\pm 3 \%, 10 \mathrm{kc}$ to $100 \mathrm{mc} ; \pm 1 \mathrm{db}, 1 \mathrm{kc}$ to 1 gc .
Input impedance: 100,000 ohms at 100 kc .

Outputs

DC recorder output: 1 ma into 1000 ohms at full scale, proportional to meter deflection.
AC output: provides box-car signal statistically equal to measured signal (on ranges 0.01 volt and above).

Mater scales: voltage, 0 to 1 and 0 to 3 ; decibel, -12 to +3 .
Probe tip furnlshed: 11059 A Blocking Capacitor Tip.
Accessories avallable: 11059A Blocking Capacitor (10,000 pf) Tip; 11060A Blocking Capacitor (100 pf) Tip; 11061A 10:1 Divider Tip; 11062A BNC Tip; 11063A Type 874 'Tee"; 11064 A Probe Kit.

Power. 115 or 230 volts $\pm 10 \%, 50$ to 1000 cps , approx. 10 watts.
Dimensions: standard $1 / 2$ module $61 / 2^{\prime \prime}$ high, $87 / 8^{\prime \prime}$ wide, $111 / 2^{\prime \prime} \operatorname{deep}(165 \times 225 \times 292 \mathrm{~mm})$.
Weight: net $8 \mathrm{lbs}(3,6 \mathrm{~kg})$; shipping $101 / 2 \mathrm{lbs}(4,8 \mathrm{~kg})$.
Prica: on request.

403A,B SOLID-STATE AC VOLTMETERS

Compact, battery-operated, portable

Modeis 403 A and 403 B AC Voltmeters are versatile, generalpurpose instruments for laboratory and production work and are ideal for use in the field, since they are solid stare, battery. operated and portable.

Both measure from 100 microvolts to 300 volts, the 403 A covering 1 cps to 1 mc and the 403 B covering s cps to 2 mc . Both operate from internal batteries and, thus, may be completely isolated from the power line and external grounds, permitring accurate measurements at power line frequency and its harmonics, without concern for beat effects. Isolation from external ground also permits use where ground loops are troublesome. Turnover effect and waveform errors are minimized, because the meters respond to the average value
of the inpur signal.
The 403 B operates from an ac line, as well as from the internal battery pack, and batteries recharge during ac operation. Battery charge may be easily checked with a front-panel switch to assure reliable measurements. Normally, about 15 hours of ac operation recharges the batteries, but an internal adjustment is provided which neasly doubles the charging rate. You can use the Model 403 B while its batteries charge. A sturdy taut-band meter eliminates friction and provides greater. precision and repeatability.
For improved resolution in db measurements, the 4038 (Option 01.) is available. This version spreads out the db scale by making it the top scale of the meter.

Specificatlons

he Model	403 A	4038	403B (Optlon 01.)
Frequency range	1 cps to 1 mc	5 cps 102 mc	5 cps to 2 mc
Accuracy	within $\pm 3 \%$ of fuil scale, $5 \operatorname{cps}$ to 500 kc ; within $=5 \%$ of full scale, 1 to 5 cps and 500 kc to 1 mc	within $=2 \%$ of full scale from $10 \cos$ to I mc; within $=5 \%$ of sull scale from 5 to 10 cps and 1 to 2 mc , excepl $\pm 10 \% 1$ to 2 mc on the 300 v range $\left(01050^{\circ} \mathrm{C}\right.$)*	within $\pm 0.2 \mathrm{db}$ of full scale from $10 \cos$ to 1 mc ; within $=0.4 \mathrm{db}$ of full scale from 5 to 10 cps and 1102 mc , excedt $\pm 0.8 \mathrm{db} \mid$ to 2 me on the 300 v range (0 to $50^{\circ} \mathrm{C}$)*
Nominal input impedance	2 megohms shumted by approx. 40 pl, 0.001 $100.1 v$ ranges; 20 pf, 0.3 to 10 v ranges; $15 \mathrm{pt}, 3010300 \mathrm{v}$ ranges	2 megohms shunted by approx. 50 pf, 0.001 to 0.03 v ranges: $25 \mathrm{pf}, 0.110300 \mathrm{v}$ ranges	same as 4038
Maximem input	600 v peak, 0.3 v and higher ranges; 25 v rms on 0.1 v and lower ranges	500 v peak, 0.3 to 300 v range; 25 v rms . $60 \vee$ peak, 0.001100 .1 v ranges	same as 403B
Power	5 slandard radio-type mercury cells, battery life approx. 400 hours	4 rechargeable batteries, 40 hours' opera. tion per recharge, up to 500 recharging cycles; self-contained recharging circuit functions during operation from ac line	same as 403B
Dimensions	```81/4 " wide, 5y/2" high, 63/g" deep (210 x 140 x 162 mm)```	$\begin{aligned} & 51 /{ }^{\prime \prime} \text { wide, } 6 \cdot 3 / 32^{\prime \prime} \text { high, } 8^{N} \text { deeg (130x } \\ & 100 \times 203 \mathrm{~mm}) \end{aligned}$	same as 4038
Weight	net $43 / 4 \mathrm{lbs}(2.1 \mathrm{~kg})$; shipping 9 lbs (4 kg)	net $61 / 2 \mathrm{lbs}(2,9 \mathrm{~kg}$) ; shipping $10 \mathrm{lbs}(4,5 \mathrm{~kg}$)	same as 403B
Price (batteries furnished)	\$275	\$310	decioe! scale uppermost, \$335

*use 10001A 10:1 Dlvider and 10111A Adspter to retain $\pm 5 \%$ (± 0.4 do) aceuracy whlle masiurling up to $425 v$ rms at 1 to 2 mic.

For all modefs:

Range: 0.001 to 300 v rms full scale, 12 ranges.
Meter: responds to average value of Input wavaform, calibrated in the rms value of a sine wave.

3550A PORTABLE TEST SET Convenient tool for measuring transmission line, system characteristics

This portable test set is designed specifically to measure transmission line and system characteristics such as attenuation, frequency response or gain, and it is particularly useful for lineup and maintenance of multi-channel communication systems.

It consists of a wide-range oscillator, a voltmeter and an attenuator with impedance-matching networks that are mounted in a combining case equipped with a splash-proof cover. The oscillator, voltmeter and attenuator with irs impedance-matching transformer may be used separately, in or out of the combining case. The attenuator is particularly useful with the hp 400 Series Voltmeters to match 135-600 or 900 -ohm lines.

Versatile components

The oscillator has a frequency range of $s \mathrm{cps}$ to 560 kc , and its output is fully floating isolated from instrument case and power line (see 204B, page 254).
The voltmeter (see 403 B , page 126) features a sensitive range, 1 mv full scale, for measuring voltages as small as $100 \mu \mathrm{v}$ rms from s cps to 2 mc . A db scale, which is at the top of the meter face for better resolution, also permits measurement from -75 to +52 dbm .

The patch panel portion of the test set (353A) includes a precision artenuator, variable in 1 db steps to 110 db and two sets of impedance-matching transformers which match both oscillator and voltmeter to 135 -, 600 - and 900 -ohm lines. One set of transformers also terminates the line in 10 K ohms for bridging measurements.

Both oscillator and voltmeter are solid state and operate from their own internal rechargeable barreries or from the ac line. The batteries provide 40 hours of operation berween charges and are recharged automatically during operation from the ac line.

Telephone versions

Two special versions of the 353A available on special order are the hp Model H02.353A and H03.353A Patch Panels designed specifically for the telephone industry. The Model H02 or H03 offer convenience in testing of telephone circuits, both acrive and passive. Both versions provide matching to 135 -,

600 and 900 -ohm balanced lines and can be mounted in place of the 353 A in the 3550A Portable Test Set.
The H02.353A features a holding coil at the Send terminals, and the H03.353A features holding coils at the Rec and Send terminals which permit testing of active telephone lines at voice, as well as carrier frequencies. A single-step 23 db attenuator enables the operator to select standard telephone levels of +7 dbm and -16 dbm . Jacks have been supplied to accept standard telephone type plugs.

Specifications, 3550A

Oscillator (H20-204日)
Frequency range: $s \mathrm{cps}$ to 560 kc in S ranges, venier.
Dial accuracy: ± 35.
Frequency response: $\pm 3 \%$ into razed load.
Output impedance: 600 ohms.
Output: $10 \mathrm{mw}(2.5 \mathrm{v} \mathrm{rms})$ into 600 ohms; 5 v mm open circuit; completely floating (isolated).
Distortion: less than 1%.
Hum and noise: less than 0.05%.
Temperature range: $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Price: hp H20-204B, $\$ 390$ when purchased separately.
Voltmeter (403B Optlon 01.)
(see specifications on opposite page)
Price: hp 4038 Option 01., $\$ 335$.
Patch panel (353A)
Input (receiver)
Ftequenct range: 50 cps to 560 kc . Balance: better than 70 db at 60 cps for 600 ohms and 900 ohms; bettet than 60 db at 1 kc for 600 and 900 ohms; better than 40 db over entire frequency range for 135,600 and 900 ohms.
Frequency response: $\pm 0.5 \mathrm{db}, 50 \mathrm{cps}$ to 560 kc .
Impedance: $135,600,900$ ohms and Bridging (10 K) ; centertapped.
Insertion loss: less than 0.75 db at 1 kc .
Maximum level: $+\mathbf{2 2} \mathrm{dbm}$ (10 v rms at 600 ohms).
Output (source)
Frequency range: 50 cps to 560 kc .
Balance: same as Input (receiver).
Frequeacy response: $=0.5 \mathrm{db}, 50 \mathrm{cps}$ to 560 kc .
Impedance: 135,600, and 900 ohms, ceater-tapped.
Insertion loss: less than 0.75 db at 1 kc .
Distortion: less than $1 \%, 50 \mathrm{cps}$ to 560 kc .
Maximum level: +22 dbm (10 v ems at 600 ohms).
Attenuation: 110 db ia 1 db steps; accuracy. 10 db section: error less than $\pm 0.25 \mathrm{db}$ at any step; accuracy, 100 db secrion: error is less than $\pm 0.5 \mathrm{db}$ at any step,
Connectors: two 3 -terminal binding posts for external circuit connection and two BNC female connectors for oscillator and voltmeter connection.
Price: hp 353A, \$260 when purchased separately.

General

Power: (identical specifications in both voltmeter and oscillator): 4 rechargeable batteries (furaished); 40 -hour operation per recharge, up to 500 rechatging cycles; rechargiag circuit is self-contained and functions automatically when instrument is operated from ac line (115 or 230 volts $\pm 10 \%$, 50 to 1000 cps. approx. 3 watts).
Dimensions: $83 / 8^{\prime \prime}$ high, $191 / 4^{\prime \prime}$ wide, $131 / 4^{\prime \prime}$ deep (with cover installed) ($213 \times 489 \times 367 \mathrm{~mm}$).
Weight: net $30 \mathrm{lbs}(13,5 \mathrm{~kg})$; shippiag $45 \mathrm{lbs}(20,3 \mathrm{~kg})$.
Accessories avallable: 10503 A Cable, BNC-to-BNC, 96.50 ; 11002A Test Leads, banana-plug-to-alliparor clip, $\$ 7.50$.
Accessorles furmished: detachable power cord; two 11035A Cables (1 foot long. dual banana-plug.to-BNC) ; splash proof cover and storage compartment.
Price: hp 3550A, $\$ 1150$.

410C ELECTRONIC VOLTMETER
 Zero drift multi-function meter

The bp Model 410 C is a versatile general-purpose instrument. This one instrument measures de voltages from 1.5 mv to 1500 volts, direct current from 0.15 nanoamps to 150 ma , and resistance from 0.2 ohm to 500 megohms. With the plug. in-probe, ac voltages from 50 mv to 300 volts at 20 cps to 700 mc and comparative indications to 3 ge are attainable.
These measurements are made with laboratory precision previously not avadable in a single instrument. The versatile easy-to-use bp 410 C will be valuable in any laboratory, production line, or service department.

Photochopper

Model 410 C uses a unique hp -developed photoconductor chopper amplifier. This amplifier is a hybrid circuit which makes possible the high input impedance of 100 megohms on the de voltmeter and the low resistance recorder ourput of less than 3 ohms. It also eliminates the need for a zero adjustment on the de current, voltage and resistance ranges. Additionally, Do adjustonent for iofinite resistance is needed. The 410 C will recover in less than 3 seconds when overloaded at up to 100 times full scale.
When using the hp 11036A AC Probe the 410 C will measure ac voltages with 3% accuracy over the range 100 cps to 100 mc . This special probe permits measurements of 10% accuracy from 20 cps to 700 mc and will produce comparative indica. tions to 3 ge . High input resistance of 10 megohms and capacitance of only 1.5 pf minimize loadiog of the circuit under test.
The 11045A 100:1 DC Divider is available for measuring dc voltages to 30 kv . Other accessories include ac voltage dividers and adapters for measurements in Type N systems. (See pages 138. 239.)
Each meter face is custom-calibrated in a hp-developed servo system which prints the meter seales to the specific taut-band meter movernent used in each 410C.

Specifications

DC Voltmeter

Voltage ranges: $\pm 15 \mathrm{mv}$ to $\pm 1900 \mathrm{v}$ full scale in $15,50,150$ sequence (11 ranges).
Accuracy: $\pm 2 \%$ of full scale on any range
Input resistance: 100 megohms $\pm 1 \%$ on 500 mv range and above; 10 megohms $\pm 3 \%$ on $15 \mathrm{mv}, 50 \mathrm{mv}$, and 150 mv ranges.

DC Ammeter

Current ranges: ± 1.5, ya to $\pm 150 \mathrm{ma}$ full scale in $1.5,5,15$ sequence (11 ranges).
Accuracy: $\pm 3 \%$ of full scale on any range.
Input resistance: decreasing from 9 K ohms on $1.5 \mu \mathrm{a}$ scale to approximately 0.3 ohm on the 150 ma scale.
Spectal current renges: $\pm 1.5, \pm 5$ and ± 15 nanoamps, may be measured on the 15,50 and 150 millivolt ranges using the voltmeter probe, with $\pm 3 \%$ accuracy and 20 -megohon input resistance.
Ohmmeter
Reslatance range: 10 ohms to 10 megohms center scale (7 ranges).
Accuracy: zero to midscale: $\pm 5 \%$ of reading or $\pm 2 \%$ of midscale, whichever is greater; $\pm 7 \%$ from midscale to scale value of 2 : $\pm 8 \%$ from scale value of 2 to $3 ; \pm 9 \%$ from scale value of 3 to 5 ; $\pm 10 \%$ from scale value of 5 to 10 .
Annpilifler
Voltage gain: 100 maximum.
AC relection: 3 db at 0.5 cps ; approximately 66 db at 50 cps and higher frequencies for signals less than 1600 v peak or 30 timacs full scale, whichever is smaller.

Isolation: impedance between common and chassis is $>10 \mathrm{meg}$ in parallel with $0.1 \mu \mathrm{~F}$; common may be floated up to 400 vdc above the chassis for $d c$ and resistance measurements.
Output proportional to meter indication; 1.5 v de at full scale; maximem current, 1 ma.
Output Impedance: less than 3 ohms at dc.
Noise: less than 0.5% of full scale on any range (p-p).
DC drift: less than 0.5% of full scale/year at constaot temperaure; less than 0.02% of full scale $/{ }^{\circ} \mathrm{C}$.
Overload recovery: recover from 100:1 overload in <3 sec.

AC Voltmeter

Ranges: 0.5 v full scale to 300 v in $0.5,1.5$, 5 sequence (7 ranges).
Accuracy: $\pm 3 \%$ of fell scale at 400 cps for sinusoidal voltages from 0.1 to 300 v rms; the ac probe responds to the positive peak-above-average value of the applied signal.
Frequency response: $-3 \% \pm 2 \%$ at $100 \mathrm{mc} ; \pm 10 \%$ from 20 cps to 700 mc (400 cps reference) ; indications to 3 gc .
Frequency range: 20 cps to 700 mc .
Input Impedance: input capacity 1.5 pf , input resistance >10 megohms ar low frequencies; at bigh frequencies impedance drops off due to dielectric loss.
Safety: the probe bady is grounded to chassis at all times for safety; all ac measurements are referenced to chassis ground.
Meter: individually calibrated taut-band meter responds to positive peak-above-average; calibrated in ms volts for sine wave iaput.
General
Maximum lnput: de: 100 v on 15, 50 and 150 mv ranges, 500 v on 0.5 to is v ranges, 1600 v on bigher ranges; ac: 100 times fuil scale or 450 v peak, whichever is less.
Power: 115 or 230 volks $\pm 10 \%$, 50 to $1000 \mathrm{cps}, 13$ watts (20 wates with 11036 A AC Probe)
Dimensions: $61 / 2^{\prime \prime}$ high, $51 / 8^{\prime \prime}$ wide, $11^{\prime \prime}$ deep behind panel $(165 \times 130 \times 279 \mathrm{~mm})$.
Welght: net 8 lbs (4 kg) ; shipping approx. $14 \mathrm{lbs}(6 \mathrm{~kg}$).
Price; hp 410 C with detachable ac probe, $\$ 425$.
Option 02.: hp 410C less ac probe, $\$ 375$.

410B VACUUM TUBE VOLTMETER

All-purpose test instrument measures to 700 mc

Because of the large number of tasks it will perform, the 410 B Vacuum Tube Voltmeter can play a uniquely valuable role in any laboratory, broadcast station or production test department. It combines in one instrument an ac voltmeter covering the frequency range from audio to radar frequencies, a do voltmeter with 100 megohms input impedance, and an ohmmeter capable of measuring resistance, 0.2 ohm to 500 megohms. It is easy to use, compact, lightweight.

An important reason for the 410B's popularity is its special diode probe. The probe has very low capacity to minimize disturbance to circuits under test.

Other features of the 410 B include low deift (maintains calibration over long periods of time), only one zero adjustment for all ranges, front-panel function switching (leads are permanently attached), storage space for leads and probes at rear of the sturdy, lightweight instrument cabinet.

AC voltmater

Range: 1 to 300 v full scale, 6 ranges.
Frequency range: 20 cps to 700 mc .
Frequency response: flat within $\pm 1 \mathrm{db}$ to 700 mc ; drops off less than 1 db at 20 qps ; indications obtainable to 3000 mc .
Input Impedance: input capacity 1.5 pf, input resistance 10 megohms at low frequencies; at high frequencies resistance drops off due to dielectric loss.
DC voltmeter
Range: 1 to 1000 v full scale.
Input resistance: approx. 122 megohms, all ranges.

Ohmmeter

Range: 0.2 ohm to 500 megohms in 7 ranges; midscale readings of $10,100,1000,10,000,100,000$ ohms, and 1 and 10 megohms.
General
Accuracy: $\pm 3 \%$ of full scale, all ranges, on sinusoidal ac
voltages and de voltages; ac portion of instrument is peak-responding, calibrated in rms volts.
Power: 115 or $230 \mathrm{v} \pm 10 \%, 50$ to $1000 \mathrm{cps}, 40 \mathrm{w}$.
Dimensions: cabinet, $73 / 8^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high, $83 / 4^{\prime \prime}$ deep ($187 \times 292 \times 223 \mathrm{~mm}$) ; rack mount, $19^{\prime \prime}$ wide, $63 / 4^{\prime \prime}$ high, $6^{\prime \prime}$ deep behind panel ($483 \times 172 \times 152 \mathrm{~mm}$).
Welght: net $12 \mathrm{lbs}(5,4 \mathrm{~kg})$, shipping $17 \mathrm{lbs}(7,7 \mathrm{~kg})$ (cabinet); net $12 \mathrm{lbs}(5,4 \mathrm{~kg}$), shipping 20 lbs (9 kg) (rack mount).
Accessories available: 11039A Capacitive Voltage Divider, 25 kv max., $\$ 150$, requires 11018 A Adapter, \$35; 11040A Capacitive Voltage Divider, 2 kv max., $\$ 35$; 11042A Probe Coax T Connector for Type " N "" systems, $\$ 40 ; 11043$ A Probe Coax N Connector adapts to Type " N " systems, $\$ 37.50$; 11044A DC Divider, 30 kv max., $\$ 50$.
Price: hp 410B, $\$ 245$ (cabinet); hp 410BR, $\$ 265$ (rack mount).

414A AUTOVOLTMETER

Touch-and-read voltage and resistance measurements automatically

The 414A Autovoltmeter provides the "touch-and-read" convenience of a digital instrument with the economg of an analog instrument, Range changing and polarity selection are both automatic, occurring in less than 300 milliseconds. DC voltages can be measured at sensitivities ranging from 5 mv to 1500 volts full scale. Resistance measuring sensitivities cange from 5 ohms to 1.5 megohms full scale. Measuring accuracy for voltage is $\pm 0.5 \%$ of reading $\pm 0.5 \%$ of full scale and for resistance is $\pm 1 \%$ of reading $\pm 0.5 \%$ of full scale.

This auto-ranging voltmeter is solid state. The de amplifier is chopper-stabilized. using hp-produced photocell choppers for long life and reliability. A lighted display unit, placed convenieatly above the meter provides the user with the full-scale sensitivity for the range and function selected. For voltage measurements, the polarity of the input voltage also is indicated. Ranges can be selected and held manually.

Range chaoging decisions are based on two preset signal levels, one near full-scale meter deflection, and the other near
one-fourth full scale. A a amplitude comparator produces an "up" range signal whenever the input voltage tends to rise above the level which is near full scale, and a "down" range signal whenever the input voltage tends to fall below the level pear one-fourth full scale. Range switching and indicstion logic consist of a set of four solid-state multivibrators which define the twelve ranges of the instrument. The ohmmeter function employs a feedback-stabilized current source which allows the use of a linear ohms scale and avoids a special meter scale for resistance measurements. The resulting meter scales are easily interpreted.

Convenience, versatility

The 414A's modular design and light-weight construction contribute to its easy portability. Elimination of tedious range selection suits the voltmeter to production line work or similas situations where repetitive voltage measurements over a wide range are made.

Tentative speciffcations

DC voltmeter
Voltage range: $\pm 5 \mathrm{mv}$ to 1500 v tull scale in 12 canges (manual or auto-ranging).
Accuracy: $\pm 0.5 \%$ of reading $\pm 0.5 \%$ of full scale.
Input reslstance: 10 megohms on 5 and 15 mv ragges, 100 megohms on 50 mv range and above.

Ohmmeter

Resistance range: S ohms to 1.5 megohms in 12 ranges (manual or auto-ranging with linear scale).
Accuracy: $\pm 1 \%$ of reading $\pm 0.5 \%$ of full scale on any range. Source current.

Range	Gurrent through unknown
up to 1500 ohms	1 ms
sbove 1500 ohms	$1 \mu \mathrm{~s}$

Qeneral
Range selection: voltage and resistance: automatically selects correct range in less than 300 msec ; a particular range may be selected manually.
Polarity selection: automatic.
Meter: individually calibrated taut-band meter with mirror scale; linear scales, 0 to 5 and 0 to 15 .
isolation resistance: at least 100 megohms shunted by 0.1 mf between common terminal and case (power line ground).
Floating Input: may be operated up to 500 v de above ground.
Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to 1000 cps , approx. 18 w .
Dimenslons: ($1 / 2$ module), $6-18 / 32^{\prime \prime}$ high, 7-25/32" wide, $12^{\prime \prime}$ deep ($167 \times 197 \times 305 \mathrm{~mm}$).
Weight: net $101 / 4 \mathrm{lbs}(4,6 \mathrm{~kg})$; shipping $13 \mathrm{lbs}(6,4 \mathrm{~kg}$).
Price: on request.

735A TRANSFER STANDARD

Use as standard, standard comparator, 0 to $1000 \mu v$ standard source

Advantages:

Voltage standard output
Exceptional stability
Short circuit proof
Very low tempecature coefficient
Direct-reading comparisons
Low thermal emf
Floating guarded output
Compact

Uses:

1 volt reference for volt boxes and potentiometers
Standard cell comparator
Stable microvolt source

The hp 735A is a general-purpose laboratory transfer standard. It may be used as a one volt standard output with standard cell accuracy, a standard cell comparator, or as a 0 to $1000 \mu \mathrm{v}$ standard source for de and potentiometric measurements.

This guarded high accuracy transfer standard has 4 functions:

1. $1.018+\Delta^{*}$ reference for saturated standard cell comparisons.
2. $1.019+\Delta^{*}$ reference for unsaturated standard cell comparisons.
3. 1 volt reference for volt box and potentionetric measurements.
4. D to 1000 microvolt source with $1 \mu v$ resolution.

Reference supply

The basic stability of the 735A is derived from a reference supply enclosed in a proportionally controlled oven. The temperacure of the reference diode is held to within $\pm 0.03^{\circ} \mathrm{C}$ for an ambient temperature of 0° to $+50^{\circ} \mathrm{C}$. The reference supply maintains a stability better than 10 $\mathrm{ppm} / \mathrm{month}$. The overall temperature and long term stability of the 735A is assured by using hp-produced ultra-stable resistors with temperature coefficients matched to within $0.5 \mathrm{Ppm} /{ }^{\circ} \mathrm{C}$.

Circuit guard

The 735A Transfer Standard features a guard shield which isolates the floating output from the chassis.

> AVAILABLE LATE 1965

Tentative Specifications

Standard outputs: 1 v; $1.018+\Delta^{*} ; 1.019+\Delta^{*}$; variable 0 to $1000 \mu^{*}\left(\Delta^{*}\right)$.
Transter accuracy: 2 ppm between saturated standard cells or unsaturated standard cells; 10 ppm standard cell to 1 volt; 10 ppm saturated standard cell to unsaturated standard cell.
Stability: better than $10 \mathrm{ppm} /$ month.
Output impedance: 1 K ohm.
Short elrcuit current: $<1.5 \mathrm{ma}$.
Temperature coefficient: $<1 \mathrm{Ppm} /{ }^{\circ} \mathrm{C}, 0^{\circ}$ to $+50^{\circ} \mathrm{C}$.
Varlable output
Range: 0 to $1000 \mu \mathrm{v}$.
Accuracy: $0.1 \% \pm 0.5 \mu \mathrm{v}$.
Linearity: 0.1%.
Output impedance: 100 ohms.
Output noise: $<1 \mu \mathrm{v}$ P-p.

Effective guarded capacity: <25 pf (capacity between circuit and chassis ground with guard shield driven).
Foated output: the guarded output terminals allow the instrument to be used as a floating or grounded two-ter. minal device (up to $\pm 500 \mathrm{v} \mathrm{dc}$).
Power: 115 or 230 volts $\pm 10 \%$, so to 1000 cps , approx. 12 watts.
Output terminais: four banana jacks having positive and negative terminals, circuit guard shield and chassis ground; positive and negative terminals are solid copper with gold Bash.
Dlmenslons: standard $1 / 3$ module, $3 \cdot 14 / 32^{\prime \prime}$ high, $51 / 8^{\prime \prime}$ wide, $11^{\prime \prime}$ deep ($87 \times 130 \times 279 \mathrm{~mm}$).
Weight: net $51 / 2 \mathrm{lbs}(2,5 \mathrm{~kg}$); shipping $8 \mathrm{lbs}(3,6 \mathrm{~kg}$).
Prlce: on request.

[^9]
419A DC NULL METER

Floating, 18 ranges, $0.1 \mu \mathrm{v}$ resolution

Eighteen voltage ranges with 0.1 pv resolution set this Hewlett-Packard solid-state de null meter apart from previous de null meters. The accuracy of this rechargeable batteryoperated de voltmeter is $\pm 2 \%$ of end scale on all ranges. Noise is less than $0.1 \mu \mathrm{v}$ rms. and drift is less than $0.5 \mu \mathrm{v} / \mathrm{day}$.

An internal bucking source allows input voltages up to 300 onv to be nulled, giving an infinite input impedance. Input impedance above the 300 mv range is 100 megohms.

Pushbutton selection provides convenience, versatility

Seven pushbuttons allow the operator rapidly to select the desired function of the hp 419A. This dc null meter operates from the ac line or from the internal rechargeable batteries with any of the pusbbuttons depressed, except the Off button.

A Fast-Charge pushbutton is provided to increase the charg. ing rate, recharging the battecies in approximately 16 hours. During normal operation, when operated from the ac line, the batteries are trickle charged at approximately 4 ma. Battery charge may be easily checked with the Battery Test pushbutton to assure reliable measurements. The Zero pushbutton enables the operator to compensare for any internal offsets before making a measurement. When this pushbutton is depressed the positive leg of the voltmetes is disconnected from the positive input terminal and connected to the negative input terminal. When the Voltmeter pushbutton is depressed, the hp 419 A functions as a zero center scale-3 $\mu \mathrm{v}$ to 1000 v de voltmeter.

To eliminate measurement errors caused by large values of source impedances when the $3 \mu v$ to 300 mv ranges are used, a Set Null pushbutton is prowided. When this pushbutton is depressed, an internal bucking voltage is placed in series with the imput. A front-panel control enables the operator to null the input voltage with the hp 419A's bucking voltage. At this time the bucking voltage is equal to the input voltage, resulting in an infinite input impedance and elimination of any load. ing erros. The Read Null pushbutron may then be depressed, disconnecting the input. The voltage of the bucking supply which is the same as the input voltage is now displayed on the meter. The maximum bucking voltage is adjustable to approximately 120% of full scale on the $3 \mu \mathrm{v}$ to 300 mv range.

Recorder, amplifler

An output proportional to meter deflection makes the hp 419 A an exceptionally stable de amplifier. Its high voltage gain, high stability and low noise make the de null meter suitable for many control applications. For recording applications, one volt with currents up to 1 ma for full-scale meter indication is available at the rear output terminals.
The 419A's clean design, functional utility and lightweight modular construction contribute to its easy portability. Careful attention to human engineering has resulted in highly visible rectangular pushbuttons for reduction of user fatigue and ease of operation. Function ambiguity is prevented by mechanical interiocks which allow only one pushbutton to be depressed at a time.

Tentative specifications

Voltmeter

Ranges: $\pm 3 \mu \mathrm{v}$ to ± 1000 volts de end scale in 18 zero-center ranges.
Accuracy: $\pm 2 \%$ of end scale, $\pm 0.1 \mu \mathrm{v}$.
Umits of zero control: $\pm 15 \mu \mathrm{~V}$.
Input resistance: $3 \mu \mathrm{v}$ to 3 mv ranges: 100 K ohms (infinite when nulled): 10 mv to 30 mv ranges: 1 megohm (infinite when nulled); 100 mv to 300 mv ranges: 10 megohms (infinite when nulled): 1 volt to 1000 volt ranges: 100 megohms.
Bucking voltage: approximately 120% full scale ($3 \mu \mathrm{v}$ to 300 mv range). 360 mv maximum.
Response time: 95% of final reading within 3 sec on the $3 \mu \mathrm{v}$ range; 95% of final reading withia l sec on the $10 \mu \mathrm{v}$ to 1000 v ranges.
Superimposed ac rejectlon: ac voltages (60 cps and above) 80 db greater than end scale affects reading less than 2% (300 v rms max.).
Nolse: less than $0.1 \mu \mathrm{v}$ rms.
Drift: less than $0.5 \mu \mathrm{v} /$ day after 30 -minute warm-up.

Recorder, ampilifer

Gain: 110 db maximum at recorder output terminals (gain depends on range).
Output: ± 1 volt for fuill-scale meter defection (adjustable from 0 to 1 vat full scale; 1 ma max.).
Output impedance: approximately 0 ohms.
Output terminals: dual bananna jacks.
AC rejection: same as voltmeter.
Galn accuracy: $\pm 2 \%$ of full output.
Linearity: 0.1%.
Noise: sane as voltmeter.
General
Overioad protection: 50 v max. $3 \mu \mathrm{v}$ to 3 mv ranges; 300 v max. from 10 mv to 300 v ranges; 1200 v on 1 v range and above.
Overload recovery time: meter indicates within 2 seconds for a 10^{+r} overioad.
input terminals: pos., neg., and chassis ground banana jacks.
Input Isolation: greater than 10^{10} ohms shunted by 250 pf ; may be operated up to 500 vdc or 130 vac above ground.
Power source: \& rechargeabie batteries (fumished); forty-hour operation per recharge: null meter may be operated during recharge from ac line; 115 v or $230 \mathrm{v} \pm 10 \%$, 90 to 1000 cps , approximately 3 w .
Dimensions: ($1 / 2$ module) $6^{\prime \prime}$ high, $73 / 4^{\prime \prime}$ wide, $8^{\prime \prime}$ deep ($152 \times$ $197 \times 203 \mathrm{~mm}$).
Weight: net $8 \mathrm{lbs}(3,6 \mathrm{~kg})$; shipping $12 \mathrm{lbs}(5,4 \mathrm{~kg})$.
Price: hp 419A, \$430.

413A DC NULL VOLTMETER

Floating, high-impedance input; I mv end-scale sensitivity

Advantages:

Wide range
High input impedance
High stability and low noise
2% end-scale accuracy
Input isolared from ground
Sensitive outpur for control systems
Model 4l3A uses the sensitive and precise circuitry of the hp 412A to provide a dc null voltmeter of outstanding stability and resolution. The 413A has 13 zero.centered ranges running from 1 mv to 1000 v end scale. When using expanded zero, you may'set the meter pointer to either endscale position and measure voltages as large as twice end scale as long as the input does not exceed 1500 volts. The input terminals are isolated from ground, allowing operation up to 500 vdc or 130 vac from ground potential.

High input impedance (10 megohms on the most sensirive range, 200 megohms on the 300 mv range and above) makes the 413 A especially valuable in resistance bridge measurements. Accuracy of this instrument is within 2% of end scale: drift and noise are virtually imperceptible.

Stable de amplifier

Because the dc nuli voltmeter provides an output pro. portional to meter defection, it is an exceptionally stable de amplifier. Its high voltage gain, high stability and low noise make the 413A suitable for many control applications, particularly where the amplifier must be left unattended for
long periods of time. For instance, the 413A can amplify the output of a thermocouple by 1000 for controlling other equipment. You can use the zero control to set an arbitrary reference.

For de voltmeter use, Model 413A offers high input impedance, voltage ranges from 1 mi to 1000 volts end scale, 2% accuracy and virtually drift-free operation.

Specifications

Voltmeter

Range: positive and negative voltages from 1 mv to 1000 volts end scale in 13 zero-center ranges.
Accuracy: $\pm 2 \%$ of end scale.
Limits of zero control: more than \pm end scale on any range when using expanded scale.
input resistance: 10 megohms on 1, 3 and 10 mur ranges; 30 megohms on 30 mr range, 100 megohms on 100 nerge: 200 megohms on 300 mv range and above.
AC rejection: a voltage at power line or twice power line frequency 40 db greater than end scale affects rending $<1 \%$; peak voltage must not exceed 1500 volts.

Amplifier

Gain: 0.001 to 1000 in 13 steps.
Gain atcuracy: $\pm 1.5 \%$.
Linearity: $\pm 0.2 \%$.
Noise: less than $2 \mu^{\prime}$ rms (typicall; less than is $\mu \mathrm{v} \mathrm{p} \cdot \mathrm{p}$) referred to the input.
Output: I v for end-scale deflection. same polarity as input signal; end scale corresponds to 1 on upper scale; meximuns load current is 1 milliamp.
Output impedance: less than 2 ohms at $d c$.
Output terminals: dual banana jacks.
AC rejection: approximately 3 db at $1 \mathrm{cps}, 80 \mathrm{db}$ at 50 and 60 cps .

Gereral

Input terminals: dual banana jacks.
Input isolation: greater than 100 megohm shunted by 0.1 μf to case (power line ground).
Common signal rejection: may be operated with up to 500 \checkmark ds or 130 v ac above ground.
Power: 115 or 230 volts $\pm 10 \%$, 50 to 60 cps , approximately 35 watts.
Dimensions: cabinet: $111 / 2^{\prime \prime}$ high, $71 / 2^{\prime \prime}$ wide, $10^{\prime \prime}$ deep ($292 \times 110 \times 254 \mathrm{~mm}$) : rack mount: $5.7 / 32^{\prime \prime}$ high, 19" wide, $65 / 8^{\prime \prime}$ deep ($134 \times 483 \times 168 \mathrm{~mm}$).
Weight: net $12 \mathrm{Jbs}(5,4 \mathrm{~kg})$, shipping $16 \mathrm{lbs}(7,2 \mathrm{~kg})$ (cabinet); net $12 \mathrm{lbs}(5,4 \mathrm{~kg}$), shipping $19 \mathrm{lbs}(8,6$ kg) (rack mount).
Price: hp 413A, $\$ 350$ (cabinet) ; hp 413AR, \$355 (rack mount).

412A PRECISION DC VOLTMETER-OHMMETER-AMMETER
 1% accuracy vtvm is also precision ohmmeter, ammeter

Here is one compact instrument that makes all normally used dc measurements with precision and simplicity. The hp 412 A provides 1% voltage, 2% current and 5% resistance measurement accuracy. The 412 A also is a stable 60 db amplifier whose output is proportional to meter indication.

The precision six-inch taut-band meter has two scales used for both voltage and current and a third scale which is cali. brated in ohms. Each meter face is custom-calibrated in an hp-developed servo system which prints the meter scales to the specific taut-band movement.

The 412A measures voltages over the wide range from 0.02 milivivolt to 1000 volts on 13 ranges arranged in a 1 , 3,10 sequence from 1 mv full scale to 1000 v full scale. With the Model 412A you can measure any de current from 0.02 microampere to 1 ampere with precision.

A wide range of resistance values may be measured with the 412 A . The ohmmeter function provides 9 ranges from I ohm to 100 megohms center scale arranged in decade steps for an overall range from less than 0.05 ohm to greatec than 5000 megohms.

Specifications

```
Voltmeter
    Voltage range: pos. and neg. voluages from 1 mv to 1000 v full
        scale, 13 ranges.
    Accuracy: 土1% of full scale on any range.
    Input resistanca; 10 megohms }\pm1%\mathrm{ on 1 mv, 3 mv and 10 mv
        ranges; 30 megohms # % % on 30 mv range; 100 megohms
        \pm1% on 100 mv range; 200 megohms }\pm1%\mathrm{ on }300\textrm{mv}\mathrm{ range
        and above.
```


Ammeter

```
Current range: pos. and aeg. currencs from 1 mamp to 1 amp full scale, 13 ranges.
Accuracy: \(\pm 2 \%\) of full scale on any range.
Input resistance: decreasing from 1000 ohms on \(1 \mu\) amp scale to 0.1 ohm on 1 amp scale.
Ohmmeter
Resistance range: resistance from 1 ohm to 100 magohms center scale, 9 ranges.
Aceuracy: \(\pm 5 \%\) of reading, 0.2 ohm to 500 megohms; \(\pm 10 \%\) of reading, 0.1 to 0.2 ohm and 500 megohms to 5000 megohms.
```

Ampliflep
Voltage gain: 1000 maximum.
DC bandwldth: dc to 0.7 cps on $100 \mu \mathrm{v}$ range and above.
Output: proportional to meter indication; 2 v at full scale; max. current, 1 ma (fuil scale corresponds to 1 on upper scale).
Output lmpedance: less than 2 ohros at de.
Nolse: less than $2.0 \mu \mathrm{v} \mathrm{rms}$ (typically less than $15 \mu \mathrm{v} \mathrm{p}-\mathrm{p}$) re. ferred to the input.
Drift: negligible.
Common signal rejection: may be operated up to $500 \mathrm{v} d \mathrm{~d}$, of 130 v ac above grouad.
Power: 115 or 230 volts $\pm 10 \%, 50$ to $60 \mathrm{cps}, 35$ watts.
Dimensions: cabinet: $111 / 2^{\prime \prime}$ high, $71 / 2^{\prime \prime}$ wide, $10^{\prime \prime}$ deep ($292 \times$ $191 \times 254 \mathrm{~mm})$; rack mount: $5-7 / 32^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $71 / 2^{\prime \prime}$ deep behind ganel ($134 \times 483 \times 191 \mathrm{~mm}$).
Welght: net $12 \mathrm{lbs}(5,5 \mathrm{~kg}$), sbipping $17 \mathrm{lbs}(7,6 \mathrm{~kg})$ (cabinet); net $12 \mathrm{lbs}(5,5 \mathrm{~kg}$), shíppiog 19 lbs ($8,6 \mathrm{~kg}$) (rack mount).
Price: hp 412A, $\$ 400$ (cabinet) ; hp 412AR, $\$ 405$ (rack mount).

425A DC MICROVOLT-AMMETER

Read directly 1 pa and $1 \mu \mathrm{v}$ with compact, portable instrument

Hewlett-Packard 425A DC Microvolt-Ammeter makes measurements of extremely small dc voltages and currents, even in the presence of relatively strong ac signals.

Since the 425 A measures de voltages from 1 microvolt to 1 volt and dc currents from 1 picoamp to 3 ma , it is an extremely useful tool in all branches of scientific measurement. For example, it can be used to study nerve porentials for the biologist and medical researcher, to study the chemically generated emf's, minute voltages in thermocouples and current in ionization chambers.

Since currents as small as i pa can be measured directly, the Model 425A is valuable for measuring vacuum tube grid
currents and photomultiplier currents in ionization chambers. Thus, this meter has great utility in physics research, as well as in electronics. Further, its current and voltage sensitivity permit measurement of both extremely high and very low resistances.

Model 425A is provided with output terminals so that it may be used as a dc amplifier having $100 \mathrm{db}\left(10^{5}\right)$ voltage gain. Output from the amplifier is 1 volt for an end-scale deflection or 1 ma into approximately 1000 ohms, so that it will operate either a potentiometer or galvanometer recorder to make permanent records of measurements.

Specifications

Microvolt-Ammeter

Voitage ranga: pos. and neg. voltages from $10 \mu_{\mathrm{v}}$ end scale to I v end scale, 1 I steps, $1,3,10$ sequence.
Current range: pos. and neg, currents from 10 pa end scale to 3 ma end stale. 18 steps. $1,3,10$ sequence.
Input impedance: voltage ranges, 1 megolim $\pm 3 \%$; current range, depends on range. 1 megohm to 0.33 ohm .
Accuracy: within $\pm 3 \%$ of end scale; line frequency variations ± 5 eps affect accuracy less than $\pm 2 \%$.

Amplifier

Galn: 100,000 maximum.
$A C$ rejection: at lease 3 db at $1 \mathrm{cps}, 50 \mathrm{db}$ at 50 cps and spproxi. mately 60 db or more above 60 cps ; a power line frequency or twice porrer line frequency signal 40 db greater than end scale causes less than 1% error.
Output: 0 to 1 v for end-scale reading, adjustable (5000-ohm shunt potentiometer), 1 ma maximum at 1 v output.
Output impedance: depends on setting of output potentiomerer; 10 ohms when potentioneter is set for maximom output.

Noise: less than $0.2 \mu \mathrm{v}$ rms (typitally less than $1.2 \mu \mathrm{p}-\mathrm{p}$) referred to the input.
Drift: alter 13 minutes' warm-up, disfr is less than $\pm 4 \mu \mathrm{v}$ per das' referred to input.

General

Power: 115 or 230 volts $\pm 10 \%, 60 \mathrm{cps}, 40$ watts; 50 cps opera. tion on special order.
Dimensions: cabinet: $73 / 8^{\prime \prime}$ wide, $113 / 4$ " high, $12^{\prime \prime}$ deep ($187 x$ $299 \times 305 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $11^{\prime \prime}$ deep behind panel ($483 \times 178 \times 279 \mathrm{~mm}$).
Welght: net $17 \mathrm{lbs}(7,7 \mathrm{~kg})$, shipping $23 \mathrm{lbs}(10,4 \mathrm{~kg})$ (cabiner) ; nes $21 \mathrm{lbs}(9,5 \mathrm{~kg})$, shipping $30 \mathrm{lbs}(13.5 \mathrm{~kg})$ (rack mount).
Accessories avaliable: 11021A 1000:1 Divider Probe, increases range of 425A to 1000 voles; division accurac\% $\pm 2 \%$, inpur resistance 10 megohnis, 555.
Price: hp 425A, 5500 (cabinet); hp 425AR, s505 (rack mount).
Option 01.: For operation from so cps power, no extra charge.

428B CLIP-ON DC MILLIAMMETER, PROBES

Measure without interrupting circuit; no circuit loading

Disect current from 0.1 milliampere to 10 amps can be measured with the hp 428B without interrupting the circuits and without the error-producing loading of conventional methods.

For any measurement of dc within its range, simply clamp the jaws of the 428 B around a wice and read!
This ease and speed of operation are unparalleled, especially for applications where many dc measurements must be made. Wide current range of the 428 B will handle most signals directly. For even greater sensitivity, several loops may be put through the probe, increasing the sensitivity by the same factor as the number of loops.

In addition to making current measurements directly, the 428B is also valuable for measuring sums and differences of currents in separate wires. When the probe is clipped around two wires carrying current in the same direction, their sum is indicated on the meter; when one of the wires is reversed, their difference is measured. Thus, current balancing is possible by obtaining a zero difference reading.

Model 428B provides an output voltage proportional to the measured current which is useful for driving recorders or making low-frequency ($d c$ to 400 cps) current measurements.

3528A Large Aperture Current Probe

This large aperture current probe permits the 428 B to make measurements on any conductor up to $2.9 / 16^{\prime \prime}$ in diameter. It is useful for measuring common mode, ground and electrolysis currents in pipes, multi-conductor cables (including lead-sheathed), ground straps, even microwave waveguide. Current range of this large diameter probe is the same as the 428 B . The bandwidth is dc to 300 cps . Accuracy is $\pm 1 \mathrm{ma} \pm 3 \%$ of full scale when the probe is calibrated with the instrument. Inductance less than $3 \mu \mathrm{~h}$ is introduced into the measured circuit.

3529A Magnetometer Probe

The hp 3529A Magnetometer Probe is useful in applica. tions where determination must be made of the direction or magnitude of a magnetic field. It is useful in applications ranging from acoustical transducer design to investigations involving the Zeeman effect. Conversion factor is $1: 1$, producing a reading on the 428 B in milliamps which is directly equal to the measured field strength in milligauss. Range is 1 milligauss to 10 gauss with the 428B. The bandwidth is dc to 80 cps , and accuracy is $\pm 3 \%$ of full scale when the probe is calibrated with the instrument.

Specifications, 428 B

Current range: 0.1 ma to 10 amperes; nine full-scale ranges from 1 ma to 10 amperes in a $1,3.10$. . sequence.
Accuracy: $\pm 3 \%$ of full scale, $\pm 0.1 \mathrm{ma}$, from $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Probe inductance: less than $0.5 \mu \mathrm{~h}$; no noticeable loading, even up to 1 mc .
Probe induced voltage: less than 15 mv peak (ar 20 kc and harmonics).
Output: approx, 1.5 v and 1 ma max. for full scale; 100 ohm

source: variable linear output level with switch provision for calibrated 1 v (corresponds to full-scale deflection).
Noise leval: less than $\pm 0.015 \mathrm{ma}$.
AC rejection: ac with peak value less than full scale affects meter accuracy less than 2% at frequencies different from the carrier (approx. 40 kc) and its harmonics: the above applies to frequencies greater than s cps; also, total instantaneous current must not exceed full scale below 5 cps ; on the 10 amp range, ac peak value is limited to 4 amps .
Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to 60 cps , approx. 70 W .
Operating temperature range: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Probe insulation: 300 volts maximum.
Probe tlp slze: approximately $1 / 2^{\prime \prime}$ by $21 / 32^{\prime \prime}$; aperture diameter 5/32".
Dimensions: cabinet: $71 / 2^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high, $141 / 4^{\prime \prime}$ deep (191 x $292 \times 272 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $6.31 / 32^{\prime \prime}$ high, $13^{\prime \prime}$ deep $(483 \times 177 \times 330 \mathrm{~mm})$.
Weight: net $19 \mathrm{lbs}(8,6 \mathrm{~kg}$), shipping $24 \mathrm{ibs}(10,8 \mathrm{~kg}$) (cabinet) ; net $24 \mathrm{lbs}(10,8 \mathrm{~kg})$, shipping $35 \mathrm{lbs}(15,8 \mathrm{~kg})$ (rack mount).
Accessories available: 3528A Large Aperture Probe (with degausser), \$450; 3529A. Magnetometer Probe, $\$ 75$.
Price: hp 428B, $\$ 600$ (cabinet); hp 428BR, $\$ 605$ (rack mount). Options

1. hp 3928A Current Probe (aperture 2-9/16") in lieu of 428A-21A Probe normally supplied, add $\$ 375$.
2. hp 3529A Magnetometer Probe in lieu of 428A-21A Probe normally supplied, no extra charge.

MODEL 22 DC SERVO VOLTMETER

Multi-range, extremely accurate, large linear scale voltmeter

Advantages:

3 mv to 300 v , full scale, in 11 ranges
All solid-state circuitry
$14^{\prime \prime}$ mirror-backed linear scale
Continuous electronic reference
Module construction with rack and table adaptability

Uses:

To drive output potentiometer, digitizer
"On-line" component testing
Operate external equipment at selected scale positions (when fitted with optional high-low limit switches)

The Moseley Model 22 DC Voltmeter is a servo potentiometer type instrument with eleven calibrated sanges, instant zero-left or zero-center selection and easy-to-read 14 inch mirror-backed linear scale. Designed for general laboratory use, it has fast response, high accuracy, and its servo system may be used to drive a variety of instruments for process control and data reduction applications. Completely self-contained, the 22 Voltmeter is adaptable to either rack mounting or bench operation. A bar-type tilt stand pernits horizontal or inclined orientation on the bench.

Module construction

Five easily serviced sub-assemblies are used in the complete unit. They consist of a Control Panel with input terminals, range and zero positioning selectors, power switch and indicator lamp; Input and Balance assembly which includes the attenuator, low-pass noise flter and precision summing resistors; Servo Drive assembly consisting of the de servo motor, slidewire potentiometer, gear train and slip.clutch; Servo Amplifier which is all solid state with high gain and chopper input; Power Supply with zener-regulated section for servo-balancing potential.

Applications

Because a slip-clutch and full-scale stop feature prevents short-term over-scale voltages from damaging the pointer, the Model 22 is ideal for "on-line" component checking. When fitted with a proportional output potentiometer (Option 01.) the 22 may be used as a standard voltage source, 2 driftless de amplifier, a dc-to-ac transducer of any frequency or waveform or a squaring device. Using the servo system to drive an output digitizer (extra cost), printers or other apparatus requiring digital iaput information may be operated directly. For driving external devices at selected scale positions, installed high-low limit switches (Option 02.) are available. For low current drain, potentiometric input may be established on the most sensitive range.

Specifications

Indeator movement: servo-actuated drive; completely solidstate servo amplifier.
Belancing tlme: one second, maximum, for full scale.
Scale: linear, $14^{\prime \prime}$ long; large numbers and mirror-backed; instant selection of zero-left or zero-center.
DC voltage ranges: 11 steps, 0 to $3,10,30,100,300 \mathrm{mv}$, full scale; and 0 to $1,3,10,30,100,300 \mathrm{v}$, full scale; input floating up to 500 v above ground.
Input resistanca: 200,000 ohms/v, full scale, on all ranges through $30 \mathrm{v} ; 60,000 \mathrm{ohms} / \mathrm{v}$, full scale, on 100 v range; 20,000 ohms $/ \mathrm{v}$, full scale, on 300 v range; removal of straps on input circuit permits potentiometric operation on most sensitive range with essentially zero curcent drain at null.

Accuracy: 0.2% of full scale on all ranges.
Standardization: continuous electronic reference, zener diode controlled.

Power: 115 or 230 volts, 50 to 60 cps , approximately 15 volt-amperes.
Dimenslons: $17^{\prime \prime}$ wide, $31 / 2^{\prime \prime}$ high, $12^{\prime \prime}$ deep ($432 \times 89 \times$ 31 mm).
Price: Moseley 22 (standard instrument), \$595.
Optlons:

1. With installed 5000 -ohm retransmitting potentiometer, add $\$ 65$.
2. With installed limit switches, add $\$ 105$.

VOLTMETER ACCESSORIES

11018A Adapter

Connects hp 410 Series AC Probe to shielded dual banana plugs; hp 11018A, \$35 each. (Refer to pages 128, 129.)

11021A Probe

1000:1 divider probe increases range of hp 425A DC Microvolt-Ammeter to 1000 volts; hp 11021 A, $\$ 55$ each. (Refer to page 135.)

11022A-11026A Probe Tips

Assorted probes decrease input capacity of hp 411 A RF Millivoltmeter; hp 11022A-hp 11027A, $\$ 25$ to $\$ 40$. (Refer to page 123.)

11028A Divider

100:1 divider probe increases range of hp 456A AC Current Probe up to 25 amps , depending upon the frequency of the ac current being measured; h p 11028A, $\$ 32$ each. (Refer to page 140.)

hy Instrument	Max. ourrant	Max. voltace	Prdoe
11029 A	3 a	0.3 V	$\$ 35$
11030 A	1 a	1 v	$\$ 20$
11031 A	0.3 a	3 V	$\$ 20$
11032 A	0.1 a	10 v	$\$ 20$
11033 A	40 ma	25 V	$\$ 20$
11034 A	30 ma	30 v	$\$ 20$

11018A (1/2 actual size)

11022A-11027A (1/2 sctual size)

1102BA (1/2 actual size)

110d0A (1/2 actual size)

11021A (1/2 actual size)

11039A (1/3 actual size)

11039A Capacitive Voltage Divider

For 400 and 410 Series Voltmeters. Safely measures power voltages to 25 kv ; accuracy $\pm 3 \%$. Division ratio, 1000:0. Input capacity, $15 \mathrm{pf} \pm 1$. Maximum voltage ratings (sea level) $60 \mathrm{cps}, 25 \mathrm{kv}$; $100 \mathrm{kc}, 22 \mathrm{kv} ; 1 \mathrm{mc}, 20 \mathrm{kv}$; $10 \mathrm{mc}, 15 \mathrm{kv} ; 20 \mathrm{mc}, 7 \mathrm{kv}$. Useable for dielectric heating, power and ultrasonic voltages. Price,hp $11039 \mathrm{~A}, \$ 150$ each. (Refer to pages $118.121,128,129$)

11040A Capacitive Voltage Divider

For 410 Series Voltmeters. Increases range so transmitter voltages can be measured quickly, easily; accuracy, $\pm 1 \%$. Division ratio, 100:1. Input capacity, approximately 2 pf. Maximum voltage, 2000 v , decreasing to 100 v at 400 mc ; for frequencies 10 kc and above. Price, hp 11040A, $\$ 35$ each. (Refer to pages 128, 129.)

11041 A Capacitive Voltage Divider

For hp 400 Series Voltmeters. Safely measure power line, audio, ultrasonic and of voltages; accuracy, $\pm 3 \%$. Division ratio, 100:1. Input impedance, 50 megohms resistive shunted with 2.75 pf capacity. Maximum voltage, 1500 v . Price,hp 11041A, $\$ 60$ each. (Refer to pages 118-121.)

11042A Probe Coaxial " T " Connector

For hp 410 Series Voltmeters. Measures voltages between center conductor and sheath of 50 -ohm transmission line.

Maximum swr, 1.1 at $500 \mathrm{mc}, 1.2$ at 1 gc . Male and female Type N fittings. Price, hp 11042A, $\$ 40$. (Refer to pages 128, 129.)

11043A Probe Coaxial "N" Connector

For hp 410 Series Voltmeters. Measures at open end of $50-0 h m$ transmission line (no terminating resistor). Has male Type N fittings. Price. hp 11043A, 837.50 . (Refer to pages 128,129 .)

11044 A DC Voltage Divider

For hp 410B Voltmeter, Gives maximum safery and convenience for measuring high volrages as in television receivers, etc. Accuracy, $\pm 5 \%$; division ratio, $100: 1$. Input impedance, 12 megohms. Maximum voltage, 30 kv . Maximum current drain, 2.5 amps. Price, hp $11044 \mathrm{~A}, 850$. (Refer to page 129.)

11045A Divider

Same as 11044 A except input impedance, 10 megohms. Price,hp $11045 \mathrm{~A}, \$ 50$.

11046A Combining Case

Combining case houses 2 one-half and 3 one-third full rack width instrumenrs. (Refer to pages 13 and 14.) Price, hp 11046A, $\$ 150$ each.

200SR, 738BR, 739AR VTVM CALIBRATION SYSTEM 456A AC CURRENT PROBE

VTVM calibration system

The hp 2005 R , 738 BR , 739AR System calibrates vacuum tule voltmeters and oscilloscopes for both frequency response and voltage accuracy. The system combines three moderately priced basic hp instruments that calibrate for voltage levels from 300 microvolts to 300 volts in precise preselected steps and calibrate for frequency response from 5 cps to 10 mc .

The three instruments are available individualiy (hp 738BR Voltmeter Calibrator, hp 739AR Frequency Response Test Set, hp 200SR Oscillator) or in a single enclosure provided with rear-access door and power strip as the K02-738BR.

The 738 BR is a highly stable precision voltage source, with drift less than 0.1% per week for de voltage, less than 0.25% per week for ac voltage. The 739AR provides a convenient constant-amplitude reference voltage of a vaciable frequency, 300 kc to 10 mc . The 200SR combines with the 739AR to extend the range to frequencies as low as 3 cps.

Specifications, VTVM calibration system

738日R Voltmeter Callbrator

Voltage range: $300 \mu \mathrm{~V}$ to 300 D , de or ac (rms and p-p, 400 (ps.)
Levels: calibration voltage $300 \mu \mathrm{v}$ to 300 v in steps of $1,3,1.5$ and 5 ; tracking voltages 0.1 to $1 v$ in 0.1 volt steps and 0.05 to 0.5 volts in 0.05 volt steps.

Accuracy: 300 v working voltage into atrenuator, accurate within $0.1 \% \mathrm{dc}$ and $0.2 \% \mathrm{ac}$, after a 30 -minure warm-up.
Aftenuator accuracy: within $\pm 0.1 \%$ or $\pm 2.5 \mu \mathrm{v}$, whichever is larger, open circuit.
Long-term stability: less than 0.1% de drift per week, less than 0.2% ac drift per week.

Power: 115 or 230 volts $\pm 10 \%$, 50 to 60 cps, 350 watts.
Dimenstons: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $153 / 4^{"}$ deep behind panel (483 x $178 \times 400 \mathrm{~mm}$).
Weight: net $38 \mathrm{lbs}(17 \mathrm{~kg})$; shipping $53 \mathrm{lbs}(24 \mathrm{~kg})$.
Price: hp $738 \mathrm{BR}, \$ 850$ (rack mount).

739AR Frequency Response Test Set

Frequency range: 300 kc to 10 mc in 3 ranges (5 cps to 10 mc with 200SR Oscillator).
Frequency response of monltoring circult: flat within $\pm 0.5 \%$ from 10 cps to 5 mc ; within $+0.5 \%, 5 \mathrm{cps}$ to 10 mc with meter reading kept at set level; monitoring circuit is average reading.
Power, 115 or $230 \vee \pm 10 \%$, so ro $1000 \mathrm{cps}, 30 \mathrm{w}$.
Dímenslons: 19" wide, $7^{\prime \prime}$ high, $83 / 4^{\prime \prime}$ deep behind panel (483 x $178 \times 400 \mathrm{~mm}$).
Weight: net 14 lbs (6.3 kg) ; shipping 24 lbs ($10,8 \mathrm{~kg}$).
Price: hp 739AR, $\$ 600$ (rack mount).

200SR Oscillator

Frequency range: s cps to 600 kc in s ranges.
Output: ar least 3 v rms into 50 ohms.
Dial aceuracy: $\pm 2 \%$.
Frequency response: $\pm 1 \mathrm{db}, 1000$ cps refereace.
Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to $1000 \mathrm{cps}, 75 \mathrm{w}$.
Dimensions: rack mount: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $131 / 8^{\prime \prime}$ deep behind panel ($483 \times 178 \times 333 \mathrm{~mm}$).
Weight: net $25 \mathrm{lbs}(11.3 \mathrm{~kg})$; shipping $37 \mathrm{lbs}(16,8 \mathrm{~kg}$) (rack mount).
Price: hp 200SR, $\$ 230$ (tack mount).
Note: All three instruments are available in cabiner with single power cord and plug strip; specify K02-738BR, $\$ 1920$.

no 456 A with ho 400 H

Top to bottorm
200SR, 739AR, 736en

456A AC Current Probe

Your conventional voltmeter or oscilloscope can measure current quickly and dependably - without direct connection to the circuit under test or any appreciable loading to the test circuit. The hp 456A AC Current Probe clamps around the current-carrying wire, and provides a voltage output you read on a voltmeter or scope. Model 456A's l ma to 1 mv conversion permits direct readiag up to 1 ampere rms.

Specifications, 456A

Sansitivity: $1 \mathrm{mv} / \mathrm{ma} \pm 1 \%$ at 1 kc .
Frequency response: $\pm 2 \%, 100 \mathrm{cps}$ to $3 \mathrm{mc} ; \pm 5 \%, 60 \mathrm{cps}$ to 4 mc ; -3 db at 25 cps and grearer than 20 mc .
Pulse response: rise time is $<20 . n s e c$, sag $<16 \% / \mathrm{msec}$.
Maximum input: 1 amp rms, 1.5 amp peak; 100 ma above 5 mc.
Effect of de current: no appreciable effect on sensitiviry and dis. tortion from dc current up to 0.5 amp.
Input impedance: (impedance added in series with measured wire by probe) less than 90 milliohms in series with $0.05 \mu \mathrm{~h}$ (this is appeoximately the inductance of $11 / 2 \mathrm{in}$. of hooknp wire).

Probe aperture: $5 / 32^{\prime \prime}$ (4 mm) diameter.
Probe shunt capacity: approx. 4 pf added from wire to ground.
Distortion at 1 kc ; for 0.5 amp input at least 30 db down; for 10 ma iaput at least 70 db down.
Equivalent input noise: $<50 \mu \mathrm{a}$ rms ($100 \mu \mathrm{a}$ when ac powered).
Output Impedance: 220 ohms at 1 kc ; approximately +1 v dc compoaent; should work into load of nor less than 100,000 ohms shunted by approximately 25 pf.
Power, two Mallory Battery Co. TR 233R and one TR 234 batteries (1420.0005 and 1420-0006) ; battery life approximately 400 hours; ac power supply optional at extra cost. I1s or 230 v $\pm 10 \% 50$ to 1000 cps approx. 1 w .
Welght: aet $3 \mathrm{lbs}(1,4 \mathrm{~kg})$; shipping $4 \mathrm{lbs}(1,8 \mathrm{~kg})$.
Dimensions: $9^{\prime \prime}$ wide, $6^{\prime \prime}$ deep, $11 / 2^{\prime \prime}$ high ($127 \times 152 \times 38 \mathrm{~mm}$): probe cable is 5 Ft . Jong: 2 ft . output cable terminated with dual banana plug.
Accessory avallable: 456-11A AC Supply for field installation, $\$ 40$.
Price: hp 456A with batteries, $\$ 190$.
Option 01.: AC supply iastalled in lieu of batteries, add $\$ 20$.

DIGITAL, DIFFERENTIAL VOLTMETERS

Digital voltmeters

Digital voltmeters (DVM's) display measurement as discrete numerals, rather than as a pointer deffection on a continuous scale commonly used in analog devices.

Several advantages in DVM characteristics lead to selection of a DVM in preference to some analog measurement methods. Direct numerical readout in DVM's reduces buman error and tedium, eliminates parallax error and increases reading speed. Automatic polarity and range-changing features reduce operator training, measurement ertor and possible instrument damage through overload or reversed polarity. Measurement capabilities of ac voltages, de currents and resistance are available. Permanent records of measurements are available with printers, card and tape punches, and by magnetic tape equipment. With data in digital form, it may be processed with no loss of accuracy.

Details of operation

The heart of a digital voltmeter is the circuitry which converts analog voltage to a digital form. Most digital voltmeters on the market roday fit into one five categories:

1. Successive-approximation
2. Continuous-balance
3. Ramp (voltage-to-time-interval)
4. Integrating
5. Integrating and potentiometric

The successive-approximation type of digital voltmeter converts the input voltage into digital form by a series of approximations and decisions. This type of voltmeter consists of a digital storage register (digiral accumulator). a digital-to-analog converter, a comparison network (error detector), a precision voltage reference and control circuitry. The input voltage is compared first with the most significant bit. The actual comparisons are made successively in binary form. If the input voltage is less than the most significant bit of the reference, the most significant bir of the register is cleared, and the next lower bit is switched in for comparison. The process of switching in the next lower significant bit is continued until a decision is made on all digits.

At this point, the voltmeter has completed its measurement. The accuracy of this technique is limited by the comparator sensitivity, reference supply, digital-to-analog converter and the resolution of the instrument. Its advantages are speed, accuracy and fixed encoding time. However, the successive-approximation method has sensitivity and nojse problems and lacks the ability to make ac-
curate measurements in the presence of noise, without the use of filters.

The continuous balance type of digital voltmeter performs a digital measurement by comparing the unknown voltage against a voltage derived from a stable reference supply. At the beginning of a measurement the unknown voltage is compared against the "full scale" reference. If a null is not reached, a voltage derived from the reference is reduced by an incremental value representing a unit of the least significant digit by automatically switching precision resistors. This process continues until null is achieved. However, when the input voltage varies because of superimposed noise, null is never reached, and the digital voltmeter hunts, never reaching an answer.

Ramp (voltage-to-time conversion) DVM

Hewlett-Packard has made notable contributions in digital voltmeters with rhree basic approaches in design. Each design was a pioneer at the time of its introduction to the field. The techniques will be discussed in order of their historical development.

The ramp category forms the economy class of digital voltmeters. The operating principle of the ramp digital volemeter is to measure the length of cime it takes for a linear ramp of voltage to become equal to the unknown input voltage after starting from a known level. This time period is measured with an electronic time interval counter and displayed on in-line indicating tubes. The advantages of this type of instrument are low price and simplicity. It requires an input filter if superimposed noise is presenc. A timeencoding technique is utilized in the hp $4058,405 \mathrm{C}$ and $h \mathrm{~h}$ 3440A Digital Voltmeters.

Voltage-to-time conversion

Conversion of a voltage to a time in. terval is illustrated by the timing diagram of Figure 1. At the start of a measure.

Figure 1. Voltage-to-time conversion.
ment cycle, a ramp voltage is initiated. The ramp is compared continuously with the voltage being measured; at the instant they become equal, a coincidence circuit generates a pulse which opens a gate. The ramp continues until a second comparator circuit senses that the ramp has reached zero volts. The output pulse of this comparator closes the gate.

It is readily seen that the time duration of the gate opening is proportional to the input voltage. The gate allows clock pulses to pass to rotalizing circuits, and the number of pulses counted during the gating interval is a measure of the voltage. Choice of ramp slope and clock rate enables the cotalizing circuit readout to read directly in millivolts (e.g., a slope of $400 \mathrm{v} / \mathrm{sec}$ and clock rate of 400 kc).

If the input were a negarive voltage, coincidence with it would occur before zero coincidence. Circuitry senses which coincidence occurs first and switches the polarity indicator accordingly.

The virtue of the volcage-to-time conversion as a digitizing technique lies in its simplicity. Furthermore, slowly varying input voltages do not disturb the operation of the voltmeter, as often happens with null-seeking voltmeters which may continually hunt for, but never achieve a balance. The economical hp Model $405 B R, C R$ and 3440A Digital Voltmeters use the voltage-to-time conversion technique.

A block diagram of the hp 3440A Digital Voltmeter (Figure 2) shows the basic parts of a system typical of time encoding. A voltage ramp is generated and compated with the unknown voltage and with zero voltage. Coincidence with either voltage starts the oscillator, and the electronic counter counts the cycles. Coincidence with the second comparator stops the oscillator. The elapsed time is proportional to the time the ramp takes to travel between the unknown voltage and zero volts, or vice versa. The order in which pulses come from the two comparators indicates the polarity of the unknown voltage. The accumulated reading in the counter can be used to control ranging circuits. The comparators used in the hp 3440 A are of a unique solid. state circuit design, contributing to a sys-

Figure 2. Alack diagram hp 3440A Dlgital Voltmeter.
tem which is fast, economical and capa. ble of great utility.

The system used in the 3440A DVM allows one to make an economical DVM with adequate speed and accuracy for a majority of production and bench test requirements. The 3 fitud has an accuracy of $=0.05 \%$ of reading nith reading rates up to 5 per second. These features, coupled with its capability of $10 \mu \mathrm{~V}$ resoJution (using the hp 34-13A Plug in Unit) and four-digit readout, make it the economical choice.

Integrating (voltage-to-frequency conversion) DVM

The next advancement in the stare of digital voltmeter art was made by Hew. lett-Packard's Dymec Division with the DY-2401C. It features integration of the input signal, guarding and remote operation. This integrating digital voltmeter measures the true average of the input voltage over a fixed encoding time, in contrast to the successive-approximation, continuous-balance and ramp types of digital voltmeters, which measure the voltage at the end of the encoding interval. Measurement at the end of the encoding interval can easily coincide with a burst of noise, thus creating a discrepancy in the DVM's indication.

Voltage-to-frequency conversion (integrating)

A voltage-to-frequency converter is shown in Figure 3. The circuitry functions as a feedback control system which governs the rate of pulse generation, making the average voltage of the rectangular pulse train equal to the de inpur voltage.

figura 3. Voltage-ko-frequency conversion.
A positive voltage at the inpur results in a negative-going ramp at the output of the integrator. The ramp continues until it reaches a voltage ievel that fires the level detector, which, in turn, triggers a pulse generator. The pulse gen. erator produces a rectangular pulse with closely controlled width and amplitude just sufficient to draw enough charge from capacitor C to bring the input of the inregrator back to the starting level. The cycle then repeats.

The ramp slope is proportional to the inpur voltage. A higher voltage at the input would result in a steeper slope, re. sulting in a shorrer time duration for the ramp. Consequently, the pulse repetition
rate rould be higher. Since the pulse repetition rate is proportional to the input voltage, the pulses can be counted during a known time interval to derive a digical measure of the input voltage. While a volrage ramp is generated in this type of DVM, the amplitude is only a fraction of a volt, and the accuracy of the analog-to-digital conversion is determined nor only by the characteristics of the ramp but also by the area of the feedback pulses.

The primary advantage of this type of analog.to-digital conversion is that the input is "integrated" over the sampling interval, and the reading represents a true average of the input voltage. The pulse repetition frequency "eracks" a slowly varying input voleage so closely that changes in the inpur voltage are accurately reflected as changes in pulse reperition rate. The total pulse count during a sampling interval therefore represents the average frequency, and thus, the average voltage. This is important when noisy signals are encountered. The noise is thereby averaged out during the measurement without requiring input filters that would slow the voltmeter response time. Furthermore, the voltmerer achieves essentially infinite rejection of power line hum, the most prevalent source of signal noise, when the measurement interval is an exact multiple of the hum waveform period.

A second advantage is that the pulse circuits provide a convenient means of coupling the information out of a guard circuir. The Dymec DY-2401C Integrating Digital Voltmeter has a floating in. put, and all of the voltage-10.frequency conversion circuitry is housed within a guard shield. Figure 4 show's a simplifed block diagram of the technique used in the DY-2401C. The integrator, pulse generator and level detector generate a train of pulses. The total number of pulses over a specified period is directly proportional to the integral of the input sig. nal over this same peciod of time. This arrangement makes it possible to trans-former-couple the signal to the digital circuits outside the guard and thus enables complete isolation of the measuring circuic itself.

Figure 4. Block diagram DY-2401C DVM.
The DY-2401C Voltmeter applies es. pecially to measurements of extremely noisy signals up to 100% of full-scale peak value. It is also capable of $1 \mu \mathrm{y}$ reso. Iution; full-scale readings down to 99.999 mo can be made without an accessory
amplifier (9.9999 mv with DY-2411A). If high reading rates are required, the DY-2t01C can take readings with three. digit resolution ar rates up to $50 /$ second. Speed is an ourstanding feature of the optional autoranger for the 2401 C : less than 34 msec are required to select the correct range. This speed, along with its complete remote control ability makes it ideal for many system applications. Another unique feature of the DY-2401C is its ability to measure the volr-second integral of an arbitrary waveform. It also can be used as an electronic counter to measure frequency or period.

Potentiometric integrating DVM

A nex high in DVM measurement ac. curacy obtained by a special analog-todigital conversion rechnique is found in the hp solid-state Model 3460A Digital Voltmeter. The 3660 A , in a sense an auromated differential volmeter, offers extsemely high accuracy and resolution. Especially in comparison with non-integrating continuous-balance meters and with successive-approximation merers, the 3660A offers exrreme accuracy and resolution, with superior noise immunity, while retaining speed and presenting a constant high input impedance. Beyond this, the 3660 A features compactness and economical price.

By special rechniques which utilize the hest features of several existing systems. a totally new result has been achieved in the hip 3460 A Digital Voltmeter. Besides being an integrating type voltmeter which continually measures the true average of the input voltage over a fixed encoding time. it also is a potentiometric type relying primarily on resistance satios and a stable reference voltage to assure high accuracy.

A block diagram of the 3-460A Inte. grating.Potentiometric Digital Volmeter is shown in Figures. Note that the voltmeter is divided into three sections: a voltage-ro-fiequency (V / F) converter, a counter and a digital-to-analog (D / A) converter. The hp 3460 A takes a reading in two steps.

First, the voltage-to-ifequency converter generates a pulse train with a rate exactly proportional to the input voltage. This pulse train is gated for a precise time interva! and is fed to the first four places in a 6-digit counter. The stored (undisplayed) count is transferred to the D/A converter, which produces a highly accurate dc voltage proportional to the stored count. This voltage is sultracted from the unknown voluge at the input to the V/F converter.

Next, the pulse train from the V/F converter is again gated-this time to the last two places in the 6 -digit counter. At
the end of the second gate period the total count is traosferred to the 6 display tubes. The counter display is indicative of the integral of the input voltage.

Figure 5. Block dlagram ho 3460A DVM.
The hp 3460A should be chosen for applications which require extremely high accuracy ($\pm 0.005 \%$) and high speed with high resolution. The 3460A takes up to 15 readings per second with more than 5 -digit zesolution (1.19999 full scale). These reading all can be made in the presence of large common mode sig. nals. The 3460 A is equipped to be ranged automatically or remotely, and to be triggered on command. A most useful degree of noise-averaging is obtained through use of the integrating technique. It can reject superimposed noise up to either 1% or 6% of the full-scale zange, depending upon the chosen gate length. The integration feature also allows a maximum reading rate even with noisy signals, since no input filter is required.

Selecting a digital voltmeter

A knowledge of DVM operation prin. ciples aids in proper selection. The choice of a digital voltmeter is governed largely by the intended application. Relative cost also should be considered.

If the DVM is to be used with a data acquisition system, then binary-coded decimal (BCD) output and remote programming ability are necessities. Compatibility with related equipment should be determined.
When selecting a digital voltmeter to make accurate measurements in the presence of noise, the digital voltmeter must be able to discriminate the real signal from the noise appearing at its input rerminals. Noise rejection by integration permits both high accuracy and speed in the presence of severe noise conditions. The integrating digital voltmeter reads the average value of the input signal and fits into an attractive price ciass.

Noise on the signal may also be reduced if the digital voltmeter has a passive input filter. Filrering can be employed without degrading voltmeter accuracy but it does impose a penalty on the speed of making measurements. Considerations of speed must be made if the digital voltmeter is to be used in data
acquisition systems; however, the input filter type of DVM enters into an eco. nomical price class.

Common mode pickup, which is noise induced in the signal current by circulating ac ground currents, is frequently a severe measurement problem. Guarding. which virtually eliminates the effects of common mode noise, may therefore be of prime importance when selecting a digital voltmeter.

For production line and orher opera-tor-controlled measurements. automatic ranging may be of prime importance. The ability to track signals around zero may be needed, in which case inciusion of a bi-directional counter (DY-2401C and hp 3460 A) may be desirable. Laboratory applications, on the other hand, may be more concerned with accuracy and resolution.

All of the Hewlert-Packard digital voltmeters described have been designed with the requirements of a maximum number of volcage measurements in mind. Each category of DVM uses a dif. ferent system to convert analog voltage to digital information. These various techniques were chosen to maximize per. formance while minimizing cost. A Hew. lett-Packard DVM is available to meet your specific application requirements.

Differential voltmeters

The basic concept of differential voltage measurements is to apply an unknown voltage against one that is accurately known and to measure the dif. ference berween the two on an indicating device. If the known voltage is adjusted to the exact potential of the unknown voltage, one can determine the unknown quantity being measured as accurately as the known voltage (reference standard).

A typical differential voltage measurement is shown in Figure 6. The null meter M_{x} indicates when the voltage $e_{a c}$ at the potentiometer is equal to the unknown voltage e_{x}. From considerations of the ratio of resistance $R_{a b}$ and $R_{a c}$ in the potentiometer, the ratio of $e_{a c}$ to the known reference volrage $e_{\text {rel }}$ may be determined precisely.

Figure 6. Potentiometer methad of measur. Ing unknown voltages.

The potentiometric method is highly accurate, since precise resistance ratios can be determined. No current is drawn
from either the standard cell or the unknown voltage source at null. The source impedance R_{x}, therefore, does not affect measurement. The divider output tap (b) is adjusted to nuil eree.

$$
\left(\text { Thereby } \varepsilon_{\mathrm{y}}=e_{\mathrm{rel}} \frac{R_{\mathrm{ac}}}{R_{\mathrm{ab}}}\right)
$$

Conventional dīfferential voltmeter

Pigure 7 illustrates a simplified, con. ventional differential voltmeter, where the potentiometer slidewire has been replaced by a Kelvin-Varley divider and the voltage E has been replaced by an accurate supply, E_{0}, referenced to the standard voltage. The null device is a solid-state voltmeter instead of a galvanometer. Using this method, a bigh voltage standard is required to measure high voltages. This need may be overcome by inserting a voltage divider between the source and the null meter, but this, in turn, provides relatively low input impedance for voltages higher than the reference standard. This low input impedance is undesirable, because accurate measurements cannot be obtained if current is drawn from the source that is being measured. Most differential voltmeters used today offer impedance approaching infinity only at a null condition, and then only if an input voltage divider is not used.

Figure 7. Simplified conventional olfferential voltmeter.

Isolation achieves high input impedance regardless of null

Hewlett-Packard has developed a system with an isolation stage and a precision amplifer that can be used to provide a high input impedance which eliminates loading the source. This approach used in the hp 740A and hp 741 A results in a differential voltmeter whose input impedance is independent of both null condition and range.

Standard lab accuracy, versatility, ease of operation

Recently developed, the hp 740A and hp 141A combine a differential voltmeter ($\triangle V M$) and a de voltage standard into
one package that provides several conveniences for making precision voltage measurements. Both instruments (740A, 741A) draw negligible current from the unknown voltage source whether or not the instrument is aulled. This simplifes the measurement, especially when the unknown voltage is drifting.

In addition to their function as \triangle VM's. the hp differential voltmeter/standards provide calibrated voltages for external use. Furthermore, these instruments can perform extra service as precision voltmeters and dc amplifiers. The hp Model 741A also has an ac-dc converter that permits it to make differential measurements on ac voltages (by precise conversion of the unknoxin ac to an equivalent dc), and to serve as a precision ac voltmeter.

Circuit description

When a voltage to be measured is applied to the inpur terminals, the amplifier responds by recreacing this voltage at the summing point and inherently balancing the system to achieve a constant high input impedance. The amplifier ourput is converted to a 1 volt level by means of a precision range divider switch for direct comparison with a 1 vole interval reference. The range switch performs two operations. It changes the overall feedback factor, and thus, the overall amplifier gain, and it selects the potentiometer tap on the range stick. Consequently, choice of the proper range enables any input voltage between 0 to 1000 volts to be represented by a proportional voltage between 0 and 1 volt ar the tap connecting to the potentiometer. Figure 8 illustrates a simplified block diagram of both h_{p} ac and de differential voltmeters/dc standard.
regulation is provided by pulse-width modulation of an incernally generated square wave. This controls a transistor switch which drives a step-up trans. former, a rectifier and fiter circuit.

High seasitivity, stability and high input impedance are achieved in the meter circuits of hp differential voltmeters. These are acquired by careful design of the solid-state, chopper-stabilized, feedback amplifier. Null sensitivity is pro. vided through decade pushbuttons, which select the proper amount of am. plifier gain and connect the decade dividers to the measuring circuit.

An adjustable recorder output supplies up to 1 volt at 1 ma for end-scale deflec. tion of the meter. From input terminals to recorder outpur a maximum voltage gain of $120 \mathrm{db}(740 \mathrm{~A})$ and 60 db (74 IA) is a vailable.

The basic stability of the 740A and 74LA is derived from the reference sup. ply encased in a highly regulated pro. portionally concrolled oven operated at $80^{\circ} \mathrm{C}$. The reference supply maintains a stability better than $0.0015 \% /$ month (740A) or $0.005 \% /$ month (741A).

Most differential voltmeters use a Kelvin-Varley decade divider which provides a constant impedance to the reference supply. Such a divider uses 11 resis. tors per decade.

A binary technique developed by Hew. lett-Packard (patent applied for) is clectrically similar to the Kelvin-Varley divider bur uses only 4 resistors per decade. This reduces initial cost, as well as calibration time. Greater accuracy and longterm stability are achieved by using hpmanufactured precision resistors.

An important feature of this new technique is the method by which the dividers in the 740A may be calibrated in the field.

Figure 8. Hewlett-Packard ac/de differential voltmeter/de standard.

The isolation stage in the hp 740A and 741A consists of a series-connected pair of amplifiers, a low-level chopper-stabilized amplifier and a high-voltage amplifier. Overall feedback greater than 100 db assures gain accuracy and produces input impedance greater than 1000 meg . ohms.
The high-level amplifier in the 740 A and 741 A is the key to obtaining a high voltage output using low voltage power supplies and solid-state design. Voltage

An internal multi-position swiech connects the resistors of a decade in a bridge combination. The front-pane! merer serves as a null indicator, so trimming resistors can be adjusted to establish resistor ratios to extreme accuracy.

741A achieves ac input capacity <5 pf

The foregoing has covered the basic technique of the 740A and 741A as a dc differential volmeter. The block diagram
in Figure 8 also shows the basic parts of the 741 A used as an ac differential voltmeter. The ourstanding contributions in ac measurement capability of the h_{p} 741 A are the very low input capacity (<s pf) with the convenience of an ac probe and the extended bandridth to 100 kc . This is obtained by an overall feedback scheme (patent applied for) in conjunction with the ac probe. The unknown ac signal is fed from the precision attenuator to the high-impedance, low-level amplifier. It is then amplified and applied to a diode bridge whose halfwave signal is averaged to produce a dc output. The dc output of the converter is measured in the same manner as the do differencial mode-by connecting the null meter decade divider system. Consequently, this ac measurement is made to a high degree of accuracy. since the ac signal is converted to $d c$ and measured with the same precision dividers and reference standard used in do operation. By this method, accuracy can approach that of the de mode. The converter provides accurate ac measurements from 20 cps to 100 kc , and low input capacity allows measurements to be made at high frequencies and high voltage levels with. out drawing large reactive currents.

Either as a high-impedance ac voltmeter or as a high-impedance ac differential voltmeter, the hp 741 A has an input impedance of 1 megohm shunted by less than 5 pf directly at the probe tip.

DC standard

The hp differential voitmeters previously discussed are converted by a front. panel switch to a de standard. The same feedback amplifier and precision range stick are used. The internal reference supply now becomes the input to this amplifer. The ioput is automatically nulled against a feedback volkage which is determined by the range-switch setting and the output voltage at the sensing terminals. The vernier on the decade divider is mechanically linked to a voltage divider connected to the input of the null meter. This provides the stn and 6th digits of resolution. Remore sensing is provided, as well as continuously adjustable current limiting. Both instruments used as a standard ac source have ranges from 1 volt to 1000 volts with six-place resolution on each range.

Multi-purpose field, lab standard

The ever-expanding usage of bigh. resolution, intermediate-accuracy ac and $d c$ instruments have accentuated the need for devices having absolute accuracies and exhibiring extremely good stability for calibration of such instruments. This particular need for a variety of measure. ment requirements can be satisfied by Hewlett-Packard's 740A or 741A. Refer to pages 154 and 156 for specifications.

3460A DIGITAL VOLTMETER

Unique new performance at economical price

The new solid-state Hewlett-Packard 3460A Digital Volt. meter offers a broader measuring capability at moderate cost than any other DVM. High accuracy and resolution, rapid speed, with more than 5 -digit readout and constant high input impedance are insured with the 3460A.

This guarded DVM permits automatic and remote controlled de measurements from 1 volt to 1000 voles full scale. Low.level measurements of ± 100 mililivolts can be obtained with $\pm 10 \mu \mathrm{v}$ resolution. High accuracy of $\pm 0.005 \%$ of reading ± 2 counts makes the 3460A ideal for precision measurements. The hp 3460 A provides is readings per second. As much as 20% overranging capability on all ranges offers full.scale display within specified accuracy up to 1000 volt range. Another feature includes constant 10 megohms input impedance on all ranges. An in-line digital tube display (and polarity indicator) provides voltage measuring capabilities to an accucacy of $\pm 0.005 \%$ ± 2 counts from 0.00001 to 1199.99 volts ds over a $+10^{\circ} \mathrm{C}$ to $\div 40^{\circ} \mathrm{C}$ temperature cange $\left(0.01 \% \pm 3\right.$ counts from $0^{\circ} \mathrm{C}$ to $+10^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$). Four input voltage ranges of $1.00000,10.0000,100.000,1000.00$ are selected by front-panel pushbuttons, with remote or automatic control lefe to the option of the operator, A lighted function symbol and decimal point are automatically positioned, so the display always reads directly in voles.

The hp 3460 A is fully programmable. Permanent test records on all funcrions. including polarity, decimal function and overload, are available with accessory hp Model J76-562A Printer for a $1-2.4-8$ code (Model J74-562A provides the same readout on a 1-2-2-4 code with 3460A. Option 01.). Accessory instruments include the guarded DY-2410B-M22 AC/Ohms Converter for ac voltage and resistance measuring capabilities (Option 02.).

Principles of operation

This new DVM is distinctly different from all other types of digital voloneters. The hp 3460A combines potentiometric and integrating tecbniques and continually measures the true average of input volcage over a fixed encoding time. It atrains $\pm 0.005 \%$ accuracy largely as a result of the potentiometric principle which relies on resistance ratios and a stable reference voltage. It is used in combination with integration, producing much of the noise immuniry of integrating DVM's while retaining potentiometric accuracy (refer to pages 143-145 for circuit description). The voltmeter, in one s" high, $19^{\prime \prime}$ wide convenient rack mount unit, combines the extreme precision and measurement fexibility expecred from laboratory standards with the programming and electronic output features necessary for automated systems.

Accurate measurements

The hp 3460A Digital Voltmeter relies primarily upon resistance ratios and an ultra-stable reference supply for its excellent accuracy and stabilicy. Wire-wound resistance catios establish the linearity of this new and different digizal volt. meter. The stability of the reference supply exceeds $0.001 \% /$ month and consists of a breakdown reference diode in a temper. ature-controlled oven with temperature change of $0.2^{\circ} \mathrm{C}$ over a 0 to $\div 50^{\circ} \mathrm{C}$ temperaruce range. The wire-wound resistance ratio and precision voltage reference have been the classic and most reliable sources of accurate voltage measurements in standards laboratories. While this historic technique is outstanding for achieving maximum accuracy, it can be used only for very stable voltages with no noise being present. This factor has affected the accuracy of successive-approximation and continu-

Triggerlag	Range	Spead
local	all	3 readings $/ \mathrm{sec}_{;} 1 / 5 \mathrm{sec}$
remote	$1 \vee$	7 readings $/ \mathrm{sec}$

Table 1. Measuring speed

Ranglng

Voltages are measured in 4 ranges, from ± 1 volt to ± 1000 volts full scale. Ranges are selected automatically, manually or remotely on the 3460 A . An important advantage of the 3460 A is that up 1020% of futl-scale overranging can be obtained on any range (1200 v dc on the 1000 v range). An overload condition is indicated on the front panel and the recording output when the input voltage is greater than 1.2 times of full scale on any range during manual operation or greater than 1200 v in auromatic operation. If the overload condition persists, the cycle is repeaced. Automatic selection of the appropriare input voltage range may be made by the front-panel selector or by an external circuit closure.

$A C$ voltage and resistance measurements

AC voltages up to 750 volts peak and resistance to 10 meg. ohms can be measured with the hp 3460A (Option 02.), in conjunction with a DY-2410B-M22 AC/Ohms Converter (pages 148, 149).

Systems applications

The 3460A forms the heart of a series of standard DY- 2013 Digital Data Acquisition Systems available from Dymec.

Recording outputs

A 1-2-4-8* binary-coded decimal voltages (ground referenced) are produced for each measurement and for indication of measurement function, voltage range and polarity. A complete printed record of the hp 3460A outpur information can be obtained with a 562A,AR Digital Recorder (page 76).

Tentative specifications

Voltage accuracy: $\pm 0.005 \%$ of reading ± 2 digits from $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ on all ranges ($\pm 0.01 \%$ of reading ± 3 digits from $0^{\circ} \mathrm{C}$ to $+10^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$).
Ranges: full-scale presentation of $\pm 1.00000, \pm 10.0000, \pm 100.000$, and ± 1000.00 (up to 20% overrangiag).

Reading rate

Remote control mode: maximum of 15 independent readings/ \sec on $10,100,1000 \mathrm{v}$ ranges, including range selection; maximum of 7 iadependent readings $/ \mathrm{sec}$ on 1 volr range including range selection; two switch closures to ground of 100 ohms os Jess, plus external triggering.
Local control mode: maximum of 3 independent readings $/ \mathrm{sec}$ to a minimum of 1 independent reading/s sec, including range selection; mantal trigger provided.
Input Impedance: constant 10 megohms $\pm 0.03 \%$ (to dc) all ranges.

Polarity selection: automatic

Range selectlon: automatic: pustbutton selector or a switch closure to ground with impedance <100 ohms provides autorange operation, 33 msec is required per range change (100 mser max.); remote: a switch closure to ground with impedance <100 ohms for a period $>100 \mu$ sec selects range desired; manual: pushbutton selector.
Common mode rejection: common mode rejection (ratio of common mode signal to its effect on digital display) 160 db at dc with 1 K ohm between the low side of the input and the point where the guard is connecred; 120 dtup to 60 cps under the same conditions.

Superimposed noise rejection:

Superimposed Noise Rejection by Integration

Relection around 60 cps
External road command:

Trupger	Open ak! vollage	Triggerling level	Duration	Current
Positive -going, direct-coupled	$-10 \mathrm{~V}$	$+\underset{d c}{+10 \mathrm{to}}+30 \mathrm{v}$	$\begin{gathered} 100 \mu \mathrm{sec} \text { to } \\ 30 \mathrm{msec} \end{gathered}$	$\begin{array}{r} 2.5 \mathrm{ma} \mathrm{at} \\ +10 \mathrm{v}, 6 \mathrm{ma} \\ \mathrm{at}+30 \mathrm{v} \end{array}$
Negative-going, direct-coupled	$+10 v$	$\begin{gathered} -10 \text { to }-30 \\ v d \varepsilon \end{gathered}$	$\begin{gathered} 100 \mu \mathrm{sec} \text { to } \\ 30 \mathrm{msec} \end{gathered}$	$2 \mathrm{ma} a \mathrm{t}$ $-10 \vee, 5 \mathrm{ma}$ $\mathrm{at}-30 \mathrm{v}$
$\begin{aligned} & \text { AC-coupled } \\ & \text { (either polarity) } \end{aligned}$		$\begin{aligned} & 20 \mathrm{Vp} \mathrm{\cdot p} \\ & \text { with rise- } \\ & \text { tome } 10 \mu \mathrm{sec} \end{aligned}$	$\begin{gathered} 100 \mu \mathrm{sec} \\ \text { to } 30 \mathrm{msec} \end{gathered}$	

Thigger hold-off: hold-off level is +3 to +10 volts with a maximum current of 6.3 ma (provided by 562A Digital Recordec).
Print command: dc-coupled; print level, -1 volt with 2 K ohm source resistance: print hold-off level, -17 volts with 2 K ohm source resistance (minimum load resistance is 15 K ohms).
BCD outputs: 4.line BCD (1-2.4.8) 9 columas consisting of Polarity, Decimal Location and Overload and 6 digis of Data,

state 0 1	$\begin{gathered} \text { voltape } \\ -24 \\ -1 \end{gathered}$	sourte reststanda 100 K 100 K
Rof. lavels Posilive Negative	voltage $-21 v$	source resistance 380 ohms 900 ohms
4-line BCD (1-2-2-4) available (Option 01.)		

Ganera)

Inputs: floated and guarded signal pair (binding post on front panel or connector on reas panel is selected by front-panel switch); guard may be aperated up to ± 500 v above chassis ground (350 v roms); low may be operated up to $\pm 50 \mathrm{v}$ above guard (50 v mns).
Power. 115 or 230 volts $\pm 10 \%$, 50 to 60 cps , approx. 60 wats; 50 to 1000 cps available on special order.
Dimenslons: $9^{\prime \prime}$ high, $16^{\prime \prime}$ wide, $213 / 8^{\prime \prime}$ deep ($127 \times 406 \times 543$ mm) ; rack mount kit furnished with instrument.
Welght: net 38 lbs (16 kg) ; shipping $43 \mathrm{lbs}(19,6 \mathrm{~kg}$).
Accessory avallable: $11065 \mathrm{~A} 6^{\prime}$ reas iaput cable, guarding pre. served, terminated end mates with $3460 \mathrm{~A}, \$ 10$.
Accessory furmishedt rack mounting kit iocludes 3 printed circuit extender boards.
Price: hp 3460A, $\$ 3600$.
Options

1. 1-2.2.4 BCD output, no additional charge.
2. replacement printed circuit board and digital indicatiog tube for ac volage and resistance measurements using Dymec DY-2410B-M22 AC/Ohms Converter: function symbol (digital indicating tube) indicates all modes of operation, add \$250.
[^10]
DY-2401C INTEGRATING DIGITAL VOLTMETER

Precise measurements, even in the presence of severe noise

The DY-2401C Integrating Digital Voltmeter combines the precision and measurement fexibility of a laboratory instru. ment with the programming and electrical output features necessary for systems use.

Design features virtually eliminate measurement errors due to extraneous noise on the signal, without restriction on grounding of the signal source, recorder or programming device. Signals as small as a few per cent of full scale can be accurately measured even in the presence of noise approaching three times full scale. Controls and input/outpur features of the DY-2401C permit maximum versatility of application in an instrument that is simple to use. Programming of the DY-2401C (for digital systems applications) requires only external circuit closures to ground and does not affect noise rejection properties.

The DY-2401C measures the average value of the applied voltage over one of three fixed crystal controlled sample periods ($0.01,0.1$ and 1 second), selected manuaily or remotely. Accuracy is 0.01% of reading $+0.005 \%$ of full scale +1 digit (at $25^{\circ} \mathrm{C}$). Reversing counter circuits permit signals to be integrated around zero with full instcument accuracy. The 6 -place display ensures that resolution will not limit a reading.
$D C$ voltages are measured in five ranges from $\pm 0.1 \mathrm{v}$ to $\pm 1000 \mathrm{v}$ full seale. Range selection is manual, remote or (op. tionally) automatic. Overranging to 300% of full scale is permissible (all ranges except 1000 v) providing addíional resolution and accuracy on the commonly used 1-to-3 readings. Overloads beyond this point switch the input attenuator to the 1000 v sange. Overload is indicated in the front-panel display and recording output.

Operation of the optional auto-ranger is exiremely fast-34 msec maximum range change time. The DY. 2401 C with autoranging finds excelleat application at high sampling rates with varying input signals and at rapid scanning rates when employed in multi-channel systems with widely varying signal levels. The auto-ranger also will select proper range of optional preamp and ac/ohms converter at reduced ranging speeds.

A precision internal standard with stability of $\pm 0.006 \%$ per 6 months (independent of measurement circuit) is included for calibration. An additional mode of operation permits the DY. 2401 C to be used for direct frequency measurements up to $300,000 \mathrm{cps}$. Crystal-controlled gate times of $0.01,0.1$ or 1 second can be selected; alternatively, the gate can be opened and closed manually or remotely. An option extends the frequency range to 1.2 mc . For increased accuracy on low-frequency measurements optional period average measurements of 1,10 or 100
periods of the signal frequency can be made. Measurements are displayed directly in milliseconds.

The DY-2401C is designed for fully automatic operation within a digital data acquisition system. Measurement function, voltage range, sample period, sampling rate and integration interval all can be selected by external circuit closures to ground. While the measurement circuit of the DY-2401C is guarded, all remore control lines and electrical outputs are referred to chassis ground and do not interfere with the guard. BCD voltages for use with output recorders are produced for each measured digit, for measurement function, voltage range and polarity.

Millivolt measurements

A full-scale range of $\pm 10 \mathrm{mv}$, with overranging to $\pm 30 \mathrm{mv}$, is obtained by adding a DY-2411A Guarded Data Amplifier to the DY-2401C. This amplifier provides an input impedance of 10,000 megohms, and features a guarded input/output which preserves the voltmeter common mode rejection characteristics. The 30 mv input range and high noise rejection provided by the DY-2411A/2401C combination is particularly useful in strain gage and thesmocouple measurements, where resolution to better than $1 \mu \mathrm{v}$ is desirable.

The DY-2401C accepts logic cards (furnished with the DY. 2411A), which assures proper decimal point indication when the amplifier gain of 10 is used. The DY. 2401C auto-ranger also selects the appropriate amplifier gain when the two instruments are used together, providing six automatically selected ranges, 10 mv to 1000 v full scale.

AC voltage and resistance measurements

$A C$ voltages to 750 v peak, and resistances to 10 megohms can be measuced with the DY-2401C by adding a DY-2410B $\mathrm{AC} /$ Ohms Converter. This instroment features a guarded measurement circuit similar to that of the 2401, and is suitable for programmed systems applications. The DY-2401C auto-ranger will select appropriate range for ac and ohms operation. Appropriate measurement units are indicated in the display window of the voltmeter when it is used with the converter.

System applications

The DY-2401C forms the heart of a series of standard digital data acquisition systems (DY-2010) available from Dymec. These systems feature a choice of input scanners, sig. nal conditioners, auxiliary devices and output couplers for recording on a variery of output media. (See pages 82.85 for descriptions of this equipment.)

Specifications, DY-2401C

DC voltage measurements

Noise rejectlon: overall effective common mode rejection: 140 db at a!l frequencies, 160 db at $\mathrm{dc}(0.1 \mathrm{sec} \operatorname{sample}$ period); common mode rejection: 120 db at $60 \mathrm{cps}, 160 \mathrm{db}$ at dc , with 1000 ohms between low side of source and low side of inpur (resistances up to 10 K); superimposed noise rejection: more than 20 db at 55 cps for 0.1 sec sample period, increases 20 db per decade increase in frequency, infinite rejection at frequencies evenly divisible by 10 .
Input circuit: type: floated and guarded signal pair. may be operated up to 500 v above chassis ground; ranges: 5 from 0.1 v to 1000 v f.s., selection by front-panel switch or remote circuit closure to ground. polarits sensed automatically; overranging: to 300% f.s. except 1000 v range; overload: range automatically switched to 1000 y at 310% f.s., reset by next read command; input impedance: 10 M on $1,100,1000 \mathrm{v}$ ranges, 1 M on I v range. 100 K on 0.1 v range, $<150 \mathrm{pf}$ all ranges.
Accuracy: 0.01% of reading $\pm 0.005 \%$ f.s. ± 1 digit at $25^{\circ} \mathrm{C}$; temperature coefficient 0.001% of reading per ${ }^{\circ} \mathrm{C}$ (calibrated at (emperature) 0.0015% of reading, 10 to $50^{\circ} \mathrm{C}$.
Internal callbration source: $\dot{\vdots} 1$ volt standard for self-calibration; stability $\pm 0.006 \%$ per 6 months at $25^{\circ} \mathrm{C}$, temperature co. efficient $\pm 0.001 \%$ per ${ }^{\circ} \mathrm{C}$; reference derived from specially selected temperature-stabilized zener diode.
Measurement speed; fxed sample periods of 0.01 . 0.1 or 1 sec selected by front-panel switch or remote circuit closure to ground.
Resolution: depends on sample period; max. $1 \mu v$ per digit. Auto-ranger (optional)

Voltage ranges: automatically selects range from 3 input ranges of standard instrument (0.1 v to $1000 \mathrm{v}(\mathrm{s})$) also selects ap. propriate gain serting (X1 or X10) when DY-2401C is used with DY-2411A Amplifer; range change points: up-ranges at 310% f.s., down-ranges at 30% f.s.; range select time: 6 msec (nominal) ior each range change, max. time from receipt of read command to start of sample period, 34 msec.
DC valtage integration: Input signal is integrated over selected sample period; using fixed sample period, iotegra! is average of inpur, readout in volts; sample period may be started/stopped manually or remotely, display reads in mv-sec or v-sec.

Frequency measurements

Range: $S \mathrm{cps}$ to 300 kc , optionally to 1.2 mc ; gate time 0.01 , 0.1 , 1 sec or manual; acturacy: ± 1 count \pm time base accuracy: time base: stability ar constaat temperature $\left(\pm^{\circ} \mathrm{C}\right)$ is $\pm 2 / 10^{4} /$ week, temperature effect $\pm 100 / 10^{\circ}$ over-range 10 to $50^{\circ} \mathrm{C}$. pro. visions for external time base; display time: variable from 0.2 107 sec . or held until reset; inpur sensitivity: 0,1 to 100 v rms or will accept neg. pulses; impedance: 1 M shunted by 100 pf .

General

Display: 6 digit in-line digitaltube readout: polarity, decimal point, function and overioad condition indicated automatically.
Recording outputs: BCD output provided for function and polarity I digir; data, 6 digits; decimal point, 1 digit.
Frequency output: internal 100 kc frequency standard available.
External programming: may be completely programmed by external circuit closures to ground.
Operating conditions: specifications apply for ambient tempera. tures 10 to $50^{\circ} \mathrm{C}$. relative humidity to 95% at $40^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{v}=10 \%$, 50 to $60 \mathrm{cps}, 150 \mathrm{w}$.
Dimenslons: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $183 /$ s" $^{\prime \prime}$ deep behind front panel ($483 \times 177 \times 467 \mathrm{~mm}$).
Weight: net 48 lbs (22 kg) ; shipping $70 \mathrm{lbs}(33.5 \mathrm{~kg}$).
Price: Dymec DY-2401C, $\$ 3950$.

Specifications, DY. 2410 B

(used with DY-2401C)

AC voltage measurements

Common mode nolse relection: 110 db at 60 cps, with 1000 ohms between low side of source and low side of input.
Input eircuit: frequency range: 50 cps to 100 kc ; voltage ranges: s from 0.1 v to 1000 v rms f.s., 1000 v range usable to 750 v peak; overranging: to 300% f.s. on all ranges except 1000 v : inpur impedance: 1 M shunted by 100 pf .
Output circuit: output voltage: 1 v dc $f . \mathrm{s}$, into 1 M load impedance, for all input ranges; output resistance 60 K ; response:
for frequeacies below 400 cps output settles to within 0.2% of final value in 500 msec , frequencies above 400 cps output settles to within 0.2% in 200 msec.
Accuracy (for +10 to $50^{\circ} \mathrm{C} ; \pm 10 \%$ tine voltage change, and includes 30 -day stability): 50 cps to $10 \mathrm{kc}, \pm 0.05 \%$ of f.s. $\pm 0.2 \%$ of reading; 10 kc ro $30 \mathrm{kc}, \pm 0.05 \%$ of f.s. $\pm 0.4 \%$ of reading; 30 kc to $100 \mathrm{kc}, \pm 0.1 \%$ of f.s. $\pm 0.6 \%$ of reading.

Resistance measurements

Nolse rejection: resistance measurement circuit enclosed in same guard as ac converter; ac common mode pickup on resistance measurements eliminaced by conneating guard to grounded end of test resistance; double-shielded cable allows extension of guard to test resistance,
Input circult: type: guarded, modified 4-terminal circuit; ranges: $0.1 \mathrm{~K}, 1 \mathrm{~K} .10 \mathrm{~K} .100 \mathrm{~K}, 1 \mathrm{M} .10 \mathrm{M}$ f.s.: overranging: to 300% of f.s. on all ranges except 10 M .
Output clrcuit: output: I v de full scale into 1 M load impedance for all ranges: ourput resistance less than 10 ohms on all ranges except 10 M , where it is 100 K ; response: output seteles to 99.99% of final value in 100 msec (for 100 ft . of Dymec resistance measurement cable).
Accuracy (for $\pm 10 \%$ Ine voltage change, and includes $30-$ day calibration stabillty): constant temp. $\left(25^{\circ} \mathrm{C}\right): \pm 0.015 \%$ of f.5. $\pm 0.025 \%$ of reading; change per ${ }^{\circ} \mathrm{C}: \pm 0.001 \%$ of $\mathrm{f} . \mathrm{s}$. $\pm 0.004 \%$ of reading.

General

External programming: measurement mode (Ohms, DC. AC Normal, AC Fast) and range selected by external circuit closures to ground; commands for DY.2401C applied to 2410B.
Programming outputs: contact closures representing measurement mode and range supplied by DY-24iOB used to program the DY-2401C.
Operating conditions: specifications apply for operating temperature to $+50^{\circ} \mathrm{C}$; relative humidity to 95% at $40^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{v}=10 \%, 60 \mathrm{cps}, 110 \mathrm{w}$ (50 cps optional).
Dimensions: 19 " wide, 7 " high, $171 / 4$ " deep behind panel (483 x $177 \times 438 \mathrm{~mm}$).
Weight: net $43 \mathrm{lbs}(19.4 \mathrm{~kg}$) ; shipping $60 \mathrm{lbs}(27 \mathrm{~kg})$.
Price: Dymec DY-2410B. \$2250: ac only, \$1850: ohms only \$1650.

Specifications, DY-2411A
 (used with DY.2401C)

Noise relection: reduces common mode rejection of DY-2401C by $<6 \mathrm{db}$.
Gain settings: +1 and +10 (non-inverting) : bypass mode permits use to 1000 V ; gain accuracy (into 100 K or 1 M): +1 . $\pm 0.002 \% ;+10, \pm 0.007 \%$; temp. coeff. $<0.0005 \%$ of reading per ${ }^{\circ} \mathrm{C}$: linearity: $\pm 0.0005 \%$ of full scale.
Zero drift: $<1 \mu \nu$ per week, $<0.5 \mu \nu$ per ${ }^{\circ} \mathrm{C}$.
Nolse: $\pm 2 \mu \mathrm{v}$ for 2401 C 1 sec sample, $\pm 5 \mu \mathrm{v}$ for 0.1 sec sample.
input circult: input resistance: 10^{10} ohms, for celative humidicy to 95% at $40^{\circ} \mathrm{C}$; input capacitance: 180 pf nominal; full-stale input: $\pm 10.5 \mathrm{v}$ for +1 gain, $\pm 1.05 \mathrm{v}$ for +10 gain $\pm 1000 \mathrm{v}$ in bypass mode; amplifier automatically switches ro bypass when input exseeds these values.
Output circuit: output resistance: <1.5 ohms; min, load imped. ance: 10 K ; max. output: $\pm 10.5 \mathrm{v}$.
Absolute accuracy: (10 mv range, 1 sec gate) 0.015% of reading $\pm 0.03 \%$ f.s. at $25^{\circ} \mathrm{C}$; temp. coefficient 0.0015% of reading per ${ }^{\circ} \mathrm{C}$ (calibrated at temperature) 0.002% of reading, 10 to $30^{\circ} \mathrm{C}$.
Settling error: <1 count (0.001% of f.s. on 1 sec. gate) with simul. taneous application of signal and encode command.
Programming: range: selected by external contact closures to ground, selections take $<6 \mathrm{msec}$; programming output: commands from system scanner routed to voltmeter; generates contactclosures to ground when swithed to +10 for corcect decimal indication on DY-2401C.
Operating condlitons: 10 to $50^{\circ} \mathrm{C}$ ambient temperature range; up to 95% relative humidity at $40^{\circ} \mathrm{C}$.
Power: 115 to $230 \mathrm{v} \pm 10 \%$, 50 to $1000 \mathrm{cps}, 16 \mathrm{w}$.
Dimensions: $163 / 4^{\prime \prime}$ wide, $31 / 2^{" 1}$ high, $111 / /^{\prime \prime}$ deep behind panel ($425 \times 88 \times 286 \mathrm{~mm}$) ; hardware furnished to convert to 19 " wide rack mount.
Welght: net $17 \mathrm{lbs}(7.7 \mathrm{~kg}$) : shipping $26 \mathrm{lbs}(11,7 \mathrm{~kg})$.
Price: Dymec DY-2411A, $\$ 1150$.

3440A DIGITAL VOLTMETER

Interchangeable plug-ins increase versatility

The hp 3440A Digital Voltmeter is a compact, accurate, rapid and multiple-function digital voltmeter. The choice of automatic ranging, remote and manual operation is obrained Ey using the $3441 \mathrm{~A}, 3442 \mathrm{~A}, 3443 \mathrm{~A}, 3444 \mathrm{~A}$ or 3445 A plug.ins, which are interchangeable with any 3440A. The basic voltmeter is solid-state with easy-to-service plug-in circuit cards mounted in the Hewlett-Packard modular enclosure.

Figure 1 illustrates the features obtained by using the

Phiod-In tunotion					
Pruy In	3414	34424	348A	3444 A	34451
$\begin{aligned} & \text { AC volts } \\ & 10 \mathrm{v} \text { to } 1000 \mathrm{v} \end{aligned}$	*	*	*	*	\checkmark
$\begin{aligned} & \text { DC volts } \\ & 10 \mathrm{v} \text { to } 1000 \mathrm{v} \end{aligned}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\begin{aligned} & \text { DC volts } 100 \mathrm{mv} \\ & \text { to } 1000 \mathrm{v} \end{aligned}$			\checkmark	\checkmark	
DC amps				\checkmark	
Ohms				\checkmark	
Manual ranging	\checkmark	\downarrow	\checkmark	\checkmark	\checkmark
Auto-ranging		\checkmark	\checkmark		\checkmark
Floating input	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Printar oustput	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Remote ranging		\checkmark	\checkmark		\checkmark
Remote triggering	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
True rms messurements: 1 mv to $300 \times$ (10 cps to 10 mc), using ap 3400,					

Flguro 1.
$3441 \mathrm{~A}, 3442 \mathrm{~A}, 3443 \mathrm{~A}, 3444 \mathrm{~A}$ or 3445 A plug-ins with any 3440 A .

Accuracy and speed

The 3440A Digital Voltmeter has a dc accuracy of better than $\pm 0.05 \%$ of reading ± 1 digit over the ambient tem. perature of $+15^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ with a line voltage variation of $\pm 10 \%$. In addition, specifed accuracy is retained to 5% beyond full scale, a feature that permits 5 -digit resolution at the decade range change points. The ac input filter has a rejection of 30 db at 60 cps , and the response time to a step change is 450 msec to read 99.95% of final value without a range change. The input signal pair may be floated at up to 500 volts above chassis ground without affecting accuracy. An additional feature which results in high accuracy is the constant 10.2 -megohm impedance. This impedance presents a constant load on all voltage canges.

Use of the 3440A with the hp 3445A AC/DC Range Unit permits ac and dc measucement capabilitios in one plug-in. The ac conversion circuits of the 3445A produces a dc output voltage proportional to the average value of the applied ac voltage and is calibrated in mms. Three full-scale ranges: $10 \mathrm{v}, 100 \mathrm{v}$ and 1 kv are displayed to an accuracy of $\pm 0.1 \%$ of reading ± 2 digits from 50 cps to 20 kc ; $\pm 0.1 \%$ of full scale ± 2 digits from 20 kc to 50 kc ; $\pm 0.1 \%$ of full scale ± 2 digits to $\pm 0.3 \%$ of full scale ± 2 digits from 50 kc to 100 kc . Resolution is 1 mv on the 10 volt ac range.

3442A Automatic Range Solector

3443A High Gain/Auto Range Unit

3444A DC Mult|-Function Unjt

3445A AC/DC Ronge Unlt

AC voltage measurement, average

Average-responding, rms calibrated, measurements from 50 cps to 500 kc can be obtained by use of the hp 457 A AC-to-DC-Converter with the 3440A (page 153).

The operator can instantly verify the accuracy of his 3440 A by pressing a front-panel button. Typical performance on the 3440 A internal calibration source is better than $0.002 \% /{ }^{\circ} \mathrm{C}$ TC with stability typically better than $\pm 0.05 \%$ over a 3 -month period. The linearity is approximately $\pm 0.01 \%$ for the 10,100 , and 1000 volt ranges with 0.03% linearity full scale for the 100 mv and 1000 mv range. The stability of readings is approximately ± 1 count.

Specifications, 3440A

Available plug-in units (3440A requires a plug-In to operate): 3441A Range Selector; 3442A Automatic Range Selector; 3443A High Gain/Auto Range; 3444A DC Multi-Function Unit; 3445 AC/DC Range Unit.
Sample rate: $\$$ samples per sec to 1 per $\mathrm{s} \sec$ with storage during samples and "Hold"; in "Hold", a sample may be initiated by applying a $+10-v$ pulse $20 \mu \mathrm{sec}$ wide or greater (accoupled), or by conract closure.
DC Isolation: signal common may be floated up to 500 v dc from chassis ground.
Polarity: automatic indication.

BCD output

Output: 4 -line BCD (1-2-2.4) 6 columns consisting of 4 digits of data, polarity/function and decimal; 4.line BCD ($1-2.4 .8$) available on special order.
impedance: 120 K maximum, each line; " 0 " state level, -24 volts; " 2 " state level, -1 volt.
Reference levels: positive; approx. -2.3 volts, 330 ohms source impedaoce; negative: approx. -27 volts, 920 ohms source impedance.
Print command: generated internally, hold-off level, $-12 \mathrm{v} d c$; print level, -2 v de from $100 \cdot \mathrm{hm}$ source.
Hold-off requilrements: anywhere from +6 volts to +15 volts max. from source impedance less than 2000 ohms (provided by 562A Digital Recorder, page 76).
Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to 1000 cps , approx. 20 w depending upon plug-in.
Weight net $18 \mathrm{lbs}(8 \mathrm{~kg}$); shipping 29 lbs (13 kg).

Accessories avallable:

KOl-3440A Plug-in Extender, \$45.
J74.562A,AR: digital recorder for use with 3440A accepting 1-2-2-4 BCD code (floating operation); includes special print wheel, 6 BCD column boards, input connector assembly with cable; cabinet. $\$ 1693$; rack, $\$ 1668$.

Data	Funation	$\text { Lople } 1-2-2-4$	T-2-40-4	Sta.	662A Print wheot	
					$\begin{aligned} & \text { JE-6E2A } \\ & \text { JT-6EZA } \end{aligned}$	J4-562A •7B-562A
0	+ volts	0000	0000	0	+	+V
1	- volts	1000	1000	1	-	-V
2	+ amps	0100	0100	2	A	+ A
3	- amps	1100	1100	3	\forall	-A
4	ac volts	0110		4	\sim	AC
5	ohms	1110	1010	5	Ω	$\bar{\Omega}$
6	ac volts		0110	6	\sim	$A C$
7	overrange		1110	7	*	**
8				8		
9	overrange	1111		9	*	**

J75.562A, AR: same as J74.562A,AR, except for single character function symbol; cabinet, \$1673; rack, \$1648.
J76.562A, AR: digital recorder for use with 3440A accepting 1-2-4-8 BCD code (fioating operation); includes special print wheel, 6 BCD column boards, input connector as. sembly with cable; cabinet, \$1693; rack, \$1668.
J77.562A,AR: same as J76.562A,AR except for single-char. acter function symbol; cabinet, $\$ 1673$; rack, $\$ 1648$.

Price: hp 3440A Digital Voltmeter (requires a plug-in). $\$ 1160$.
The hp 3441 A Range Selector is a plug-in unit with a range switch to select manually one of three voltage ranges, $9.999,99.99$ or 999.9 volts.

The hp 3442A Automatic Range Selector retains the manual range selection of the $3440 \mathrm{~A} / 3441 \mathrm{~A}$ combination and adds automatic and remote range features. Ten per cent hysteresis is built into the automatic ranging function of the 3442 A . The hysteresis prevents continual changing of ranges because of mall voltage variations when measuring voltages that are close to the decade range change points. The voltmeter up-ranges at the decade point but does not down-range unless the voltage falls below 90% of the next lower range. When a need for range change is sensed, the voltmeter sample rate is automatically increased if the sample is not already at its maximum rate, During this brief period, the correct range is selected and the printout is inhibited until the voltage at the input filter reaches its final value.

The hp 3443A High Gain/Auto Range Unit Eeatures automatic or remote range selection from 100 mv to 1000 v full scale. A front-panel zero offset control enables the operator to obtain a zero indication at the dvm to compensate for the thermocouple voltages of external connections. The 3443 A has the same ranging capabilities as the 3442 A with the additional features of two additional ranges and $10 \mu \mathrm{v}$ resolation, making it ideal for thermocouple and transducer measurements. For current measurement, where it is not practical to break the circuit, a $428 B$ Clip-on Milliammeter (page 138) may be used and the output measured on the 3440A with a 3443A High Gain/Auto Range Unit.

The hp 3444A DC Multi-Function Unit offers voltage, current and resistance measurement capabilities in one plog. in module. This plug-in is a manual-ranging $d c$ voltometer, de ammeter and ohmmeter. Full-scale ranges of 100 mv to 1000 volts with $10 \mu \mathrm{~V}$ essolution make this plug. in ideal for thermocouple and tannsducer measurements. Full-scale current ranges of $100 \mu \mathrm{a}, 1,10,100$ and 1000 ma are avaslable with a maximum sensitivity of 10 nanoamps. Five resistance ranges of 1000 ohns to 10 megotims are provided. Permanent test records on all functions including polarity, decimal, function and overload are available with accessory hp Model J74-562A Printer for a 1-2-2.4 code. (Model 176-562A provides the same readout on a $1-2.4-8$ code, page 76.) Analog record is available when used with the hp 580A Digital-to-Analog Converter (page 79) and Moseley 680 Strip Chart Recorder (pages 360,361).

The hp Model 3445A AC/DC Range Unit offers ac and do measurement capabilities in one plug-in. The ac conversion circuits of the 3445 A produces a dc output voltage proportional to the average value of the applied ac voltage and is calibrated in rms. This solid-state converter/range unit has three full-scale ranges-ac or $d c$, from 10 to 1000 volts. Both ac and dc voltages may be measured with the $3440 \mathrm{~A} / 3445 \mathrm{~A}$ by direct connection to the 3445A plug-in.

$\text { 2'1) } 5918.2 \text { jau }$	gquildde pou：3e ：VZbé se awbs ： 9			－a）say！｜due 101 3as 84 －xa molie ！＇asues jadad ub 2jeunore sonaple ：prods asuodsas＇כasw 06 u！unum a8ue」 o8ucys lim（хвш） zos Z v！uig aduen iadojd －0］ne ：pazots asueцp วaiuej ！ejounar pur m！ewoine －jfon mau laffe jos \＆u！u！ 	OUAZ SE JoOE＋วsn）JoOs＋ al 000 ＋way pue（pulod азиәлаја」 $3 \perp$ alaz se joót asn） $3002+$ of 300 שos3 001 te apess wous Kүseat！sajerap J\％00I ：3y OZ ol sdo og woul lat of JoOz＋woif zieyon Je 	s310n sun u！palesq！！es zietjoa 38 ：ajess jary span fi666 －2дd ！！！
$6^{\prime} z$ ）sqi $\xi^{\prime} 98 \mathrm{mud}$ 	वAELNO／qD 9 ІІ山！sEa！ －u！：IONA ajess－\｛！nit 30% OK $>10 j$ sd9 09 ze 日8ue」 aje0s－f［n！$\ddagger 0$ 		－：п Ј хеu јадаш －wẹo ：afue」 uo Butpradad ＇y［ 01 wio ¢＇0 ：дәวawur ：sp8ues aideloa 9p \｛it suyosam z＇OI zuejsuas	［RRuE］	 $10 \% \mathrm{c}^{\circ} 0 \neq$（ ） 6665 이 swuyo 6＂666）：©0uevsisal ！evi！uou 	 ＇eш 656 ＇6＇en＇ 6 ＇666＇en＇ 66 ＇66
：（By દ＇1）SqIE	อкејэo／gן 9 guiseas －b！＂joses ajess－10！ $10 \%[0>$ los sdo 09 ie К｜an！ ont pus am ob 50 xem ：SO8UEJ AUs ODOI＇00］ ＇sdo 09 IE TP OE ：Sos －ues hoa 0001 ＇OOL＇OI	20 s aฒ URLI 2sar：508uk］Aw 0001 ＇00I ：5ailues jp a 000 T ＇001＇OI		Ob uisu！a llim（xRw）zpoutas＇pa！̣d －did S！28pjon mau rape jos ᄃ1＞4！वu！pez！дјеmose ：paods asuey azes＇：eqoud －a）pue ग！pewosae fenueu	$3005+$ $04300 t+$ pue $0_{0} \varsigma l+01500$ －3e sennsu！juaussn（pe javed ：（Aut 8.665 pue Null 66.66 ） （ 16.666 of $1666^{\circ} 6$ ） $510 \wedge$ 3p	
 L＇0）sal sit jou	sofuex ise ua －4！＇sdo 09 le qp of	JOSW 0st ueyl ssal：aun！desuodsal		yasu －ofe s！giejon mau dape － 0 d pae jyewojne jenuew	JoOS + 01 Joutr + pue $J_{0} \mathrm{GI}+01 \mathrm{~J}_{0} 0$ sansul yobte a －ISn！pe jausd－juOH：［BuIuOU ung $\% 0017$ jo suifeyen 	SHION 6＇666 PUS 65＇56＇666＇6 10 volyenuesosd l！a！p p：a88y｜an 3p
8y s＇i）squ ह gula 	saduen jfe uo 0ле๖0／qp ZI Bu！sean －u！＇sdo 09 te $9 \rho 0 \varepsilon$	ueva ssal ：amin asuordsal		｜8nuEw	$0.0 \mathrm{~S}+$ Salnsu！VObte ayl co juaus woil \％oIf to suoneyen 	
14\％${ }^{\text {\％m }}$		（afueq ofter EIncopin orpan 		meppopes efilt	niemay	

405BR,CR DIGITAL VOLTMETERS; 457A AC-DC CONVERTER

Touch-and-read dc voltmeters; converter for ac to 500 kc

Remarkable simplicity of use is an outstanding feature of the hp 405BR,CR Digital Voltmeters. Just touch the probe to the voltage to be measured, and the $405 \mathrm{BR}, \mathrm{CR}$ automatically zero-sets itself and chooses the proper range and polarity.

Three-digit resolution on all voltages between 1 and 1000 volts allows the observation of very small changes, and accuracy is held to $\pm 0.2 \%$ of the reading on all ranges ± 1 count. For maximum usability in various environments, the input is isolated from ground (allowing voltage difference measurements), dc input impedance is 11 megohms on all ranges, and ac rejection reaches the 3 db point at 1.5 cps .

For systems applications, the hp 405CR is offered. This instrument is similar to 405 BR but has provision for an external sampling command and recording outputs both in ten-line decimal code and one-line staircase code, as well as a print command for operating hp 560 A and 561 B Digital Recorders (page 77).

Specifications, 405BR,CR

Range: 0.001 to 999 volts, dc .
Presentation: 3 illuminated figures, with decimal and polarity sign.
Accuracy: within $\pm 0.2 \%$ of reading ± 1 count.
Floating input: permits measurement of systems operating
within ± 300 volts de of power line ground.

Range, polarity selection: automatic; hold control disables automatic range selection and permits manual range choice.
Ranging time: 0.2 sec to 2 sec , depending on range change tequired.
linput impedance: 11 megohms to dc on all ranges.
Sample rate: internal: max between 4 and 5 per sec, min. one every 5 sec ; external (405 CR only): controlled by 20 v positive pulse, max. rate five per sec.
Input filter response tlme: $<1 \mathrm{sec}$ to step function.
Input filter ac rejection: 3 db at 1.5 cps , nominally 44 db at 60 cps .
Output (405CR only)
(1) 10 -line decimal code for operating 5618 Digital Re. corder or K05-405A remote indicator.
(2) Single-line voltage coded decimal (staircase), for operating 560A Digital Recorder, with use of the 405A.95C adapter.
($\}$) A print command for hp digital recorders is issued after every sample, except when the 405CR is ranging.
Power: 115 or 230 volts $\pm 10 \%, 50$ to $60 \mathrm{cps}, 180$ watts.
Dlmenslons: $7^{\prime \prime}$ high, $19^{\prime \prime}$ wide, 137/8" deep behind panel ($178 \times 483 \times 327 \mathrm{~mm}$).
Welght: net 31 lbs ($13,9 \mathrm{~kg}$); shipping $46 \mathrm{lbs}(20,7 \mathrm{~kg}$).
Accessorles avallable: 457A AC-to-DC Converter.
Price: hp $405 \mathrm{BR}, \$ 890$; hp $405 \mathrm{CR}, \$ 960$.

Model 457A is an average-responding, rms calibrated ac-to-de converter. Thus, a one volt rms sine wave input provides a one volt de output.

A frequency cange from 50 cps to 500 kc is covered with conversion accuracy of $\pm 0.75 \%$ of full scale $\pm 1 \mathrm{mv}$. Even greater accuracy is obtained for signals under 50 kc . When hp 457A is used with 405BR,CR Digital Voltmeters, ac voltage measurements can be made with three-digit resolution and overall accuracy of $1 \% \pm 2$ counts from 50 kc to 500 kc . From 50 cps to 50 kc accuracy is $0.5 \% \pm 2$ couots.

When the 3440A Digital Voltmeter and one of its associated plug-ins (pages 150.152) are used with the $457 \mathrm{~A}, \mathrm{ac}$ voltage measurements can be made with 4 -digit resolution and overall accuracy of $\pm 0.8 \% \pm 2$ counts from 50 kc to 500 kc . From 50 cps to 50 kc accuracy is $\pm 0.35 \% \pm 2$ counts.

Specifications, 457A

Input range: $100 \mu v$ to 300 v rms, in 4 decade ranges corresponding to $1,10,100$ and 2000 v rms full seale; over-
ranging to 200% of full scale, all ranges except 1000 v .
Frequency range: 50 cps to 500 kc .
Accuracy: $\pm 0.3 \% 1 \mathrm{mv}$ from 50 cps to $50 \mathrm{kc}: \pm 0.75 \% \pm 1 \mathrm{mv}$ from 50 kc to 500 ke .
Floating Input permits measurement of ac voltages at dc potentials of $\pm 500 \mathrm{v}$ above power line ground.
Output: 0 to 1 vdc , responding to average value of ac input, with output calibrated as rms value of sine wave; input step attenuation of $1,10,100$ or 1000 .
Output impedance: 10,000 ohms.
Input impedance: 1 megohm, shunted by 30 pf.
Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to 1000 cps approx. 31 w .
Dimensions: $163 / 4^{" 1}$ wide, $33 / 4^{\prime \prime}$ high, $133 / 4^{\prime \prime}$ decp ($426 \times 95 \times$ 324 mm).
Welght net 12 lbs ($5,4 \mathrm{~kg}$); shipping 20 lbs (9 kg).
Accessorles available: 1110A Current Probe, $\$ 100$; 10100B Feed-Through Termination, $\$ 17.50 ; 11000 \mathrm{~A}$ Cable, $\$ 4.50$; 11001 A Cable, $\$ 5.50$.
Price: hp 457A, $\$ 450$.

740A DC STANDARD, DIFFERENTIAL VOLTMETER

Never before so much instrument to perform so many tasks so well at so great a value

DC standard	DIlfarentia voltaloter	Hith-mpedance eleotrentio voltmeter	Amplifor
* $\pm 0.01 \%$ accuracy: floating and guarded output; 1, 10,100, 1000 v ranges, 1 ppm resolution at full scale	* $\pm 0.01 \%$ absolute accuracy $=1 \mu v$; floating and guarded input, $1 \mu v$ to 1000 v nulli ranges; 2 ppm resolution at full scale	2% accuracy end scale; floating and guarded input, $1 \mu \mathrm{v}$ to $1000 \vee$ end scàe	accerracy: $\pm 0.01 \%$; 50 ma output (25 watts max.) up to 60 db of voltage gain (gain depends on range)
stability greater than $0.001 \% /$ /day, $0.0015 \% / \mathrm{mo}$; regutiation better than $\pm 0.001 \% \pm 25 \mu \mathrm{v}$ line or load	stability better than $0.001 \% /$ day, $0.0015 \% / \mathrm{mo}$.		stability: 0.001\%
50 mas outpet (25 watts max.), cantinuously adjustable current limiter from 5 to 50 ma (nominal)	high inpul impedance: >109 ohms resistance on most ranges: independent of null condition on all ranges	high input impedance: $>10^{9}$ on most ranges	recorder amplifier: recorder output voftage directly propostional to meter deflection (120 db max. gain depends on range); I v nominal into $1 \times$ load
temperature coelficient <2 pom/ ${ }^{\circ} \mathrm{C}$	temperature cosfficient $<2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		
6 -digit resolution; readout with 4 in-line display tubes, plus individually callbrated taut-band meter	6 -digit resolution ceadout with 4 in-line dísplay tubes, plus individually calibrated taut-band meter	individually calibrated taut-band meter	
all solid-state circuitry, rugged and reliable	isolated recorder output	isolated recorder output	

- 0.005% zecurscy avallabie on special arder

The 740A DC Standard, Differential Voltmeter is a precision $\pm 0.01 \%$ dc standard that provides a standard source, a differential voltmeter, a high-impedance electronic voltmeter, a voltage amplifier and a power amplifier for a wide variety of measurements. Stability is greater than 0.001% per day or 0.0019% per month. Repeatability is better than 0.001%. Continually adjustable de voltages with 6 -digit resolution simplify the calibration of digital voltmeters. The guarded oto 1000 volt de $\Delta \mathrm{vm}$ offers extremely high input impedance off null, which makes the 740A ideal for drift measurements where null conditions cannot be maintained. The user need only select the desired degree of sensitivity, thereby eliminating the necessity for nulling all ranges. In addition, extra features such as in-line digital readout, plus taut-band meter, pushbutton range selection, overload indicator and recorder output termioals make the instrument easy to use.

U'sed as adr slandard - The hp 740A DC Standard is designed to deliver accurate de voltages from 0 to 1000 volts at currents up to 50 ma (25 wates maximum). A front-panel current-limir control contiouobuly adjusts maximum output current between 5 and 50 ma to protect test circuits from damage. A 6 -terminal cable is provided for output sensing, guard and ground terminals. This foacing outpue allows either positive or negative ground (-500 volts max.) with remote sensing. The 740 A DC Standard output yoltage is accurate to 0.01% of the indicated setting and stable to within 0.001% per day or 0.0015% per month. The output is completely isolated from chassis and power grounds. Voltage settiog is indicated by 4 digital display rubes, providing the first four digits, with the remainder of the reading indicated on the front-panel meter. The decimal point is automatically located. Output voltage resolution is better than 1 ppm at full scale on any range, directly readable on the front panel.

Used as a differential volineter - As a differential volteneter, the hp 740A measures de voltages from 0 to 1000 volts in seven ranges with an accuracy of $0.01 \% \pm 1 \mu \mathrm{v}$. Input impedance is greater than 10^{θ} ohms on most canges, independent of null, as opposed to conventional differential techniques, where the input impedance is low and varies except at null. The high input impedance off aull makes the 740A ideal for drift measurements where null conditions cannot be maintained. Accuracy is mainlained independeat of null conditions.

Used as an amplifier - As a $\pm 0.01 \%$ amplifier up to 60 db volkage gain is available. Stability is better than 0.001% /day and output up to 50 ma (25 watts max.) is available at the output terminals. Up to 120 db gain is available at the recorder terminals (voltage output directly proportional to meter defiection). Maximum output is 1 volt nominal into 1 K load.

Used ar a bighimpedance volsmeser - The Model 740A is also a $\pm 2 \%$ foating and guarded voltmeter with ranges from $1 \mu \mathrm{v}$ to 1000
volts. input impedance is $>10^{9}$ ohms on the 0.1 volt to 1000 volt range, $>10^{8}$ ohms on the 10 mv range and $>10^{7}$ ohms on the $1 \mu \mathrm{v}$ to 1 miv ranges.

Circuit guard system

The 740A features a shield or guard which isolates the loatiag output and measuring circuits from the chassis. Induced ac ground currents, usually at the power line irequency, can generate a potential of several volts berween the signal source ground and the chassis ground. Unless shunted, these currents will cause a voltage to appear at the input or output which can be larger than the signal itself, resulting in an erroneous reading or output voltage. This effect is known as common mode ac insection.

With the 740A guard operated at the ground potential of the signal source, the common mode rejection (defined as the ratio between the common mode signal and the spurious voltage it causes to be superimposed on the output signal or sigaal to be measured) exceeds 120 db at 60 cps. The figure below illustrates the 740A guard system and the capaciance between the output and measuring circuits to chassis, insuriag high at common mode rejection.

The guard system also is useful in reducing de leakage currents when making measurements above ground such as intercomparison of resistors in a precision resistive divider. The guard system of the 740 A may be operated as much as $\pm 500 \mathrm{vdc}$ with respect to ground.

Rapid calibration

The only external equipment required for a complete feld calibration of the 740A is a standard cell. An internal bridging arrange-

Cieffective guandeo capacity: Less than good.

ment is used to ratio match the binary-coded decade resistive dividers* and critical range resistors. In a matter of a few minutes a complete field calibration is a ccomplished.

The reference supply consists of a zener diode with associated control circuitry in a constant temperature proportionally controlled oven. The refereace supply can be compared with a standard cell and measured differentially with the 740A.

The overload indicator on the front panel indicates when the 740A is overloaded or in current limit. When the overload indicator is not lighted, the operator is assured that the instrument is within its specified accuracy.

Specifications

DC standard

Ranges: 0 to Lv, 0 to $10 \mathrm{v}, 0$ to $100 \mathrm{v}, 0$ to 1000 v ; continuously adjustable on all ranges (6 -digit resolution).
Accuracy: $\pm 0.01 \%$ of indicated setting or $\pm 0.001 \%$ of full scale.
Temperature coefficient: $<2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.
Resolution: 1 ppm at full scale.
Stabllity: betrer than 0.001% per day; 0.0015% per month.
Output currents 5 to 50 ma nominal (2 s w max.) ; output cur. rent limiter continuously variable from 5 to 50 ma nominal.
Line regulation: $< \pm 0.002 \%$ change for $\pm 10 \%$ line voltage change.
Remote sensing: permits output regulation at the point of application.
Load regulation: $< \pm 0.001 \%, \pm 25 \mu \mathrm{v}$, no load to full load.
Operating temperature: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Noise and humi de to $1 \mathrm{cps},-120 \mathrm{db}$ below full scale; 1 cps to $10 \mathrm{kc},-100 \mathrm{db}$ below full scale or $150 \mu \mathrm{v} ;>10 \mathrm{kc},-100 \mathrm{db}$ below full scale or $200 \mu \mathrm{v}$ or whichever is greater.
Output: floating and guarded.
Readout: 4-digit in-line cubes, individualiy calibrated taut-band meter.
Output terminals: 6 banana jacks mounted on a terminal box with 3^{\prime} cable (accessory 1109sA), ifurnished with instrument, having positive and negative output terminals, positive and negative remote sense terminals, circuit guard shield and chassis ground; a max. of 500 vdc may be connected between chassis ground guard or circuit ground.

Differential voltmater

Input voitage ranges: 1 mv to 1000 v full scale, with null ranges full scale, $1 \mu \mathrm{v}$ to 1000 v .
Accuracy: $\pm 0.01 \%$ of reading or $\pm 0.001 \%$ of full scale from 0 to $1000 \mathrm{v} d c, \pm 1 \mu \mathrm{v}$.
Temperature coetficlent: $<2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.
Voltage resolution: 0.0002% of full scale.
Repeatability: better than 0.001% on a!l ranges.
Stability: better than $0.001 \% / \mathrm{day} ; 0.0015 \% /$ month .
Line regulation: $< \pm 0.001 \%$ change for $\pm 10 \%$ line voltage change.
Operating temperature: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

[^11]Input impedance: $>10^{9}$ ohms above $10 \mathrm{mv} ;>10^{8}$ ohms, 1 mv to $10 \mathrm{mv}:>10^{7}$ ohms, $1 \mu \mathrm{v}$ to 1 mv , independent of aull; slide switch on input terminal box shunts input with 2 megohms.
Input: floating and guarded.
AC common mode rejection: $>120 \mathrm{db}$ at 60 cps .
Superimposed ac noise rejection: < 0.005% change for 100% superimposed ac noise above 100 cps on de signal (25 v ac max.) ; < 0.005% change for 25% superimposed ac noise above so cps on de signal (25 vac max.).
Input terminals: four banana jacks mounted on a terminal box with 3 ft cable (accessory 110054A), one furnished with instrument, having positive and negative input terminals, circuit goard shield and chassis ground; a maximum of 500 v may be connected between chassis ground and guard or circuit ground.
Readout: 4-digit in-line tubes, plus individually calibrared tautband meter.

High-Impedance voltmeter

Accuraty: $\pm 2 \%$ end scale.
Input voltage ranges: $1 \mu \mathrm{v}$ full scale to 1000 v de full scale.
input impedance: $>10^{\theta}$ ahms above $10 \mathrm{mv} ;>10^{8}$ ohms, 1 mv to $10 \mathrm{mv} ;>10^{7}$ ohms, $1 \mu \mathrm{v}$ to 1 mv .
Operating temperature: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

Amplifler

Aceuracy: $=0.01 \%$.
Output: 50 ma nominal (25 watts max.).
Voltage galn: 60 db at 1 mv max, input; 40 db at 10 mv max. input; 20 db at 100 mv max. input; unity above 100 mv .
Stablity: better than 0.001% /day after warm-up.
Bandwldth: dc to 0.1 cps .
AC common mode rejection; same as $\Delta \mathrm{vm}$.
Load rogulation: same as dc standard.
Line regulation: same as de standard.
Superimposed ac nolse rejectlon: same as $\Delta \mathrm{vm}$,
Input impedance: same as $\triangle \mathrm{vm}$.
Nolse: de to $1 \mathrm{cps}:<0.1 \mu \mathrm{v}$ referred to the input at 60 db ; $<0.2 \mu \mathrm{v}$ referred to the input at $40 \mathrm{db} ;<2 \mu \mathrm{v}$ referred to the input at 20 db ; at unity gain (1 v range and above) same as de standard; greater than 1 cps: same as de standard 1 v range and above (constant 1 v range and below).
Recorder ampllfier: recorder output voltage directly proportional to meter deflection, 120 db gain (max.), depends on range; 1 V nominal with 1 K load.

General

Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to $1000 \mathrm{cps}, 125 \mathrm{w}$ max.
Dimensions: $7^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $183 / 4^{\prime \prime}$ long ($178 \times 425 \times$ 527 mm) ; rack mount kit (9060.0776) furnished with instrument.
Weight: net $471 / 4 \mathrm{lbs}(19 \mathrm{~kg}$) ; shipping, $60 \mathrm{lbs}(27 \mathrm{~kg}$).
Accossories furmished: 11055 A , output terminal box with cable; 11054 A, input terminal box with cable.
Price: hp 740A, $\$ 2350$. (hp 740A with accuracy of 0.005% avail. able on special order at additional cost.)

741A AC-DC DIFFERENTIAL VOLTMETER, DC STANDARD

Never before so much instrument to perform so many tasks so well at so great a value

Advantages:

$A C$ differential voltmeter
DC differential voltmeter
DC standard
AC/high-impedance volumeter
DC/high-impedance voltmeter
Power amplifier, voltage amplifier
6 . digit resolution
Recorder output
Floating input and output
Overload indicator
Solid state
Rugged and reliable
The hp Model 741A AC-DC Differential Voltmeter/DC Standard is a precision $\pm 0.02 \%$ de standard that provides a dc standard source, an ac and de differential voltmeter, a high-impedance ac and dcelectronic voltmeter and a dc voltage and power amplifer. Used as a dc standard, the 741A provides adjustable dc voltages with 6 -digit resolution which simplifies the calibration of digital voltmeters.

The 0 to 1000 volt de differential voltmeter offers a high input impedance independent of null, which makes the 741 A ideal for drift measurements when null conditions cannot be maintained. The 0 to 1000 volt ac differential voltmeter offers exceptionally low input capacity, which makes the 741A ideal for ac circuit measurements where capacitance loading is critical. The user need only select a desired degree of sensitivity, thereby eliminating the necessity for nulling all ranges. In addition, extra features such as taut-band meter, pushbutton range selection, overload indicator and recorder output terminals make the instrument easier to use.

Used as an ac differential voltmeter

As an ac differential voltmeter the hp 741 A measures ac voltages from 50 mv to 1000 volts with an accuracy better than $\pm 0.05 \%$ of reading $+0.01 \%$ end scale. (Refer to specifications for accuracies berween 1 mv and 50 mv .) A low-capacitance probe (less than 5 pf) allows measure. ments to be made in circuits where capacitance loading is critical. The extremely low input capacitance makes the hp 714A Differential Voltmeter ideal for ac circuit measure. ments where oscillations or instability of measurements be. come a problem. It also is ideal when measuring high ac voltages, since the source is not required to supply high reactive currents. Accuracy is maintained independent of null conditions. The decimal point is located automatically with the range switch. Stability is better than $0.02 \% /$ day. A recorder output makes the 741A ideal for drift regulation measurements on oscillators and ac sources.

Used as a dc differential voltmeter

As a de differential voltmeter the hp 741A measures dc voitages from 0 to 1000 volts in 7 ranges with an accuracy of $\pm 0.02 \% \pm 10 \mu \mathrm{v}$, and $>10^{\circ}$ ohms input impedance on all ranges independent of null, as opposed to conventional
differential techniques where the input impedance is low and varies except at null.

Extremely high input impedance off nuli makes the 741 A Differential Voltmeter ideal for drift measurements where null conditions cannot be maintained. Accuracy is maintained independent of null conditions. The decimal point is located automatically with the range switch. Stability is $0.003 \% /$ day and $0.005 \% /$ month.

Used as a de standard

The hp 741A DC Standard will deliver accurate de voltages from 0 to 1000 volts at currents up to 20 ma . A frontpanel current limit control continuously adjusts maximum output current nominally between 4 and 20 ma to protect external circuits from damage. A floating output allows either positive or negative ground with remote sensing.

The 741 A calibrated dc voltage is accurate to 0.02% of the indicated setting $\pm 10 \mu \mathrm{v}$ and stable to within 0.003% / day or $0.005 \% /$ month. Voltage setting is indicated by 4 digits, with the remainder of the reading indicated on the front-panel metec. The decimal point is located automatically with the range switch. Output voltage resolution is 1 ppm on any range, directly readable on the front panel.

Used as a high-impedance ac or dc voltmeter

The Model 741A is a $\pm 2 \%$ floating de voltmeter with ranges from 1 mv to 1000 volts. It is also a $\pm 2 \%$ Boating ac voltemeter from 10 mv to 1000 volts. Input impedance (dc) is greater than 10^{4} ohms on all ranges. The low-capacity probe provides a high input impedance (1 megohm shunted by $<5 \mathrm{pf}^{\mathrm{f}}$) on all ranges in ac operation.

Reference supply

The reference supply consists of a temperature-controlled zener diode and maintains a stability better than 0.003% / day or $0.005 \% /$ month. The reference supply can be compared with a standard cell and measured differentially with the 741 A .

Used as a voltage amplifier

As a voltage amplifer up to 60 db gain is available at the recorder terminals. (Voltage output is directly proportional to meter deflection.) Maximum output is 1 volt nominal into 1 K load.

Used as a power amplifier

As a $\pm 0.02 \%$ power amplifier, the hp 741A provides unity voltage gain from 0 to 1000 volts. Stability is better than $0.002 \% /$ day, and an output up to 20 ma (20 watts maximum) is available.

Input-output terminals

The ac input terminals consist of a low-capacitance probe which allows measurements to be made in circuits where capacitive loading is critical. The dc input terminals allow the instrument to be used as a two-terminal device. The instrument can be used as a floating or grounded device in ac and dc modes.

Specifications

AC differential voltmeter
input voltage ranges: 1, 10, 100, 1000 volts end scale; with null ranges end scale, 1 mv to 1000 volts.

A00uracy (\% of readling)	$60 \mathrm{mv}-1 \mathrm{kv}$	$1 \mathrm{mv}-60 \mathrm{mv}$	$6 \mathrm{mv}-68 \mathrm{mv}$
$0.05 \%+0.01 \%$ end scale	$100 \mathrm{cps}-10 \mathrm{kc}$		
$0.1 \%+0.01 \%$ end scale	$50 \mathrm{cps}-50 \mathrm{kc}$	$50 \mathrm{cps}-20 \mathrm{kc}$	
$0.15 \%+0.01 \%$ end scale	$30 \mathrm{cps}-50 \mathrm{cps}$		
$0.2 \%+0.01 \%$ end scale	$20 \mathrm{cps}-30 \mathrm{cps}$ $50 \mathrm{kc}-100 \mathrm{kc}$		
$0.2 \%+0.02 \%$ end scale			$30 \mathrm{cps}-50 \mathrm{cps}$ $20 \mathrm{kc}-40 \mathrm{kc}$

Voltage yesolutlon: 0.005% end scale.
Repeatabllty: better than 0.01% on all ranges.
Stability: better than 0.02% /day after 1 hr. warm-up.
Line regulation: $< \pm 0.01 \%$ change for $\pm 10 \%$ line volrage change.
Temperature coefficlent: $<t 0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from 20 cps to 50 kc : $<60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from 50 kc to 100 kc ; berween $0^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$.
Input impedance: 1 megohm shunted by less than 5 pf. Input: floating (up to 500 v dc).
High-Impedance ac voltmeter

Acouraoy (end sam/a)	50 mv .1 kr	$1 \mathrm{mv} \cdot 50 \mathrm{mv}$	$5 \mathrm{mv} \cdot 60 \mathrm{my}$
2\%	$20 \mathrm{cps}-100 \mathrm{kc}$		
$2 \%+100 \mu v$		$50 \mathrm{cps}-20 \mathrm{kc}$	
$2 \%+150 \mu$			$\begin{gathered} 20 \mathrm{cos}-50 \mathrm{cps} \\ 20 \mathrm{kc}-50 \mathrm{kc} \end{gathered}$

Input voitage ranges: 1 mv to 1000 vac end scale.
Input impedance: 1 megohm shunted by $<s$ pf.
DC differential voltmeter
input voitage ranges: 1 v to 1000 v end scale, with null ranges end scale, 1 mv to 1000 v .
Accuracy: $\pm 0.02 \%$ of reading from 0 to $1000 \mathrm{vdc}, \pm 10 \mu \mathrm{v}$.
Voltage resolution: 0.002% end scale.
Repeatability: better than 0.001% on all ranges.
Stablity: better than 0.003% /day: $0.005 \% /$ month after 1 hr . warm-up.
Line regulatlon: $\pm 0.002 \%$ change for $\pm 10 \%$ line voltage change.
Temperature coefticient: $<3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from $+0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Input Impedance: $>10^{\circ} \mathrm{ohms}$ on all ranges (independent of null).
Input: floating (up to 500 vdc).
Superimposed ac nolse rejection: < 0.01% error (above 50 cps) $\mathrm{rms}, 50 \%$ of input or 25 v ms , whichever is less.

High-impedance de voltmater
Input voltage ranges: 1 mv to 1000 v .
Accuracy: $\pm 2 \%$ of end scale, all ranges.
input impedance: $>10^{\circ}$ ohms, all ranges.
Superimposed ac nolse rejection: same as differential volt. meter.
DC standard
Ranges: 0 to 1 v .0 to $10 \mathrm{v}, 0$ to $100 \mathrm{v}, 0$ to 1000 v continu. ously adjustable on all ranges (6 -digit resolution).
Accuracy: $\pm 0.02 \%$ of indicated setting $\pm 10 \mu \mathrm{v}$.
Resolution: 1 ppm .
Stability: better than $0.003 \% /$ day; $0.005 \% /$ month after 1 hr . warm-up.
Output current: 0 to 20 ma , output current limiter continuously variable from 41020 ma (nominal).
Une regulation: $< \pm 0.002 \%$ for $\pm 10 \%$ line voltage change.
Remote sensing: permits output regulation at the point of application.
Load regulation: $< \pm 0.002 \%$ or $\pm 50 \mu \mathrm{v}$, whichever is grearer, no load to full load.
Temperature coefficient: $<3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ from +0 ro $+50^{\circ} \mathrm{C}$.
Noise and hum: de to 1 cps, 100 db below fuil scale; 1 cps to $1 \mathrm{mc},-100 \mathrm{db}$ below full scale or $200 \mu v$, whichever is greater.
Output: foaring (up to 500 v).
Readout: 4 digits, plus individually calibrated taur-band meter.
Power amplifier
Accurecy: $\pm 0.02 \%$.
Output current: same as dc standard.
Voltage gain: unity 0 to 1 kv .
Stabillty: better than 0.002% /day after 1 he. warm-up.
Bandwidth: dc to 0.1 cps .
Line and load regulation: same as de standard
input impedance: same as $\triangle \mathrm{VM}$.
Superimposed ac nolse refection: same as dc $\Delta V M$
Nolse: same as de standard.

General

Recorder output: a vailable for all modes of operation.
Recorder amplifier: recorder voltage output directiy proportional to meter deffecrion, 60 db gain (max), I ma into 1 k load.
Power: 115 or 230 volts $\pm 10 \%$, 50 cps to $1000 \mathrm{cps}, 125$ beates maximum.
Weight: net $46 \mathrm{lbs}(20,7 \mathrm{~kg})$; shipping $60 \mathrm{lbs}(27 \mathrm{~kg})$.
Price: hp 741A, $\$ 1475$.

DY-2212A VOLTAGE-TO-FREQUENCY CONVERTER

Accurate low-level dc voltage-to-frequency conversion

The Dymec DY-2212A is a compact voltage-to-frequency converter which is particularly well suited to low-level signal applications. Low input drift and high common mode rejection (120 db at dc) have been achieved without a chopper by means of differential circuits. Internal feedback circuits provide an output puise train with a pulse rate directly proportional to the magnitude of an applied de voltage. The output pulse rate cises linearily and instantaneously from 0 to 100,000 pulses per second as the de input level is increased from zero to full scale. These techniques combine to provide outstanding linearity, stability and noise immunity.
The output of the DY-2212A, when connected to a HewlettPackard electronic counter provides a convenient method of making digital measurements of de voltages. The converter also provides a polarity indication. The combination of DY. 2212A and lap counter can be connected directly to a digital printer or through Dymec couplers to digital recording devices. Computer processing or storage on punched card, punched
tape or magnetic tape can then be accomplished.
The converter-counter combination provides integration of de voltages over any period of time and can therefore be used to read the average of the input over the selected sample period and provide accurate do measurements in the presence of noise superimposed on the signal. The instrument is applicable, for example, to high-accuracy FM relemerry systems, gas chromatographs, and wide-range coulometric analysis.

The unique modular package with self-contained power supply allows the 2212A to be used in both bench and systems applications. An inexpensive combining case is available to mount 10 instruments side-by-side in only $514^{\prime \prime}$ of standard $19^{\prime \prime}$ rack panel space.
Other voltage-to-frequency converters are available from Dymec to satisfy a variety of speed, accuracy and resolution requirements. Ask for information on the DY-2210, DY-2211 inand DY-5207-1 Converters.

AVAILABLE MID-1965

Specifications
(Unless noted, all specifications apply after a 30 -minute warmup at $25^{\circ} \mathrm{C}$ ambient, 1 K ohm source resistance, any unbalance) Input: de voltage ranges: 0 to $10 \mathrm{mv}, 100 \mathrm{mv}, 1 \mathrm{v}$; up to 150% overranging; optionally 0 to $10 \mathrm{mv}, 30 \mathrm{mv}, 100 \mathrm{mv}, 300 \mathrm{mv}$, 1 v : other ranges between 10 mv and 1 v available, up to 6 positions.
Range accuracy (relative to calibrated range): $\pm 0.02 \%$ of reading at $25^{\circ} \mathrm{C} \pm 0.005 \%$ per month.
Scale factor: stability at constant temperature: $\pm 0.01 \%$ of reading pec day; temperature coefficient: $\pm 0.004 \%$ of reading per degree C.
Zero (referred to input): stability at constant temperature: $\pm 5 \mu \mathrm{v} \pm 0.5 \mathrm{na} \pm 0.002 \%$ of full scale per day; temperature coefficient: $\pm 2 \mu v \pm 0.2$ na $\pm 0.001 \%$ of full scale per de. gree C.
Unearlty: $\pm 0.01 \%$ of full scale (0.01% of reading in overrange) measured from straight line through 0 and full scale.
Input impedance: 1000 megohms min. shunted by 5 pf max.
Maximum Input signal: ± 11 volts, signal + common-mode.
Common mode rejectlon: 120 db , dc to 60 cps .
Settiling time: $100 \mu \mathrm{sec}$ to within 0.01% of final value.

Overload recovery: settling time $+100 \mu \mathrm{sec}$ for differential in. puts of 10 times full scale or less, less than 1 millisec for inputs up to 20 volts.
Output: frequency, 0 to 100 kc full scale; overrange to 150 kc .
Polarity signal: electrical and visual indication.
Operating conditions: 10 to $53^{\circ} \mathrm{C}$ ambient temperature range, up to 95% relative humidity at $40^{\circ} \mathrm{C}$.
Power 115 or 230 volks $\pm 10 \%$. 30 to $400 \mathrm{cps}, \rho$ watts.
Dimenslons: $13 / 8^{\prime \prime}$ wide. $4-27 / 32^{\prime \prime}$ high, $19^{\prime \prime}$ deep ($41 \times 123 \times$ 381 mm).
Welght net 4 lbs ($1,8 \mathrm{~kg}$); shipping $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Accessories avallable: combining case contains up to 10 instruments in $51 / 4^{\prime \prime}$ of standard $19^{\prime \prime}$ yack space (mating connectors furnished with amplifier) : bench stand, holds one VFC upfight and includes inpur/output connectors, power switch, pilot light, power cord; mating rear connector with power cord, input/output cables.
Optional modifleations: special voltage raages; internal calibration source.
Price: DY-2212A, price on request.

MICROWAVE TEST EQUIPMENT

Hewlett-Packard microwave test equipment includes a wide range of high. quality, low-cost instruments for measurement of virtually all microwave parameters. Accurate determination of such major characteristics as power, imped. ance, frequency, atrenuation and noise figure is performed quickiy and easily with Hewlett-Packard microwave instruments. In the sections that follow, de. tailed information is presented on hp cosxial and waveguide instruments, microwave signal-generating equipment (including signal sources, sweep oscillators, microwave amplifiers and modulators). instruments for power measurement, noise figure meters and an important new spectrum analyzer. Also presented is information on frequency stabilizing equipment offered by the Dymec Division of $h p$, plus the wide and versarile array of vhf and uhf equipment produced by the Boonton Division. Each of the major product sections is preceded by technical information discussing major applications, measurement techniques and general accuracy considerations.

In using microwave test equipment, an engineer relies heavily on the manufacturer's specifications to assure performance of his test system. He cannot afford tedious and complex pre-resting before using the microwave equipment. Hewlett-Packard has always been keenly aware of the reliance that the using engineer places on the instrument's specificarions, and has therefore continually employed the most advanced test and measurement rechniques to ensure that all hp microwave equipment meets or exceeds specifications. The engineer using hp microwave instruments can, therefore, put complete confidence in the equipment's accuracy and performance. whether the operating locale be a development or standards laboratory, a production or manufacturing test instal. lation, or even a field operational site.

Calibration and certification

The Hewlett-Packard Standards Laboratory devotes fulf time to advancing the att of standards measuremeats and has received wide recognition throughout the industry for its contributions in microwave measurement techniques. Continuing correlation of the Hewlett-Packard house standards with the awailable certification services of the National Bureau of Standards assures that high accuracy is built into all hp microwave equipment. Traceability to the national standards wherever this certification serv. ice is available, can be supplied for the applicable hp microwave instruments. In addition, there are many types of hp
microwave instruments whose usefulness can be considerably enhanced for certain applications by having them calibrated by the Hewlett-Packard Standards Laboratory at specific frequencies. Such callbrations can be made to a much higher accuracy than those specified on a broadband basis in this catalog. Your hp field engineer will be pleased to provide detailed information on this service as it applies to your particular requirements.

Microwave measuring techniques

There are two basic types of micrawave measuring techniques-(1) fixed frequency and (2) swept frequency.

Fixed frequency techniques offer the highest precision attainable for individual measurements, because the small inherent mismatch ambiguities which must be tolerated on a broad.frequency sweep basis may be individually tuned out. Consequently, fixed frequency techniques are widely used in "standards" measurements and in applications where the system under test is operating either at a single frequency or within a very narrow band. To meet requirements for fixed frequency measurements, HewlettPackard offers a complete line of both coaxial and waveguide slotted sections and tuners.

Swept-frequency techniques are used to obtain measurements quickly and easily over a range of frequencies. Important parameters such as swr, direc-
tivity, attenuation, noise fgure, etc., can be ascertained on a swept frequency basis, and the user can quickiy determine if there is a narrow-band phenomenon, such as a resonance, in the device being tested. Recent hp product developments (such as leveled sweep oscillators and signal generators, extremely fiat crystal detectors and high-directivity directional couplers), together with refinements in the actual techniques, now permit very accurate measurements to be made on a broadband basis, thereby giving the microwave engineer a powerful new tool for analyzing system characteristics.

Swept-frequency measurements

The basic set-up for making swept frequency measurements is shown in Figure 1 (the arrangement depicted is for swr measurements). This is the hp-developed 'Improved Reflectometer" system which materially reduces the calibration errors that were present in earlier reflectometer set-ups. The standard atrenuator in the secondary arm of the severse coupler is used to calibrate the system so that most of the sources of error found in earlies reflectometers are automatically included in the initial sysrem calibrations made in this new improved set-up. A typical swr plot made with this improved swept frequency refectometer is shown io Figure 2. You will find additional information on swept frequency refiectometers, as well as other

Figure 1. Improved set-up for sweep trequency swr measurements.

Figure 2. Typical swr plot.
impedance measuring techniques, in the technical information section on microwave impedance measurement, pages 230 and 231 of this caralog.

A set-up for swepr frequency atrenua. tion measurements is shown in Figure 3. Here, what had been the "refected" channel in the reflectometer from Figure 1 becomes the "transmission" channel because the coupler detector is placed in the forward direction. Attenuation characteristics of a flap attenuator, measured in this sel-up, are shown in Figure 4.

In many swept frequency set-ups, an oscilloscope display of the measurement results is desitable, particularly when the device under test is being adjusted for best broadband characteristics. The new hp 1416A Swept Frequency Indica. tor for the hp 140A Oscilloscope (page 277.279) is expressly designed for microwave swept measurement systems em. ploying leveled sweep oscillarors, flat de. rectors and high directivity couplers. The accurate, high sensitivity, logarithmic display of the $1416 A$ permits rapid meas. urement of swi (oscilloscope readouk is in db of "Return Loss"), using the reflectometer set-up in Figure 1 with the $140 \mathrm{~A} / 1416 \mathrm{~A}$ used in place of the $\mathrm{x} \cdot \mathrm{y}$ recorder. Likewise. the oscilloscope can be used in swept measurements of attenuation similar to the arrangement shown in Figure 3.

Figure 3. Set-up for accurate swept frequency attenuation measurements.

Attenuation measurement

Attenuation measurements are made by a number of different methods such as power ratio or either of or IF substitution.

In the power ratio method, the signal source is connected to a detector mount through a length of lossless transmission line-in whose place the unknown attenuator may be substituted. A reading
is obtained on the output indicator with a section of lossless tine in the circuit. The lossless line is then replaced by the attenuator being measured. The power reduction at the output indicator is a measure of the attenuation. This measurement requires, first, that the law of the detector is known over the complete frequency range of the measurement, and, second, that refection effects in the system are essentially the same both with and without the attenuator.

Impedance matching is important to eliminate effects of reflections between generator and attenuator, and attenuator and load. Well matched pads are often used to achieve isolation. Closed-loop leveling arrangements employing highdirectivity directional couplers, fat detectors and high-gain leveling amplifiers result in excellent generator match; the source match is essentially equivalent to the directivity of the coupler used.

The eype of detecting equipment used will depend on the range of the attenus. tion measurement. A range of attenuation measurement up to 20 or 30 db can be achieved with a detector mount employing a barretter and an hp 415 Series Standing Wive Indicator (high sensitivity tuned voltmeter). In this case, the signal source must be modulated, and the rf power level must be kept below 200 microwatts for square law detector characteristics. The 415D, with jts 2.5 db steps and 0.02 db tracking accuracy, is most useful for these measurements.
$R F$ substitution depends on substituting an attenuator of known characteristic for the unknown. For instance, a signal generator attenuator may be used. When this method is used, the output of the signal generator is fed to the detection system without the unknown atrenuator, and the setting of the signal generator attenuator is noted. Then the unknown attenuator is inserted, and the signal generator output is adjusted to obtain the same reading from the detection system as before. The difference between the signal generator attenuator settings is the attenuation of the unknown in db . Since the detector is always operared at the same level, detector law is no problem. The attenuator measurement may be performed in a similar manner with an hp 382 Series Precision Attenuator and a signal source.

The IF substicution method offers the widest dynamic range in attenuation measurements, since a linear detector is used. The power change caused by removing the unknown rf attenuator is replaced by change of the precision IF cutoff attenuator in the IT stage of the detecting microwave receiver.

Other microwave measurements

General information on microwave power measurements, iacluding discussion of techniques, accuracy considerations, and measurement equipment is
presented on pages 218 and 219. Noise Egure measurements are described on page 228, and microwave impedance measurements are discussed on pages. 230 and 231.

An essential element in microwave measurement systems is the signal source; information on types of sources and their pertinent characteristics begins on page 175. The discussion also covers signal source modulation, amplification leveling, frequency stabilizing, etc.; in short, the many techniques available to the microwave engineer to permit him to make the most meaningful measurements possible.

Important new applications involving microwave spectrom analysis are described on pages 214 and 215.

Application Notes

The current index of hp Application Notes (available from your hp field sales office) lists many articles of interest and value to microwave engineers. Subjects include swept-frequency measurements and accuracy considerations, microwave power measurements, mismatch error analysis and noise figure fundamentals. The hp Application Notes are further evidence of Hewlett-Packard's desire to keep measurement people abreast of the newest and most accurate techniques. This additionally assures the user of hp test equipment that he is receiving maximum performance from his instruments.

Figure 4. Attenustion charscteristics of a flap attenuator.

COAXIAL INSTRUMENTATION

Hewlett-Packard offers an extensive line of instruments for coaxial systems operating to 12.4 gc . The table indicates the frequency range and major uses of these various instruments. Additional information will be found on the pages referenced in the table.

Many hp coaxial instruments are now offered with the newly introduced GPC-7 series precision coaxial connectors, thereby extending the range for practical coaxial measurements as high as 18 gc . See pages 240,241 for additional information.

WAVEGUIDE INSTRUMENTATION

Hewlett-Packard offers a wide range of waveguide instrumentation in nine frequency bands between 2.6 and 40 gc . This instrumentation is tabulated by frequency band on the following pages fer quick, easy reference. Included in the tables are the most pertinent specifications plus reference to other catalog pages where more complete information is available. Photographs illustrating the wide range of measurement possibilities with hp equipment accompany the tables. In general, the set-up shown for one band can be duplicated in other bands.

Letter designations

Model numbers of hp waveguide components are normally preceded by a prefix letter which designates the waveguide size and frequency band. Standard wave. guide specifications for these bands are shown in the chart below.
In the case of fixed actenuators and directional couplers, the suffix letrer indicates specific attenuation or coupling, as follows:

A	3 db	D	20 db
B	6 db	E	30 db
C	10 db		

Thus, the 20 db coupling version of the hp 750 Directional Coupler built for $1^{\prime \prime} \mathrm{x}$ $1 / 2^{\prime \prime}$ waveguide (8.2 to 12.4 gC) is desig. nated X750D.

Construction

Hewlett-Packard waveguide instruments are divided into two categories according to their construction: fabricated and cast. Fabricated instruments are constructed using standard waveguide tubing with brass langes and other construc. tional details hard-soldered together. Instruments typifying this group are those which involve complicated construction such as multi-hole directional couplers.

The second category of instruments are cast aluminum. Most of the newer Hewlett-Packard instruments are cast aluminum to take advantage of the increased dimensional stability and production uniformity. In X-band waveguide tubing, for exampie, typical tolerances on the internal dimensions are $\pm 0.003^{\prime \prime}$, whereas a precision broaching process can be used on aluminum castings to control internal dimensions to $\pm 0.001^{\prime \prime}$ or less. A broach is a long cutting bar with teeth all around (somewhat similar to a file), and it is pulled through the casting. A linear cutting stroke, broaching eliminates even the minor surface irregularities inherent with milling cutters.
The broaching process is particularly important for instruments in which precise control of the guide wavelength is critical, for guide wavelength is directly dependent upon guide dimensions. Such instruments are slotted lines, high directivity directiona! couplers, sliding loads and sliding shorts. Many other instruments also are broached, although they are not highly dependent upon guide wavelength.
Fabricated waveguide instruments are silver plated internally and on the flange surface. They are generally treated with a copper flash to prepare the surface, followed by the silver plating and, some. times, a layer of nickel. Finally, a rhodium flash protects the surface from tarnishing. The cast aluminum instruments are unfinished on the interiors and flange surfaces.

Flanges

Every flange is machine.lapped after an initial sanding belt preparation of the surface. This machine lapping process is unique and results in a flange surface which is slightly convex, 20 microinches
per inch maximum, so that the innermost area of the mating flanges makes contact. Thus, discontinuities at the flange joint are eliminated. Leakage also is low; these flanges have better leakage characteristics than flange joints painted with silver paint.
An additional benefit of the lapping process is an extremely smooth flange surface, on the order of 30 microinches rms of surface ripple. The smooth sur. face adds considerably to the excellent mating and low leakage characteristics.

Testing techniques

Hewlett-Packard subjects all waveguide instruments to comprehensive tests to insure quality and conformance to published specifications. Of particular importance is the concept of full-range testing, pioneered by Hewlett-Packard, which makes maximum use of sweptfrequency techniques. As opposed to spot checking. swept-frequency testing provides a recosd which is continuous over the entire range of an instrument and eliminates the possibility of holes and discontinuities.
Virtually every piece of hp waveguide equipment has at least one swept-frequency test performed on it, as determined by the basic accuracy of the test itself and the required specification to be tested. Spot tests are made where the required accuracy is greater than can be achieved using swept-frequency techniques, such as in artenuation where accuracies to $\pm 0.1 \mathrm{db}$ are required. Typical of such tests are the coupling tests on the 752 Series Directional Couplers; coupling is measured and logged at five specific frequencies. Nevertheless, the 752 Couplers are swept-frequency tested to insure smooth operation across their respective bands.

	Destignations		Dimarislors	TE10 operating range			Froexpact wavelength (am)	Theorratical attemuaten d6/100 化. how to high freq.	Theoretioal ok power rating meqawahts law to high freq.
hp	ElA	JAN	Nominal OD (inches)	trequenay (ac)	wavelength (om)	outoff haq (10)			
S	WR 284	RC-48/U	$3 \times 11 / 2$	$2.60 \cdot 3.95$	19.28-8.92	2.078	11.53-7.59	2.478 -1.008	2.2-3.2.
G	WR 187	RG-49/U	2×1	3.95 - 5.85	12.59-6.08	3.152	$7.59 \cdot 5.12$	2.79 -1.93	$0.94 \cdot 1.32$
1	WR 137	RG-50/U	$11 / 2 \times 3 / 4$	5.30-8.20	9.68 - 4,29	4.301	5.66-3.56	$4.61 \cdot 3.08$	0.56-0.71
H	WR 112	RG.51/U	$11 / 4 \times 1 / 8$	$7.05 \cdot 10.0$	$6.39 \cdot 3.52$	5.259	4.25-3.00	5.51-4.31	0.35-0.48
X	WR 90	RG-52/U	$1 \times 1 / 2$	$8.20 \cdot 12.4$	6.09-2.85	6.557	3.66-2.42	8.64-6.02	$0.20 \cdot 0.29$
M	WR 75	-	0.850×0.475	10.0 - 15.0	$4.86 \cdot 2.35$	7.868	$3.00 \cdot 2.00$	10.07 - 7.03	0.17 -0.23
P	WR 62	RG.91/U	0.702×0.391	$12.4 \cdot 18.0$	$3.75-1.96$	9.487	$2.42 \cdot 1.67$	$12.76 \cdot 11.15$	0.12-0.16
N	WR 51	--	0.590×0.335	15.0 - 22.0	3.11 - 1.60	11.571	$2.00-1.36$	17.3-12.6	0.08-0.107
K	WR 42	RG-66/U	$1 / 2 \times 1 / 2$	18.0-26.5	$2.66-1.33$	14.048	$1.57 \cdot 1.13$	$13.3 \cdot 9.5$	0.043-0.058
R	WR 28	RG.96/U	0.360×0.220	26.5-40.0	$2.87 \cdot 0.88$	21.075	2.13-0.749	21.9-15.0	$0.022 \cdot 0.031$

Illustrated is a rypical s.band fixed-frequency set-up. in which the S870A Slide-Scretw Tuner is used to tune the $\mathrm{S}+2 \mathrm{fA}$ Crystal Detector to uaity; the S810A Slorred Section facilitates this tuning. The device to be tested can then be inserted berween the slotred section and tuner, and its insertion loss and skry measured.

Complementary equipment

加 Instrument	Fraquanoy ranga, (ge)	Page	Price
616B Signal Generator	1.8104 .2	193	$\begin{aligned} & \$ 1950 \\ & \$ 1970(\mathrm{R})^{*} \end{aligned}$
86I5A Signal Generatos	1.8 to 4.5	188, 189	\$2100
86168 Signal Source	1.8104 .5	188, 189	\$1450
692A Sweep Oscillator	2 to 4	199 - 201	\$3000
692B Sweep Oscillator	2104	199-201	\$3350
491C Microwave Amplifier	2104	202	\$2250
8732A PIN Modulator	1.8104 .5	190, 191	\$300
8732B PIN Modulator	1.8104 .5	190. 191	\$500

*Rack mount.

S-band equipment

$\mathrm{hp}_{\text {Model }}$	Dssorlption	Acoursay	Rangs	$\begin{gathered} \text { SWR } \\ \text { (max.) } \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { Power } \\ & \text { (watfs) } \end{aligned}\right.$	Langlh		$\begin{aligned} & \text { Pags } \\ & \text { ralerance } \end{aligned}$	Prloe
						(in)	(mm)		
S281A	Adapler, waveguide-10-coax			1.25		3	76	174	\$50
S347A	Noise source, waveguide	$\pm 0.5 \mathrm{db}$	15.1 db	1.2		221/2	572	228, 229	\$390
S370	Attenuators, fixed	= 20%	3,6, 10, 20 db	1.15	1	12	305	226	\$100
S372	Attenuators, precision fixed	$\pm 0.5 \mathrm{db}$	10,20 db	1.05	2	48	1158	226	\$425
S375A	Attenuator, flap	$\begin{aligned} & =1 \mathrm{db} \text { at }<10 \mathrm{db} \\ & \pm 2 \mathrm{db} \mathrm{at}>10 \mathrm{db} \end{aligned}$	0 to 20 db	1.15	2	14-1/8	359	226	\$165
\$3828	Attenuator. orecision variable	$\begin{aligned} & \pm 1 \% \text { or } 0.1 \mathrm{db} \\ & 1050 \mathrm{db} \\ &= 2 \% \text { above } 50 \mathrm{db} \end{aligned}$	01060 dt	$\left\|\begin{array}{l} 1.2 \text { below } 3 \mathrm{gc} \\ 1.15 \text { above } 3 \mathrm{gc} \end{array}\right\|$	10	251/4	641	225	\$650
\$3820	Same as $\$ 3828$ except for degrees. of-rotation dial calibrated in 100^{\prime} ths, as opposed to 10^{\prime} ths on the S3828							225	\$700
\$424A	Crystal detector	response: $x 0.2$ db	sensitivity: $>0.4 \mathrm{mv} / \mu \mathrm{w}$	1.35		2-7/16	62	235	\$175
S486A	Thermistor mount, compensated		0.0011010 mw	1.35		3	16	220, 221	$\$ 195$
S487B	Thermistor mount, broadband		0.01 to 10 mm	1.35		23/8	60	222	\$105
S750	Directional couplers, cross-quide	$\pm 1.7 \mathrm{db}$	20.30 db			9×9	229×229	236, 237	\$150
$\begin{aligned} & \text { S772A } \\ & \text { S752C } \\ & \text { S7520 } \end{aligned}$	Directional couplers, multi-hole	$\begin{aligned} & \text { mean: }=0.4 \mathrm{db} \\ & \text { variation: } \neq 0.5 \mathrm{db} \end{aligned}$	$\begin{aligned} & 3 \mathrm{db} \\ & 10 \mathrm{db} \\ & 20 \mathrm{db} \end{aligned}$	$\begin{aligned} & \begin{array}{l} 1.1 \\ 1.05 \\ 1.05 \end{array} \end{aligned}$	$\begin{gathered} 2 \\ \text { (in aux. } \\ \text { guide) } \end{gathered}$	$\begin{aligned} & 501 / 4 \\ & 48 \\ & 48 \end{aligned}$	$\begin{aligned} & 1278 \\ & 1219 \\ & 1219 \end{aligned}$	236, 237	\$450
$\begin{gathered} \$ 810 \mathrm{~A} \\ (444 \mathrm{~A}) \end{gathered}$	Slotted-section, waveguide and carriago (detector probe for \$810A)			1.01		121/1/	324	242.243	$\begin{aligned} & \$ 450 \\ & (\$ 55) \end{aligned}$
5870A	Tuner, slide screw	insertion loss: <2 db to $20: 1 \mathrm{swr}$	corrects swir of 20			11	279	244	\$250
S910A	Termination, low power			1.04	2	1014	260	245	\$75
5914A	Moving load	load reflection: $<0.5 \%$	> V_{2} wavelergth	1.01	2	31	787	245	\$125
S920A	Adjustable short		$>1 / 2$ wavelength			10.7/16	265	245	\$150
S25	Waveguide clamb							174	\$2.50
24	Waveguide stand							174	\$3

G- AND J-BANDS, 3.95 TO 8.2 GC

G-band 3.95 to 5.85 gc

The swept-frequency system illustrated on the right permits sapid measurement of attenuation (in this example the G370C is being calibrated). The transmission characteristics of the system are accounted for in the initial calibration which is based on the G382A Attenuator, This same technique can be used in conjunction with a Moseley x-y recordes when permanent records are desired.

Complementary equipment

hap Instrument	Froquancy range, 90	Page	Prioe
6188 Signal Generator	3.8107 .6	194, 195	$\begin{aligned} & \$ 2250 \\ & \$ 2270(R) * \end{aligned}$
620A Signal Generator	7 to 11	194, 195	$\begin{aligned} & \$ 2250 \\ & \$ 2270(R) * \end{aligned}$
693A Sweep Oscillator	4 to 8	199-201	\$3000
$\begin{aligned} & \text { HO1-693A Sweep } \\ & \text { Oscillator } \end{aligned}$	3.7 to 8.3	199-201	\$3300
6936 Sweed Ósciliator	4 to 8	199.201	\$3350
$\begin{aligned} & \text { HOI-6938 Sweed } \\ & \text { Oscillator } \end{aligned}$	3.7 to 8.3	199.201	\$3650
493A Microwave Amplifer	4 to 8	202	$\$ 2600$
8733A PIN Modulator	3.7 to 8.3	190, 191	\$ 00
8733 BPIN Madulator	3.7108 .3	190, 191	\$500

- Rack mount

G-band equîpment

$\stackrel{\text { Model }}{\text { Mit }}$	Desorpiption	Acourray	Range	$\begin{aligned} & \text { SWR } \\ & \text { (max.) } \end{aligned}$	Powar (watti)	Length		$\begin{gathered} \text { Pege } \\ \text { reference } \end{gathered}$	Prioe
						(IT)	(mm)		
G281A	Adapler, waveguide.to-coax			1.25		21/8	54	174	\$40
G347A	Noise 5ource, waveguide	$\pm 0.5 \mathrm{db}$	15.2 db	1.2		19	483	228,229	\$310
G370	Attenuators, fixed	+20\%	$3, \overline{6}, 10,20 \overline{\mathrm{~b}}$	1.15	1	101/8	257	226	\$95
G372	Attenuators, precision fixed	-0.5 6	10, 20 d	1.05	2	30	762	226	\$300
6375A	Attenuator, flap	$\begin{aligned} & \pm 1 \mathrm{db} \text { at }<10 \mathrm{db} \\ & \pm 2 \mathrm{db} \text { at }>10 \mathrm{db} \end{aligned}$	0 to 20 dt	1.15	2	13	330	226	\$145
6382A	Attenuator, precision variabla	$\pm 2 \%$ of reading or 0.1 d b which. ever is greater	0 90 50 db	1.15	15	31\%	803	225	\$500
G424A	Crystal delector	response: $=0.2 \mathrm{db}$	$\begin{gathered} \text { sensitivity } \\ >0.4 \mathrm{mv} / \mu \mathrm{w} \end{gathered}$	1.35		2-1/16	52	235	\$165
64858	Detector mounl (less detector)			$\begin{aligned} & \text { with } \\ & \text { basserter } \\ & 1.25 \end{aligned}$		9-5/16	237	233	\$120
G486A	Thermistor mount, compensated		0.0011010 mH	1.5		4	102	220,223	\$180
G4878	Thermistor mount, broadband		0.01 ta 10 mm	1.5		21/8	54	222	$\$ 5$
G532A	Freq. meter, direct seading	$\begin{aligned} \text { dial: } & =0.033 \% \\ \text { overall: } & \pm 0.065 \% \end{aligned}$				$61 / 2$	259	246	8375
G750	Directional couplers, cross-guide	$\pm 1.7 \mathrm{db}$	20,30 0 b			8×5	152×152	236, 237	\$120
$\begin{aligned} & G 752 A \\ & \text { G752C } \\ & \text { G7520 } \end{aligned}$	Disectional couplers, mukti-hole	$\begin{gathered} \text { mean: }=0.4 \mathrm{db} \\ \text { variation: } \pm 0.5 \mathrm{db} \end{gathered}$	$\begin{aligned} & 3 \mathrm{db} \\ & 10 \mathrm{db} \\ & 20 \mathrm{db} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.05 \\ & 1.05 \end{aligned}$	$\begin{gathered} 2 \\ \text { (in aux. } \\ \text { guide) } \end{gathered}$	$\begin{aligned} & 343 / 3 \\ & 33 \\ & 33 \end{aligned}$	$\begin{aligned} & 8880 \\ & 838 \\ & 838 \end{aligned}$	236,237	\$300
$\begin{aligned} & 68108 \\ & (8090) \\ & (444 A) \end{aligned}$	Slotted section, waveguide (Carriage for 810B) (Detector probe for 8098)			1.01		101/4	260	242,243	$\begin{aligned} & \$ \$ 40 \\ & (\$ 175) \\ & (\$ 55) \end{aligned}$
G870A	Tuner, slide screw	iasertion loss: $<2 \mathrm{db}$ at $20: 1$ swr	corrects sw! of 20			81/6	210	244	\$200
G910A	Termination, low power			1.04	2	65/8	168	245	\$65
6914A	Movine load	load reflection: $<0.5 \%$	$>1 / 2$ wavelength	1.01	2	201/2	521	245	\$95
G920A	Adjustable short		>1/2 wavalength			7-13/16	199	245	\$125
G25	Waveguide clamp							174	\$2.50
24	Waveguide stand							174	$\$ 3$

J.band 5.30 to 8.20 gc

In the illustration leveled output power from the sweep oscillator is obtained through use of the J752 Directional Couplers in the configuration shown. The J424A Crystal Detector, with its extremely flat frequency response, provides the error voltage to the ALC input of the sweep oscillator. The power delivered at the outpur port of the J752D Coupler is flat to befter than $1 / 2 \Delta \mathrm{~b}$, and the high directivity of the coupler makes the leveling loop vistually immene to load swe.

J-band equipment

$\operatorname{hip}_{\text {Moded }}$	Desorliption	Aeduracy	Range	$\begin{gathered} \text { 8WA } \\ \text { (max.) } \end{gathered}$	$\begin{gathered} \text { Powes } \\ (\text { watts }) \end{gathered}$	Lonyth		Pago referenot	Prtoe
						(In)	(mm)		
J281A	Adapter, waveguide-to-cosa			$\begin{gathered} 1.25 \\ 5.3 .3 \text { from } \\ 5.3 \text { to } 5.5 \mathrm{gc}) \\ \hline \end{gathered}$		2	51	174	\$35
1347A	Nolse source. waveguide	± 0.5 db	15.2 db	1.2		19	483	228,229	$\$ 300$
1370	Attenustors, fixed	= 20%	3, 6, 10, 20 db	1.15	1	$81 / 8$	206	226	\$85
1372	Attenuators, pracision fixed	$\begin{gathered} \pm 0.5 \mathrm{db} \\ (5.85 \mathrm{to} 8.2 \mathrm{gc}) \end{gathered}$	10, 20 db	1.05	1	211/4	553	226	\$190
J375A	Attenuator, flap	$\begin{aligned} & \pm 1 \mathrm{db} \mathrm{al}<10 \mathrm{db} \\ & \pm 2 \mathrm{db} \mathrm{dt}>10 \mathrm{db} \end{aligned}$	01020 db	1.15	2	13	330	225	\$135
J382A	Attenuator، precision variable	$=2 \%$ of ceading or 0.1 db whichever is grater	01050 db	1.15	10	251/8	638	225	\$375
1424A	Crystal detector	response: $\pm 0.2 \mathrm{db}$	$\begin{gathered} \text { sensitivity } \\ >0.4 \mathrm{mv} / \mu \mathrm{w} \end{gathered}$	1.35		17/6	48	235	\$165
54858	Oetector mount (less detector)			with barretter 1.25 $(5.850 .28 .2 \mathrm{gch})$ 1.5 overgil		81/	210	233	\$105
J486A	Thermistor mouns, compensated		0.001 to 10 mw	1.5		$33 / 2$	26	220	\$170
J4878	Thermistor mount, broadband		0.01 to 10 mw	1.5		11/4	45	222	\$90
J532A	Frequency meter, direct reading	$\begin{gathered} \text { dial : } \pm 0.033 \% \\ \text { overall: } \pm 0.065 \% \end{gathered}$				61/4	159	246	$\$ 350$
1750	Oirectional couplers, cross-guide	$\pm 1.7 \mathrm{db}$	20,30 db			5×5	$\begin{array}{r} 127 x \\ 127 \end{array}$	236, 237	\$100
$\begin{aligned} & \hline 1752 \mathrm{~A} \\ & 3752 \mathrm{C} \\ & 3752 \mathrm{C} \end{aligned}$	Directional couplers, multi-hole	$\begin{gathered} \text { megn }: \pm 0.4 \mathrm{db} \\ \text { variztion: } \pm 0.5 \mathrm{db} \\ (5.85 \text { to } 8.2 \mathrm{gc}) \end{gathered}$	$\begin{aligned} & 3 \mathrm{db} \\ & 10 \mathrm{db} \\ & 20 \mathrm{db} \end{aligned}$	$\begin{aligned} & 1.1, \\ & 1.05, \\ & 1.05 \end{aligned}$	$\begin{gathered} 1 \\ \begin{array}{c} \text { (in aux. } \\ \text { guide) } \end{array} \end{gathered}$	$\begin{aligned} & 261 / 2 \\ & 259 / 16, \\ & 259 / 16 \end{aligned}$	$\begin{aligned} & 673, \\ & 649, \\ & 649 \end{aligned}$	236, 237	\$220
$\begin{aligned} & \begin{array}{l} 18108 \\ (809 B) \\ (444 A) \end{array} \end{aligned}$	Slotted section, waveguide (carriage for 8108) (Detector probe for 809B)			1.01		10y/	260	242, 243	$\begin{aligned} & \$ 125 \\ & \left(\begin{array}{l} 175) \\ (\$ 55) \end{array}\right. \end{aligned}$
1870A	Tuner, slida screw	insertion loss: $<2 \mathrm{db} \text { at } 20 \text { : } \mathrm{swr}$	corrects swr of 20			74/8	194	244	\$165
1885A	Waveguide phase shifter	lesser of 3° of 10%	-369° to $+360^{\circ}$	1.35	10	251/8	638	246	\$550
3910A	Termination, low power			1.02	1	81/8	206	245	855
J914A	Moving load	losd reflection: $<0.5 \%$	>1/2 wavelength	1.01	2	151/2	394	245	585
J920A	Adjustable short		$>1 / 2$ wavelength			6/4	159	245	$\$ 100$
125	Waveguide ciamp							174	\$2.50
24	Waveguide stand							174	$\$ 3$

H- AND X-BANDS, 7.05 TO 12.4 GC

H -band 7.05 to 10 gc

The figure illustrates a swept-Frequency system employing power meter leveling, in which the system is arranged to provide leveled net forward power at the mainline output of the right-hand H732C Directional Coupler. Both the incident and refiected powers are monitored, with the tecorder outputs of the two 4318 Power Merers connected in such a manner that the resultant voltage fed back to the sweep oscillator is related to the power actually absorbed by the load. Typical applications for this rype of leveling include measurement of thermistor mount efficiency and antenna radiation characteristics.

Complementary equipment

hip Initrument	Fraquenoy range, go	Paga	Prlog
620A Signal Generator	71011	194, 195	$\begin{aligned} & \$ 2250 \\ & \$ 2270(\Omega) * \end{aligned}$
694A Sweep Oscillator	81012.4	199-201	\$3100
H01-694A Sweep Oscillator	7 to 12.4	199.201	\$3400
6948 Sweep Oscillator	8 to 12.4	199.201	\$3450
H01-6948 Sweep Oscillator	71012.4	199-201	\$3750
495A Microwave Amplifier	7 to 12.4	202	\$2600
8734A PIN Modulator	7 to 12.4	190, 191	\$300
87348 PIN Modulator	7 to 12.4	190، 191	\$500

* Rack mount

H-band equipment

hp Model	Desacription	Acouraoy	Range	$\begin{aligned} & \text { SWR } \\ & (m a x,) \end{aligned}$	Power (watts)	Length		$\begin{gathered} \text { Page } \\ \text { reference } \end{gathered}$	Prioe
						(l))	(mm)		
H281A	Adapter, waveguide - 0 - coax			1.25		13/6	41	174	\$30
H $\times 2928$	Adapter, wavequlde -10-waveguida		8.2 to 10 gc	105		11/2	38	174	\$25
H347A	Noise source, waveguide	$\pm 0.5 \mathrm{db}$	15.7 db	1.2		18	406	228,229	\$275
H370	Attenuators, fixed	$\pm 20 \%$	3, 6, 10, 20 db	1.15	1	63/8	162	226	575
H372	Attenuators, precision fixed	$\pm 0.5 \mathrm{db}$	10,20 db	1.05	1	201/8	530	226	\$135
H375A	Atlonuator, flap	$\begin{aligned} & * 1 \mathrm{db} a t<10 d \mathrm{~d} \\ & \pm 2 \mathrm{db} s t>10 \mathrm{db} \end{aligned}$	01020 db	1.15	2	81/4	210	226	\$125
H382A	Attenuator, precision variable	$\pm 2 \%$ of reading. or 0.1 db , whichever is greater	0 to 50 db	1.15	10	9-15/16	507	225	\$350
H424A	Crystal detector	response: $\pm 0.2 \mathrm{db}$	$\begin{aligned} & \text { sensitivity } \\ & >0.4 \mathrm{mv} / \mu \mathrm{w} \\ & \hline \end{aligned}$	1.35		1.9/16	40	235	\$155
H4858	Detector mount (less delector)			$\begin{gathered} \text { With } \\ \text { barretter } \\ \\ \hline .25 \\ \hline \end{gathered}$		6\%/8	168	233	\$85
H486A	Thermistor mount, compensated		0.0017010 mm	1.5		33/8	86	220, 221	\$185
H4878	Thermistor mount, broadband		0.011010 mm	1.5		1.5/16	33	222	580
H532A	frequency metes, direct reading	$\begin{gathered} \text { dial: }=0.040 \% \\ \text { overall: } \pm 0.075 \% \\ \hline \end{gathered}$				61/4	159	246	\$300
प750	Directional couplers, cross.guide	$\pm 1.7 \mathrm{db}$	20, 30 db			4×4	102×102	236, 237	\$75
$\begin{aligned} & \text { H752A } \\ & 4752 \mathrm{C} \\ & \mathrm{H7520} \end{aligned}$	Disectional couplers, multi-hole	$\begin{aligned} \text { mean: } & \pm 0.4 \mathrm{db} \\ \text { variation: } & =0.5 \mathrm{db} \end{aligned}$	$\begin{aligned} & 3 \mathrm{db} \\ & 10 \mathrm{db} \\ & 20 \mathrm{db} \end{aligned}$	$\begin{aligned} & 1.1 .1 \\ & 1.05 \\ & 1.05 \end{aligned}$	$\begin{gathered} 1 \\ \begin{array}{c} 1 \\ \text { (in } \operatorname{sux} x . \\ \text { guide) } \end{array} \end{gathered}$	$\begin{aligned} & 185 / 8 \\ & 171 / 2 \\ & 171 / 2 \end{aligned}$	$\begin{aligned} & 473 \\ & 445 \\ & 445 \end{aligned}$	236,237	\$150
$\begin{aligned} & H 810 \mathrm{~B} \\ & (809 \mathrm{~B}) \\ & (444 \mathrm{~A}) \end{aligned}$	Slotted sections, waveguide (Carriage for 8108) (Detector probe for 809B)			1.0)		10\%	260	242,243	$\begin{aligned} & \$ 110 \\ & (\$ 175) \\ & (\$ 55) \end{aligned}$
H870A	Tuner, slide screw	insertion loss: $<2 \mathrm{db}$ at 20:1 swr	corrects swr of 20			6	152	244	\$140
H910A	Termination, low power			1.02	1	5.9/16	141	245	\$45
H914A	Moving load	logd reflection: $<0.5 \%$	$>1 / 2$ wavelengh	1.015	1	$111 / 2$	267	245	\$70
प9920A	Adjustable short		$>1 / 2$ wavelengh			4/4/	124	245	$\$ 85$
H25	Waveguide clamp							174	\$2.50
24	Waveguide stand							174	\$3

X-band 8.2 to 12.4 gc

Accurate determination of ceflection characteristics of Type N coaxial devices through the entire X-band range (8.2 to 12.4 gc) is achieved rapidly through use of the new hp X8440A Reflection Coefficient Bridge. Here, the 423A Crystal Detector is being examined, with the x-y recorder providing a permanent plot of the results.

X-band equipment

hed	Denuripilon	Acrarray	月anda	$\begin{gathered} \text { (WR } \\ \text { (max) } \end{gathered}$	$\begin{aligned} & \text { Power } \\ & \text { (wats) } \end{aligned}$	Lenpith		$\begin{gathered} \text { Page } \\ \text { Reforenco } \end{gathered}$	Price
						(1n)	(mm)		
$\times 2814$	Adagtef. wavasulde-to-coax			1.25		11/8	35	174	\$25
HX2928	Adspler. waveguide fo-waveguide		8.2 to 10 gc	1.05		11/2	38	174	525
M $\times 2928$	Adapter. whvegulde-to-waveguide		101012.4 gc	1.05		2\%	60	174	$\$ 40$
$\times 347 \mathrm{~A}$	Noise source, wavegulde	$\pm 0.5 \mathrm{ab}$	15.9 db	1.2		141/2	375	228	1225
X362A	Low-pass fitter	insarthon loss, pass-band-<1 do stoppsend:>40 do	9assband: 9.2 to 12.4 gc stopband: 16 to 37.5 sc	passbzand 1.5		5-11/32	136	213	\$325
$\times 370 \mathrm{~A}$	Actenustors. Fixed	$\pm 20 \%$	3. 6, 10. 20 dd	1.15	1	$51 / 4$	133	226	$\$ 65$
$\times 372$	Altenustors, precision fixed	$=0.5 \mathrm{db}$	10.20 ch	1.05	1	181/4	486	226	5110
$\times 375$ A	Attenuator, ilap	$\begin{aligned} & \pm 1 \mathrm{db} \mathrm{at}<10 \mathrm{db} \\ & \pm 2 \mathrm{db} \mathrm{at}>10 \mathrm{db} \end{aligned}$	01020 db	1.15	2	7.3/16	183	226	5100
X382A	Ahenuator, pracision yariable	± 2 \% ol reading or 0.1 do whichever is grealar	08050 db	1.15	10	15\%	397	225	\$275
X424A	Crysial dalactor	rasponse: $=0.3 \mathrm{do}$	$\begin{aligned} & \text { senglduity } \\ &> 0.6 \mathrm{mv} / \mu \mathrm{w} \\ & \hline \end{aligned}$	1.35		1/9	35	235	\$135
X485B	Oelector mount (less delactor)			$\begin{gathered} \text { wilh barrefter } \\ 1.25 \end{gathered}$		6-7/16	164	233	375
X485A	Thermistor mount, compensatiad		0.001 to 10 mm	1.5		21/6	54	270,221	5145
X4878	Thermistor mounl broadband		0.01 to 10 mm	1.5		1-3/16	30	222	\$75
X5328	Frequency mater, direct reading	$\begin{gathered} \text { dial: } \pm 0.05 \% \\ \text { overali: } \pm 0.08 \% \end{gathered}$				81/2	118	246	\$200
$\times 750$	Diractional couplers, eross-gulde	± 1.7 db	20,30 db			3×3	76×76	236,237	\$60
$\begin{aligned} & \times 752 \mathrm{~A} \\ & \times 7520 \\ & \times 7520 \end{aligned}$	Direclional couplers, multi-hola	$\begin{array}{r} \text { mean: }=0.4 \mathrm{dt} \\ \text { varlation: } \pm 0.5 \mathrm{dt} \end{array}$	$\begin{aligned} & 3 \mathrm{db} \\ & 10 \mathrm{db} \\ & 20 \mathrm{db} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.05 \\ & 1,05 \\ & \hline \end{aligned}$	$\begin{gathered} 1 \\ (\text { in sux. } \\ \text { guide } \end{gathered}$	$\begin{aligned} & 16.11 / 16 \\ & 15.11 / 16 \\ & 15-11 / 16 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 924 \\ 399 \\ 399 \\ 399 \end{array} \end{aligned}$	236,237	5125
$\begin{aligned} & \times 8108 \\ & \binom{8098}{444 A} \end{aligned}$	Slolted section, wavagulde (Carflage for (Oelector probe for 8098)			1.01		10\%4	260	242,243	$\begin{gathered} \$ 90 \\ \binom{3175)}{(\$ 55)} \end{gathered}$
X870A	Tunar, slide scraw	$\begin{array}{r} \text { insertion } 108 s: \\ <2 d b 8120: 1 \mathrm{swr} \end{array}$	corracls swr of 20			51/2	140	264	\$130
X880A	E.H tunar	insertion loss: 3 db at $20: 1$ swr	corrects sur of 20			3 $3 / 2$	89	244	\$130
X885A	Woveguide phase shitter	$\begin{gathered} <2^{\circ} \text { al } 8.2 \text { 10 } 10 \mathrm{gc} \\ <\mathrm{g}^{\circ} \text { or } 10 \% \mathrm{~F} 12.4 \mathrm{gc} \\ <\mathrm{o}^{2} 10 \% \\ \text { or } 10 \% \\ \hline \end{gathered}$	-360° to $+360^{\circ}$	123	10	15\%/	397	246	\$425
X9108	Termination, low power			1.015	1	81/4	168	245	\$35
X913A	Termination, high powar			1.05	500	918	241	174	\$100
X9148	Movine lad	$\begin{aligned} & \text { load refleclion: } \\ & <0.5 \% \\ & \hline \end{aligned}$	$>$ \%h wavalangth	1.003	1	10\%	257	245	560
X9168	Slandard railection	$\begin{aligned} & \text { coeffictent: } \\ & \pm 0.0025 \end{aligned}$	nom. reflect conff.: 0.05			1014	260	245	\$125
$\times 9150$	Standaro reflection	coefficient: ± 0.0035	nom. rellact. coell.: 0.d			10\%	260	245	3125
X9180	Standard reftection	$\begin{aligned} & \text { coefficient: } \\ & \pm 0.0045 \end{aligned}$	nom. refiect. coetf.: 0.15			101/2	260	245	\$125
X916E	Standard refiecion	coefificient: ± 0.007	nom, rerlect. coeff.: 0.2			101/4	260	245	5125
X920A	Adjuslable short		$>1 / 2$ wavelength			4\%	124	245	\$75
X930A	Wavoguide shorting switch	$\begin{gathered} \text { Msertion loss "ODen": } \\ \leq 0.05 \mathrm{sb} \end{gathered}$		$\begin{gathered} \text { "Open': } 1.02 \\ \text { "Shorled": }>125 \end{gathered}$		3.11/16	94	174	5160
8735A	PN modulator		35 db	$\begin{aligned} & 1.7 \text { (min. stten.) } \\ & \hline \text { (max, allen.) } \end{aligned}$	1	6\%	171	190.191	5300
87358	PHN modulator		80 db	1.9 (m/n, glten.) 2.2 (max. atten.)	1	1016	267	190,191	\$500
11504A	Flexible wavaguide					12	305		\$35
$\times 25$	Waveguide clamp							174	\$2.50
24	Waveguide stand							174	53

M- AND P-BANDS, 10.0 TO 18.0 GC

M-band 10 to 15 gc

Illastrated here is a typical fixed-frequency measurement system for M-band. The M870A Slide Screw Tuner tunes the M486A Thermistor Mount to unity swr for improved power measurement accuracy, Note the portable microwave lab composed of the 4318 Power Meter and 415D SWR Meter installed in the 1051A Combining Case. Both instruments are available with optional rechargeable batteries, making them especially useful in Geld measurement applications.

Complementary equipment

hip Initument	Froquanty Fange, yo	Paga	Prios
626A Signal Generator	10 to 15.5	196, 197	$\begin{aligned} & \$ 3400 \\ & \$ 3420(\mathrm{P})^{*} \end{aligned}$
628A Signal Generator	15 to 21	196, 197	$\$ 3400$
694A Sweep Oscillator	8 to 12.4	199.201	\$3100
694B Sweep Oscillator	8 to 12.4	199-203	\$3450
695A Sweep Oscillator	12.4 to 18	199-201	\$3500
7168 Klystron Power Supply		331	\$875

-Rack mount.
M-band equipment

$\mathrm{hp}_{\text {Medel }}$	Desecription	Acouracy	Ranga	$\begin{gathered} \text { SWR } \\ \text { (man.) } \end{gathered}$	Power (watts)	Lenfith		$\begin{gathered} \text { Paga } \\ \text { retorestos } \end{gathered}$	Prtoe
						(h)	(mm)		
MX2928	Adapter, waveguide-towaveguide		10 to 12.4 gc	1.05		2\%	60	174	\$40
MP292B	Adapter, waveguide-10waveguide		12.4 to 55 gc	1.05		2\%	60	174	\$40
M362A	Low-pass filter	insertion loss passband: $<1 \mathrm{db}$ stopband: >40 dD	$\begin{aligned} & \text { pass: } 10 \text { to } 15.5 \mathrm{gc} \\ & \text { stop: } 19 \text { to } 47 \mathrm{gc} \end{aligned}$	$\begin{aligned} & \text { passband } \\ & 1.5 \end{aligned}$		4-15/32	114	213	\$350
M375A	Attenustor, flap	$\begin{aligned} & \pm 1 \mathrm{db} a t<10 \mathrm{db} \\ & \pm 2 \mathrm{db} a t>10 \mathrm{db} \end{aligned}$	01020 db	1.25	1	6\%	159	226	\$190
M382A	Attenuater, variable precision	$\pm 2 \%$ of reading or 0.1 di whichever is greater	0 to 50 db	1.15	10	13-7/32	336	225	\$650
M424A	Crystza delector	responst: $\pm 0.5 \mathrm{db}$	sensitivity $>0.3 \mathrm{mv} / \mu \mathrm{w}$	1.5		1	25	235	\$250
M486A	Thermistor mount, compensated		0.001 to 10 mw	1.5		3	76	220	\$195
M487日	Therristor mount, broartband		0.01 to 10 mw	1.5		15/18	24	222	\$110
M532A	Frequency meter, direct reading	$\begin{aligned} \text { dial: } & =0.053 \% \\ \text { overati: } & \pm 0.085 \% \end{aligned}$				4 $1 / 2$	114	248	\$300
$\begin{aligned} & \text { M752A } \\ & \text { M752C } \\ & \text { M752D } \end{aligned}$	Oirectional couplars, multi-nole	$\begin{gathered} \text { mean: } \pm 0.4 \mathrm{db} \\ \text { variation: } \pm 0.5 \mathrm{db} \end{gathered}$	$\begin{aligned} & 3 \mathrm{db} \\ & 10 \mathrm{db} \\ & 20 \mathrm{db} \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.05 \\ & 4.05 \end{aligned}$	$\begin{gathered} 1 \\ \text { (in aux. } \\ \text { guive } \end{gathered}$	$\begin{aligned} & 16.5 / 16 \\ & 15 \cdot 11 / 26 \\ & 15-11 / 18 \end{aligned}$	$\begin{array}{\|l\|} \hline 414 \\ 399 \\ 399 \\ \hline \end{array}$	236, 237	\$225
$\begin{aligned} & \hline \text { M810B } \\ & (8098) \\ & (444 A) \end{aligned}$	Slotted section, waveguide (Carriggo for 8108). (Detector probe for 809B)			1.01		1014	260	242, 243	$\begin{aligned} & \$ 175 \\ & (\$ 175) \\ & (\$ 55) \\ & (\$) \end{aligned}$
M870A	Yuner, slide screw	$\begin{aligned} & \text { Insertion loss: } \\ & <2 \text { do at 20:1 swr } \end{aligned}$	corrects swr os 20			51/8	149	244	\$170
M914A	Moving Soad	load reflection: $<0.5 \%$	$>1 / 2$ wrvelengh	<1.01	1	10	254	245	585
M920A	Adjustable short		$>1 / 2$ wavalenglh			4-13/16	122	245	\$125
M25	Waveguide clamp							174	\$2.50
24	Wavaguide stand							174	\$3

P-Band 12.4 to 18.0 gc

The conventional swept-frequency reffectometer in the illustration is being used to examine the reflection characteristics of the P328A. Attenuator, The flat frequency response and excellent square law characteristics of the P424A Crystal Detectors provide accurate measurement results, with the added advantage that reflection characteristics can be displayed directly on the oscilloscope cct. Further discussion of swept-frequency measurement techniques will be found in Application Note 61.

P-band equipment

$\begin{gathered} \text { hp } \\ \text { Medel } \end{gathered}$	Dascorption	Acouracy	Range	$\begin{aligned} & \text { SWR } \\ & \text { (max.) } \end{aligned}$	$\begin{aligned} & \text { Powar } \\ & \text { (watts) } \end{aligned}$	Length		$\begin{gathered} \text { Papge } \\ \text { refarenoe } \end{gathered}$	Pribe
						(1s)	(mm)		
MP2928	Adapter, waveguide-t0-waveguide		12.4 to 15 gc	1.05		2\%/	60	174	\$40
NP292A	Adapter, waveguide-to-waveguide		15 to 18 gc	1.05		21/8	60	174	\$40
P347A	Noise saurce, waveguide	$\pm 0.5 \mathrm{db}$	16 db			143/4	375	228	\$275
P362A	Low-pass filter	Insertion loss, pass band: <l db stopband: $>40 \mathrm{db}$	pass: 12.4 to 18 gc stop: 23 to 54 gc	$\begin{gathered} \text { P8ssboand } \\ 1.5 \end{gathered}$		3-11/16	94	213	\$350
P970	Attenuators, fixed	$\pm 20 \%$	3, 6, 10, 20 db	1.15	1	41/8	105	226	\$80
P372	Attenuators, precision fixed	$\pm 0.5 \mathrm{db}$	10, 20 do	1.05	1	151/2	394	226	\$125
P375A	Attenuator, flap	$\begin{aligned} & \pm 1 \mathrm{dbat}<10 \mathrm{db} \\ & \pm 2 \mathrm{db} \mathrm{at}>10 \mathrm{db} \end{aligned}$	0 to 20 do	1.15	1	7\%	184	226	\$135
P382A	Attanuator, precision variable	$\pm 2 \%$ of resding or 0.10 b , whichever is greater	08050 db	1.15	5	121/2	318	225	\$300
P424A	Crystal detecior	response: $\pm 0.5 \mathrm{db}$	sensitluity $>0.3 \mathrm{mv} / \mu \mathrm{W}$	1.5		15/16	24	235	\$175
P486A	Thermistor mount, compensated		0.001 to 10 mm	1.5		21/2	64	220, 221	\$195
94878	Thermistor mount, broadband		0.01 to 10 mw	1.5		13/16	21	222	\$110
P532A	Frequency meter, direct reading	$\begin{aligned} & \text { dias: } \pm 0.068 \% \\ & \text { overall: } \pm 0.1 \% \end{aligned}$				41/2	114	246	\$275
$\begin{aligned} & \text { P752A } \\ & \text { P752C } \\ & \text { P752D } \end{aligned}$	Directional couplars, multi-hole	$\begin{aligned} & \text { mean: } \pm 0.4 \mathrm{dt} \\ & \text { variation: } \pm 0.5 \mathrm{db} \end{aligned}$	$\begin{gathered} 3 \mathrm{db} \\ 10 \mathrm{db} \\ 20 \mathrm{db} \end{gathered}$	$\begin{aligned} & 1.1 \\ & 1.05 \\ & 1.05 \end{aligned}$	$\begin{gathered} 1 \\ \text { (in sux. } \\ \text { gulde) } \end{gathered}$	$\begin{aligned} & \begin{array}{l} 133 / 4 \\ 121 / 4 \\ 121 / 4 \end{array} \end{aligned}$	$\begin{aligned} & 349 \\ & 311 \\ & 311 \end{aligned}$	236, 237	\$150
$\begin{aligned} & \text { P8108 } \\ & (8098) \\ & (444 \mathrm{~A}) \end{aligned}$	Slotted section, waveguide (Carriage for 810B) (Detector probe for 8098)			1.01		101/4	260	242, 243	$\begin{gathered} \$ 110 \\ (\$ 175) \\ (\$ 55) \end{gathered}$
P870A	Tuner, slide scraw	insertion loss: <2 db at $20: 1$ swr	corrects swr of 20			5	127	244	\$140
P880E	E-H tuner	insertion loss: 3 db at $20: 1$ swr	corrects swr of 20			21/6	57	244	\$150
P885A	Waveguide phasa shitter	lesser of 4° or 10%	-360° to $+360^{\circ}$	1.35	5	12-5/16	312	246	\$600
P910A	Termination, low power			1.02	1	$42 / 2$	111	245	\$40
PSI4A	Moving load	load reflection: $<0.5 \%$	$>1 / 2$ wavelength	1.02	0.5	9\%	248	245	\$70
P920日	Adjustable short		$>1 / 2$ wavelength			51/4	146	245	\$125
P932A	Harmonic mixer				0.1			63	\$250
P25	Waveguide clamp							174	\$2.50
24	Wavaguide stand							174	3
11503A	Flexible waveguide, P -band					12	305		$\$ 48$

K- AND R-BANDS, 18 TO 40 GC

K-band 18.0 to $\mathbf{2 6 . 5}$ gc

The Hewlett-Packard system ilhustrated on the right permits accurate determination of low values of insertion loss (the K362A Filter is the item under test in this photo). The high directivity of the K752C Directional Coupler provides excellent source match while the combination of the K870A Slide Screw Tuner and K372C Attenuator presents extremely low load swr, thereby minimizing mismatch ambiguities. The high stability of the 431B Power Meter/K486A Therm. istor Mount makes the overall measurement simple and reliable.

Complementary equipment

hp Imstrument	Fraquenay ranje,	Page	Prioe
626A Signal Generator and		$628 \mathrm{~A}: 196$	$\$ 3400$
938A Frequency Ooubler Set	201026.5	$938 \mathrm{~A}: 198$	$\$ 1700$
696A Sweep Oscillator	181026.5	$199-201$	$\$ 4500$

K-band equipment

hp Model*	Desorpption	Asouraty	Renge	$\begin{gathered} \text { SWR } \\ (\text { max. }) \end{gathered}$	Powor	Length		Page refepenioe	Prloe
						(II)	(mm)		
K362A	Low-pass filter	insertion loss, passband: <l do slopband: >40 db	pass: 18 to 26.5 gc stop: 31 to 80 gc	$\begin{gathered} \text { passband } \\ 1.5 \end{gathered}$		$21 / 2$	64	213	\$385
K370	Attenuators, fixed	$\pm 20 \%$	3, 6, 10, 20 db	1.15	0.5	34/4	83	226	\$115
K372	Attenuators, precision fixed	$=0.5 \mathrm{db}$	$10,20 \mathrm{db}$	1.05	0.5	111/2	292	226	\$240
K375A	Attenuator, flap	$\begin{aligned} & \pm 1 \mathrm{db} \mathrm{at}<10 \mathrm{db} \\ & =2 \mathrm{dbat}>10 \mathrm{db} \end{aligned}$	0 to 20 db	1.15	0.5	41/2	114	226	\$ ${ }^{\text {8 }}$
K382A	Attenuator, precision vazriable	$\pm 2 \%$ of reading or 0.1 db . which. ever is greater	0 to 50 dt	1.15	2	71/8	194	225	\$475
K422A	Crystal detector	freq. resp.: 由 2 db sens: $0.1 \mathrm{voc} / \mathrm{mwcw}$		2.5		2	51	235	$\begin{gathered} \$ 250 \\ \$ 540 \\ \text { (matched } \\ \text { pair) } \end{gathered}$
K486A	Thermistor mount, compensated		0.001 to 10 mm	2		278	73	220	\$300
K487C	Thermistor mount, broadosind		0.01 to 10 mm	2		13/8	41	222	\$225
K532A	Frequancy mater, diract raading	$\begin{gathered} \text { dial: } \pm 0.077 \% \\ \text { overall: } \pm 0.11 \% \end{gathered}$				41/2	114	246	\$350
$\begin{aligned} & \text { K752A } \\ & \text { K752C } \\ & k 7520 \end{aligned}$	Directional couplers, matti-hoie	$\begin{gathered} \text { mean: } \pm 0.7 \mathrm{db} \\ \text { varistion: } \pm 0.5 \mathrm{db} \end{gathered}$	$\begin{array}{r} 3 \mathrm{db} \\ 10 \mathrm{db} \\ 20 \mathrm{db} \end{array}$	$\begin{aligned} & 1.1 \\ & 1.05 \\ & 1.05 \end{aligned}$	$\begin{gathered} 0.5 \\ (\text { in } \\ \text { gulde) } \end{gathered}$	$\begin{aligned} & 101 / 2 \\ & 9-15 / 16 \\ & 9.15 / 16 \end{aligned}$	$\begin{aligned} & 264 \\ & 252 \\ & 255 \end{aligned}$	236,237	\$200
$\begin{aligned} & \mathrm{Kg15B} \\ & (8148) \\ & (446 \mathrm{~B}) \end{aligned}$	Slolted section, waveguide (Carriage for 8158) (Daiector probe for 8148)			1.01		7.9/16	192	242,243	$\begin{aligned} & \hline \$ 265 \\ & (\$ 225) \\ & (\$ 145) \end{aligned}$
K870A	Tuner, slide screw	Insertion loss: $<3 \mathrm{db}$ at $20: 1 \mathrm{swr}$	corrects Sws of 20			43/4	108	244	\$250
K9148	Moving load	load reflection: $<0.5 \%$	$>1 / 2$ wavelength	1.01	0.5	6/6	156	245	\$250
K9208	Adjustable short		>1/2 wavelength			$51 / 2$	140	245	\$155
K25	Waveguide clamp							174	\$2.50
24	Waveguide stand							174	\$3

"Circular Ilanze adepter (UG-425/U) 11515A, \$35 each.

R-band 26.5 to 40 gc

The set-up illustrated on the left permits rapid measurement of reflection characteristics on a swept basis. The hp 415D SWR Meter is serving as a preamplifier for the 1000 eps modulation signal displayed on the oscilloscope. This technique is especially useful when adjustments must be made to the component under test to optimize its performance.

Complementary equipment

It Instrument	Frequenay rance, go	Prag	Prloo
628A Signal Generator and 940A Frequency Doubler Set	26.51031	$\begin{aligned} & 626 A: 196 \\ & 940 A: 198 \end{aligned}$	$\begin{aligned} & \$ 3400 \\ & \$ 1700 \end{aligned}$
628A Signal Generator and 940A Frequency Doubler Sel	301040	$\begin{aligned} & 628 A: 196 \\ & 940 A: 198 \end{aligned}$	$\begin{aligned} & \$ 3400 \\ & \$ 1700 \end{aligned}$
697A Sweep Oscillator	26.5 to 40	199.201	\$6500

R-band equipment

$\mathrm{hp}_{\text {Motel** }}$	Dasaription	Adouriay	Renge	$\begin{gathered} \text { 8WR } \\ \text { (max.) } \end{gathered}$	Power (wafts)	Langth		$\underset{\text { Paforene }}{\text { Pspe }}$	Price
						(in)	(mm)		
R362A	Low-pass filter	insertion loss, poss. band: <2db. stop. band rej.: >35 do	pass: 26.5 ło 40 gc stop: 47 to 120 gc	$\begin{gathered} \text { passband } \\ 1.8 \end{gathered}$		1-21/32	42	213	\$385
R370	Attenuators, fixad	$\pm 20 \%$	$3,6,10,20 d 0$	1.15	0.5	3	76	226	\$125
R372	Attenuators, precision fixed	$\begin{aligned} & \quad=0.5 \mathrm{db} \\ & (\Leftrightarrow 0.6 \mathrm{dD} \mathrm{R} 372 \mathrm{D}) \end{aligned}$	10, 20 db	1.05	0.5	10	254	226	\$275
R375A	Attenuator, flao	$\begin{aligned} & =1 \mathrm{db} 9 \mathrm{at}<10 \mathrm{db} \\ & =2 \mathrm{db} \text { дt }>10 \mathrm{db} \end{aligned}$	0 to 20 do	1.15	0.5	4\%	111	226	\$200
R382A	Attenualos, precision variable	$\pm 2 \%$ of reading or 0.1 d , whichever is greater	01050 db	1.15	1	6-7/16	164	225	\$500
8422A	Crystal detsector	freq. resp.: $=2 \mathrm{db}$ sens: $0.1 \mathrm{vdc} / \mathrm{mw} \mathrm{cw}$		3		2	51	235	
R486A	Thermistor mount, compensated		0.001 to 10 mm	2		3	76	220	\$375
R487B	Thermistor mount, broadband		0.01 to 10 mm	2		11/8	35	222	\$275
R532A	Frequency meter, direct reading	$\begin{aligned} & \text { dial: }=0.083 \% \\ & \text { overall }:=0.12 \% \end{aligned}$				4/2	114	246	\$400
$\begin{aligned} & \hline \text { R752A } \\ & \text { R752C } \\ & \text { R752D } \end{aligned}$	Directional couplers, muiti-hole	$\begin{gathered} \text { mean: } \pm 0.7 \mathrm{db} \\ \text { varíation: } \pm 0.5 \mathrm{db} \\ (\pm 0.6 \mathrm{db} \mathrm{~g} 2520) \end{gathered}$	$\begin{gathered} 3 \mathrm{db} \\ 10 \mathrm{db} \\ 20 \mathrm{db} \end{gathered}$	$\begin{aligned} & 1.1 \\ & 1.05 \\ & 1.05 \end{aligned}$	$\begin{gathered} 0.5 \\ \text { (in sux } \\ \text { guide) } \end{gathered}$	$\begin{gathered} 113 / 6 \\ 838 \\ 8.23 / 32 \end{gathered}$	$\begin{aligned} & 295 \\ & 219 \\ & 222 \end{aligned}$	236,237	\$250
$\begin{aligned} & \text { R815B } \\ & (8148) \\ & (446 B) \end{aligned}$	Slotted section, wavegulde (Carriage for 8158) (Deteclor probe for 8148)			1.01		7-9/16	192	242,243	$\begin{aligned} & \$ 269 \\ & (\$ 225) \\ & (\$ 145) \end{aligned}$
R870A	Yuner, slide screw	$\begin{gathered} \text { insertion loss: } \\ <3 \mathrm{db} \text { at 20:1 swr } \end{gathered}$	corrects swr of 20			$43 / 1$	111	244	\$300
R9148	Moving load	load reflec.: <0.5\%	> $4 / 2$ wavelength	2.01	0.5	51/2	130	245	\$250
89208	Adjustable short		>1/2 wavelength			41/2	114	245	$\$ 155$
825	Waveguide clamp							174	\$2,50
24	Waveguide stand							174	\$3

[^12]
ADAPTERS, WAVEGUIDE STAND AND CLAMPS, HIGH-POWER TERMINATIONS, WAVEGUIDE SHORTING SWITCH

Increase flexibility of microwave measurements

281A, 292A,B Adapters

Fitted with a standard Type N female connector and a plain AN llange, hp 281 A Waveguide-to-Coaxial Adapters use a probe with a low-loss dielectric sheath to transform waveguide impedance into coaxial impedance. Power may be transmitted in either direction, and each adaprer covers the full frequency range of its waveguide band with swr less than 1.25 .

Models 292A,B Waveguide-to-Waveguide Adapters connect two different waveguide sizes with overlapping fre. quency ranges. The 292A consists of a short tapered section of waveguide. The 292B is broached waveguide with a step transition between waveguide sizes.

Speotiaaliona, 281A					
$\begin{aligned} & \text { Hedel } \\ & \hline \end{aligned}$	$\underset{\substack{\text { Maxtmum } \\ s w i}}{ }$	Fraquancy renge ($\mathrm{pa}^{\text {) }}$	Fits wavegulde sixe		Prloe
			OD (Im.$)$	(EIA)	
S281A	1.25	2.60 to 3.95	3 $\times 1 / 2$	WR284	\$50
G281A	1.25	3.95105 .85	2×1	WR187	\$40
J281A	1.25*	5.30108 .20	$11 / 2 \times 1 / 4$	WR137	\$ $\$ 5$
H281A	1.25	7.05 to 10.0	$11 / 4 \times 3 / 8$	WRII2	\$30
X281A	1.25	8.201012 .4	$1 \times 1 / 2$	WR 90	\$25

1 ज

8peoilinatione, 292A,					
$\begin{gathered} \text { hp } \\ \text { Model } \\ \hline \end{gathered}$	SWR	Lendth		Frappanay ranal (90)	Prlota
		(17.0	(min)		
H×292B	1.05	11/2	38	8.201010 .0	\$25
M $\times 292 \mathrm{~B}$	1.05	2\%	60	10.01012 .4	\$40
MP2928	1.05	21/1	60	12.4 to 15.0	$\$ 40$
NP292A	1.05	2\%	60	15.0 to 18.0	\$40
NK292A	1.05	21/3	SO	18.0 to 22.0	$\$ 40$

X913A Termination

The X913A is a high-powet termination which does not require cumbersome water connections. The unit will dissipate 500 watts average, 100 kw peak, and its swr over the full 8.2 to 12.4 gc range is less than 1.05 . Price: X913A, $\$ 100$.

X930A Shorting Swltch

Model X930A, 8.2 to 12.4 gc , provides a removable short in a waveguide circuit. SWR is less than 1.02 in the "open" position, greater than 125 in the "short" position. Price: hp X930A, \$160.

24 Waveguide Stand, 25 Waveguide Clamps

Cast and machined from zinc alloy, the hp 24 Waveguide Stand locks the hp 25 Clamp at any height from $23 / 4^{\prime \prime}$ to $51 / 4^{\prime \prime}$ (70 to 133 mm). The stand is $21 / 2^{\prime \prime}(64 \mathrm{~mm})$ high, and the base measures $43 / 4^{\prime \prime}(121 \mathrm{~mm})$ in diarneter. Price: hp 24, \$3. The hp 25 Waveguide Clamps are offered in oine sizes to fit waveguide equipment covering frequencies from 2.6 to 40 gc . They consist of a molded plastic cradle with a center rod. Ptice: hp 25: \$2.50.

Speolforatlons, 26		
$\overline{\mathrm{hp}}$	Wewepulde shat	
	(outrido dimmation, in,	EIA
525	$3 \times 1 /{ }^{1 / 2}$	WR284
625	2×1	WR187
125	$11 / 2 \times 3 / 2$	WR137
H25	$11 / 4 \times 3 / 8$	Whil2
X25	$1 \times 1 / 2$	W9 90
M25	0.850×0.475	WR 75
P25	0.702×0.391	WR 62
K25	$1 / 2 \times 1 / 4$	WR 42
R25	0.360×0.220	WR 28

SIGNAL GENERATORS

Essential to practically all microwave measurement applications is signal gen. erating equipment. This section describes the wide variety of Hewlett-Packard in-stsuments-signal generators and sources, sweep oscillators, microwave amplifiers, modulators, frequency stabilizing equipment and special-purpose in-struments-available for use in the most exacting requirements.

Signal generators

Hewlert-Packard offers a complete line of easy-to-use hf, vhf, uhf and she sig. nal generators, precision instruments covering frequencies between 50 kc and 40 gc . Each generator incorporates the following:
(1) accurate, direct-reading, frequency calibration
(2) variable outpur, accurately calibrated and direct reading
(3) constant output impedance, well matched
(4) varied modulation capabilities
(5) low rf leakage
(6) low harmonic content
(7) freedom from spurious or incidental modulation

This assures utmost convenience and accuracy for all kinds of measurements. including receiver sensitivity, selectivity or rejection, signal-to-noise ratio, gainbandwidth characteristics, conversion gain, antenoa gain, transmission line characteristics, as well as for driving bridges, slotted lines, filter networks, etc.
Table 1 lists the individual HewlettPackard signal generators and their major characteristics.

LF to uhf signal generators

These signal generators, including hp $606 \mathrm{~A}, 608 \mathrm{C}, 608 \mathrm{D}$ and 612 A , collectively cover frequencies from 50 kc to 1.23 gc and are characterized by extremely low drift and incidental frequency modu. lation. All may be amplitude (sine, square, pulse) modulated. A feedback loop in the 606A keeps its output and per cent modulation constant as frequency is varied. For very high on-off ratios, pulses may be applied directly to
the oscillator of the 612 A , which also may be used to simulate positive or negative iv transmissions.

UHF to shf signal generators and sources

This group of instruments, covering 800 mc to 21 gc , features extremely simple operation. The 614A, 616B, 618B, $620 \mathrm{~A}, 626 \mathrm{~A}$ and 628A Signal Generators provide large, direct-reading frequency and attenuator dials. They may be pulse, square-wave and frequency modulated. Their versatility makes them useful for measuring signal-to-noise ratio, receiver sensitivity, swr and transmission line characteristics.
The hp 8614A and 8616A Signal Gen. erators are particularly easy to use. Frequency and atrenuation are set on directreading digital dials, and pushburtons permit fast, easy selection of function (cw, leveled output, squace-wave modulation or external amplitude, pulse or frequency modulation). In addition, each unit contains a unique PIN diode modulator which permits such a wide range

Table 1

hp Model	Frequeroy range	Chareoterietlos	Paps
$\begin{gathered} 606 \mathrm{~A} \\ \text { Signal Generator } \end{gathered}$	50 kc to 65 mc	output 3 v to $0.1 \mu \mathrm{~N}, \mathrm{mod}$. 8 W dc to 20 kc , \{ow drift and noise, low incidental FM, low distortion	180
$\begin{gathered} 608 \mathrm{C} \\ \text { Signal Generator } \end{gathered}$	1010480 mc	output I \% to $0.1 \mu \mathrm{~V}$, into 50.0 hm load; AM, pulse modulation, direct calibration	182
$\begin{aligned} & 6080 \\ & \text { Signal Generetor } \end{aligned}$	1010420 mc	output 0.5 v to $0.1 \mu v$ into 50 ohms, amplitude, pulse modulation, direct catibration, Iow in. cidental fim and drift	182
$\begin{gathered} 612 \mathrm{~A} \\ \text { Signal Generator } \end{gathered}$	450 to 1230 mc	output $0.5 \vee$ to $0.1 \mu v$ into $50-\mathrm{ohm}$ load; AM, pulse or square-wave modulation, direct calibration	187
$\begin{gathered} 614 \mathrm{~A} \\ \text { Signal Generator } \end{gathered}$	0.8 to 2.1 gc	output at least $0.5 \mathrm{mw} 10-127 \mathrm{dbm}\langle 0.1 \mu v)$ into 50 ohms, pulse or frequency modulation, direct calitiotation	193
$\begin{gathered} 8614 \mathrm{~A} \\ \text { Signal Generator } \end{gathered}$	0.8102 .4 gc	output +10 to - 127 dom into 50 ohms, leveled below 0 dbm; internal square-wave, external pulse, AM and FM; auxiliary of output	188
86148 Signal Source	0.8 to 2.4 gc	output 15 mw ; precision attenuator 130 do range; internal square-wave, externas pulse and FM, auxiliary af output	188
$\begin{gathered} 6168 \\ \text { Signal Generator } \end{gathered}$	1.8 to 4.2 gc	output 1 mw to $-127 \mathrm{dbm}(0.1 \mu \mathrm{v})$ into 50 ohn load, pulse or frequency modulation. direct calibration	193
$8626 A$ Signal Generstor	1.8 to 4.5 gc	output +3 to -127 dbm into 50 ohms, feveled below 0 dbm ; internal square-wave, external pulse, AM and FM; suxiliary ol oulput	188
$\begin{gathered} 86168 \\ \text { Signal Source } \\ \hline \end{gathered}$	1.8104 .5 gc	output 3 mw ; precision attenuator 130 db range; internal square.wave, external pulse and FM; auxiliary If oulput	188
$\begin{gathered} 6188 \\ \text { Signal Generator } \end{gathered}$	3.8 to 7.6 gc	output 1 mw to - $127 \mathrm{dbm}(0.1 \mu \mathrm{v})$ into 50 ohms, pulse, irequency or square-wave modulation. direct calibration	194
$\begin{gathered} 620 \mathrm{~A} \\ \text { Signal Generator } \end{gathered}$	71011 gc	output 1 mw to $-127 \mathrm{dbm}(0.1 \mu \mathrm{v})$ into 50 ohms, pulse, frequency or square-wave modulation, direct calibration	194
626A Signal Generator	101015.5 gc	output +10 dbm to -90 dbm; pulse, frequency or square-wave modulation, direct calibration	196
$\begin{gathered} 628 \mathrm{~A} \\ \text { Signs1 Generator } \end{gathered}$	15 to 21 gc	output +10 dbm to -90 dbm ; pulse, frequency or square-wave modulation, direct calibration	196
$\begin{gathered} 938 \mathrm{~A} \\ \text { Frequency Doubler } \end{gathered}$	18 to 26.5 gc	driven by 9 to 13.25 gc source, hp $626 \mathrm{~A}, 694 \mathrm{~A}, 8$ or klystrons; 100 db precision attenuator	198
$\begin{gathered} 940 \mathrm{~A} \\ \text { Frequency Doubler } \end{gathered}$	26.5 to 40 gc	driven by 13.25 to 20 gc source, hp 628A, 695A or klystrons; 200 db precision attenuator	198

of amplitude modulation that remote control of output level or precise leveling with external equipment is possible.

The 8614 B and 8616 B Signal Sources can be used in many applications previously requiring signal generators. The sources have precision attenuators for relative measurements such as insertion loss, and they have pulse and square. wave capability.

Frequency doublers

Broadband frequency doublers, hp 938 A and 940 A , provide low-cost signal generator capability in the 18 to 40 gc range. Designed to be driven by signal sources in the 9 to 20 gc range, the frequency doublers preserve the versatility and stability of the driving source. Thus, the signals may be cw, pulsed or swept. An output monitor and precision attenuator provide a metered output, even though the input signal is uncalibrated.

In addition to the hp models listed here, the Dymec Division manufactures several rf test sets; each one consists of a signal generator, frequency meter and power meter. Thus, a complete testing system is available in one unit for checking communication and radar systems. Details are given on page 203.

Stabilized mierowave signal generation

Absolute control of reflex klystron oscillator frequencies is possible using Dymec synchronizing instruments such as the DY-2650A Oscillator Synchronizer
and DY-2654A Frequency Standard Synchronizer. Both instruments employ automatic phase control techniques to provide signal stability essentially equal to that of an internal or external crystal reference. Applications requiring ex. tremely stable signals include doppler systems, radio astronomy receivers, microwave spectroscopy and parametric amplifier pumps.

The DY-2650A incorporates an internal reference oscillator, while the DY2654A works in conjunction with a pack. aged quartz oscillator such as the hp 107BR (page 100). Both synchronizers are fully compatible with hp $8614 \mathrm{~A}, \mathrm{~B}$ and 8616A,B Signal Generators. Dymee synchronizers introduce ao frequency error. Standard instruments will stabilize most reflex klystrons, 1 to 12.4 gc , with complete elimination of klystron drift and minimization of incidental $F M$ caused by klystron noise, power supply ripple and mechanical shock. Modified versions and cascaded instruments allow operation from 0.1 to 40 gc .

Figure 1 shows the functional diagram of the DY-2650A. The DY.2654A is similar, the major variations being in the rf and IF reference section to accommodate the external reference, and the elimination of the VFO.

DY-2650A is essentially a crystal.controlled superheterodyne receiver terminating in a phase comparator. Sample of the signal frequency is mixed with harmonics of the rf reference to produce an intermediate frequency of 30 mc , which is compared io phase with the 30 me reference. For stabilizing a klystron.
the resultant phase error voltage is added in series with the klystron reflector power supply voltage.
The rf reference frequency is controlled by a quartz crystal, oven-mounted for temperature stabilization, operating at a frequency between 100 and 120 ac . The harmonics of the internal reference are spaced between 200 and 240 mc apart, depending on the crystal selected. For each harmonic there are two "lock" frequencies, one 30 mc above the harmonic and the other 30 mc below. A number of lock points are therefore available for a given crystal. As an example, a 100 mc crystal produces 42 available lock frequencies between 8.2 and 12.4 gc (X-band).

The signal frequencies at which locking will occur with a particular crystal are given by the formula:
$\mathrm{F}_{\mathrm{signat}}=2 \mathrm{NF}_{\mathrm{xeat}} \pm \mathrm{F}_{11}$
Where $F_{\mathrm{xtal}}=100$ to 120 mc (as specified)
$F_{19}=30 \mathrm{mc}$ (fixed) or 29 to
31 mc (variable)
$\mathrm{N}=$ harmonic number (s through 62)
Detziled specifications of the DY. 2650A and DY-2654A, and information on systems formed from these instruments are listed on page 192.

Boonton signal sources

Signal generators, available from the Boonton Division. include general-purpose osciliators and amplifiers, FM sig. nal generators, sweep signal generators,

FM stereo modulators and specialized signal generators for aircraft navigation systems.

The 3200A VHF Oscillator is a compact, versatile source in the 10 to 500 mc range suitable for driving bridges, slotted lines and general-purpose laboratory work. The 230A Signal Generator Power Amplifier provides a convenient means of obtaining power levels up to Swatts in the 10 to 500 mc range when operated in conjunction with a signal generator.

FM signal generators were pioneered by Boonton in 1941 and represent the latest state of the art, offering excellent modulation linearity and stability. The 202H FM-AM Signa! Generator operates in the 54 to 216 mc range and is designed to serve the broadcast FM, whf-tv, and mobile communications markets. The 202J FM-AM Signal Generator is specifically designed for whi telemetry and covers from 195 to 270 mc . The accessory 207 H Univerter provides additional of and IF irequency coverage when used with either the 202 H or 202J Signal Generators.

The 240A Sweep Signal Generator provides continuous coverage from 4.5 to 120 mc and includes complete facilities for precision sweep measurements including both crystal birdie and pip mackers; an internal mixer system is provided, so that the markers do not pass through the circuit under test. The 203B Univerter, as an accessory for the 240A. provides additional frequency coverage in the range from 100 kc to 25 mc .

The 219A FM Stereo Modulator is designed to reproduce fiexibly the FM stereo broadcast signal as outlined in FCC Docket 13506. The outpur may be used directly with baseband circuits or may, in turn, be used to modulate the 202H Signal Generator.

The 211A Signal Generator is specif. cally designed for the rescing and calibration of aircraft VOR omni-range and ILS localizer receivers; an external modulator, such as the Collins 479.F3, is required to provide simulated course and bearing. The 232A Glide Slope Signal Generator is specifically designed for the resting and calibration of JLS glide slope receivers. The 8929A DME/ATC Test Set is designed to provide complete fa. cilities for the testing and calibration of aircraft DME radios and ATC trans. ponders: suitable external modulators ate required. such as the Collins $578 \mathrm{D} \cdot 1$ and $578 \mathrm{X} \cdot \mathrm{I}$ to simulate ground station opera. tion.

Microwave amplifiers

There often are applications requiring high-quality microwave signals, such as those obtained from precision signal generators, where the magnitude of signal power needed is greater than that avail. able directly from the signal generator. Amplification of the signal generator outpur will fill this requirement; at frequencies from 1 to 12.4 ge this is accomplished by hp microw'ave amplifiers. Four broadband amplifiers are available, each using a traveling-wave tube that delivers at least one watt output with one milliwatt or less input. Excellent stability is achieved through the use of highly regulated power supplies for all elements of the TWT, including the filament. The amplifiers have provision for amplitude modulation and since the internal modulation amplifier is dc-coupled, remote programming and power leveling are possible. Sensitivity is high for large ourpur porver changes from relatively small modulation signals, obviating the need for an external modulation amplifier.

Modulators

Sinusoidal and complex modulation of microxave signals is possible with the hp 8730 Series PIN Modulators. The series covers the coaxial range from 0.8 to 12.4 gc in four overlapping bands, in addition to X-band in waveguide. Utiliz. ing PIN diodes, the modulators present a good match and virtually eliminate frequency pulling.

Physically, the PIN modulator comprises a number of PIN diodes mounted as shunt elements across a transmission line. Since PIN diodes have appreciable storage time. they do not rectify at sig. nal frequencies above 100 mc . However, when a do forward bias is applied, the diodes conduct, and their resistance goes down. Thus, the diodes act as low.reactance, variable resistors shunting the transmission line. Their resistance, and the degree of attenuation of an rf signal. are functions of the modulating current.

New modulation techniques are pos. sible with the hp modulators. since they may be connecred in series for compound modulation, such as amplitude modula. tion of if pulses.

Two models of PIN modulators are available within each band: one which provides at least 35 db of attenuation range, and one which provides at least 80 db .

The 35 db version is especially useful as the control element in a closed-loop system for microwave power leveling. Conventional amplitude modulation also can be accomplished. The 80 db modulators provide high on/off ratios for critical pulse-modulation applications. The modulators are capable of achieving pulse rise and fall times of typically 30 nanoseconds. The hp Model 8403A Modulator provides complete control of

Group	Model	Frequency ranga	Oulput range	Modulation	Application	Paga
				FM AM		
generalpurpose	$\begin{array}{\|c\|} \hline 3200 \mathrm{~A} \\ 230 \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & 10.500 \mathrm{mc} \\ & 10.500 \mathrm{mc} \end{aligned}$	up 10200 mw 0 to 15 volts	reproduces driv- ing signal	oscillator amplifie:	$\begin{aligned} & 186 \\ & 184 \end{aligned}$
FM	$\begin{aligned} & 202 \mathrm{H} \\ & 2021 \\ & 207 \mathrm{H} \end{aligned}$	54-216 mic 195.270 mc $100 \mathrm{kc}-55 \mathrm{mc}$	$\begin{aligned} & 0.1 \mu v-0.2 v \\ & 0.1 \mu v-0.2 v \\ & 1 \mu v-0.1 v \end{aligned}$	$\left\lvert\, \begin{array}{l\|l\|} 0.250 \mathrm{kc} & 0.1000 \% \\ 0.300 \mathrm{kc} & 0.100 \% \\ \text { reproduce } & 202 \mathrm{H} / \mathrm{j} \end{array}\right.$	FM, Iv, mobila lelemelering 202H/3 accessory	$\begin{aligned} & 208 \\ & 209 \\ & 211 \end{aligned}$
sterso	219A	$50 \mathrm{cps}-75 \mathrm{kc}$	0.7 .5 v	per FCC Docket 13506	FM stereo	210
sweep	$\begin{aligned} & 240 \mathrm{~A} \\ & 203 \mathrm{~B} \end{aligned}$	4.5-120 mc $100 \mathrm{kc}-25 \mathrm{mc}$	$\begin{aligned} & 1 \mu v-0.3 v \\ & 1 \mu v-0.1 v \end{aligned}$	$\begin{array}{\|l\|} \hline=30 \% \\ \text { reproduces } 240 \% \end{array}$	sweep display 240A accessory	$\begin{aligned} & 185 \\ & 185 \end{aligned}$
aircraft navigation	$\begin{array}{\|l\|} \hline 211 A \\ 232 A \\ 8925 A \end{array}$	$\begin{aligned} & 88.140 \mathrm{mc} \\ & 329.3 .335 \mathrm{mc} \\ & 950.1250 \mathrm{mc} \end{aligned}$	$\begin{aligned} & \hline 0.1 \mu v-0.2 \mathrm{v} \\ & 1 \mu \mathrm{v}-0.2 \mathrm{v} \\ & -10 \text { to }-120 \mathrm{dbm} \end{aligned}$	0.100% special pulse 0.100%	VOR and localizer glide slope DME and ATC	$\begin{aligned} & 204 \\ & 205 \\ & 206 \end{aligned}$

Figure 2. Basic closed-loop leveling system.

Flgure 3. "Eack-toback" wavegulde coupler arrangement for
oxtremely flat output.
the PIN goodulators, supplying the appropriate modulation wave shapes and bias levels for fast rise times, rated on/ off ratios and amplitude modulation.

Sweep oscillators

Swept-frequency measurement techniques first became feasible when dependable means of sweeping the rf source were developed. The original mechanically swept sources (usually klystrons) later gave way to electronicallytuned backward-wave oscillators which brought added sophistication to swept measurements. Hewlett-Packard's extensive use of swept-frequency testing has not only resulted in major improvements in measurement techniques, but also has provided the experience that has led to development of the hp 690 Series Sweep Oscillators.

These instruments-covering 1 to 40 ge-combine unique features to make them the most flexible and most accurate sweepers available. They provide calibeated broad and narrow sweeps, and markers which amplitude modulate the of may be used on either. The markers also may be used as end points of a second broad sweep. Manual sweep reduces $x-y$ recorder set-up time, and push. buttons greatly simplify operation. The rf output frequency may be swepr slowly enough for presentation on an $x-y$ recorder or fast enough for no-ficker presentation on an oscilloscope. These oscillators have voltage-tuned backward-wave tubes which generate cw and swept frequencies with a wide variety of modulation capabilities. Included is internal, square-wave modulation, with a range of 950 to 1050 cps , plus external $A M$ and FM. External FM permits frequency programming including externally controlled sweeps over the whole range or any part of it.

Models in the 1 to 12.4 ge range can
be provided with PrN diode attenuators which permir all of the amplirude-modulation functions, including leveling, to be performed independent of the BWO tube. The result is the virtual elimination of frequency pulling, which, in tum, results in extremely high frequency ac-
curacy and linearity and very low inci-
dental FM.

Leveled output from sweep oscillators

The development of closed-loop feedback systerns for leveling sweep oscillator

Figure 4. Two possible sot-ups for generating leveled signals at reduced output pawer.
ourput power has greatly expanded the practical scope of swept-frequency measurements. The basic closed.loop system is shown in Figure 2.
The hp 690 Series Sweep Oscillators contain a high-performance leveling amplifier for auromatic level control (ALC); the power variation that occurs at the system outpu: is primarily determined by coupler and detector variation. Leveling can be accomplished with eirher a crystal detector or thermistor mount/ power meter serving as the derector. For coaxia! systems, hp has developed the 780 Series Directional Detectors (page 238) which consist of a high directivity, flat directional coupler combined wish a high sensitivity, fiat response crystal detector. System fatness of better than $\pm 0.3 \mathrm{db}$ over octave bandwidths is typicai, using hp directional detectors. For power meter leveling in coax, hp 790 Series Flat Directional Couplers (page 238) can be used in conjunction with the hp 478A Coax Thermistor Mount and $431 B$ Power Meter (page 220). Power meter leveling allows establishment of known absolute power levels, and the 431B's range switch can serve as a very accurare attenuation control.
To level output power in waveguide systems, hp 752 Series Waveguide Di. rectional Couplers (page 236) and 424A Series Waveguide Crystal Detectors (page 235) are used. With better than 40 db directivity, 752 Series Couplers in leveled systems provide an extremely good equivalent source match-nominally 1.02 swr . Waveguide couplers will typically exhibit $\pm 0.5 \mathrm{db}$ coupling varia. tion over the band. In conventional reflection or transmission measurement systems employing two couplers, this variation of coupling with frequency is of little consequence because both cou. plers demonstrate the same coupling characteristics; hence, the variations with frequency effectively cantel. Where a greater degree of leveling is needed in waveguide. a pair of 752 couplers are connected "back-to-back" as in Figure 3. In this configuration, the insertion loss of the 3 db coupler (752A) follows a curve directly opposite to the coupling curve of the mainline 752C or D coupler. The resulting power relationship berween port 1 and port 2 is flat to better than $\pm 0.2 \mathrm{db}$ over full raveguide bands.

Typical leveled systems

The system block diagrams on these pages show typical equipment configura. tions for establishing various levels of flat power ourput. Each system can be constructed in either waveguide or coax, and either crystal detectors or thermistor mount/power meter detection can be employed.

Reflectometers

Probably the major usage of sweep oscillators is in reflectometer systems for broadband measurement of reflection and transmission characteristics. Leveling the signal source brings new latitude of readout to the user. for measurement results can be read directly rather than on a ratio basis.

Especially useful is the new hp 1416A plug-in for the 140 A Oscilloscope (page 277). Designed expressly for use in leveled reflectomerer systems employing square-law detectors, the 1416A provides a highly accurate 30 db of dynamic range when used with hp 423A and 424A Series Cryseal Detectors. It also provides high resolution; sensitivity of $1 \mathrm{db} / \mathrm{cm}$ permits close examination of results.

Figure 5. Systam for generating high lavel, flat output. The "pad" betwaen the sweep osclitator and the TWT amplifier is used to keep the signal level into the amplifler telow that which would saturate the TWT.

Figura 6. This systam levels on the net forward (i.e., absorbed) power, making it useful for applications such as bolometer mount efficlency measurements, driving antennas, etc.

606A HF SIGNAL GENERATOR

Convenience and utility in a 50 kc to 65 mc signal generator

Advantages:

Wide range; includes 30 and 60 mc IP bands Constant ourput level
Constant modulation level
Wide modulation capabilities
3 volt output into 50 ohms
Crystal calibrator insures exact frequencies
Low envelope distortion

Uses:

Measuring receiver and IF circuit gain, selectivity and image rejection
Driving bridges, antennas, filters

Figure 1. Dual-trace presentation comparing modulated output from hp 606A with internal i ke modulating waveform (positioned closely above if envelope).

The ho 606λ Signal Generator is an extremely versatile, easy-to-use signal source. Its wide frequency and output range, accurate calibration and excellent modulation characteristics fit it for many measurement applications.

A feedback circuit maintains both output level and per cent modulation essentially constant over the entire frequency range. Thus, it is usually unnecessary to readjust either the output level or modulation controls when varying frequency. Even the output level can be varied without seriously affecting per cent modulation. Another advantage provided by the feedback circuit is the reduction of envelope distortion during modulation.

Low distortion, broad modulation bandwidth

Because envelope distortion is low, overall distortion measurements may be made on high-fidelity AM receivers by applying the hp 606A output to the receiver's antenna terminals (see Figure 1).

The 606A may be modulated with signals from dc to 20 kc , by square waves and other complex signals (see Figure 2). Square-wave and pulse modulation of the carrier permit examination of the overall transient and pulse response of receivers. Such modulation characteristics permit tone-burst modulation and remote programming, as well as the more conventional applications.

Figure 2. Dualitrace prasentation showing carrier in the broadcast band modulated by a I ke square wave.

Accessory

The hp 11507A Output Termination (10:1) and IEeE dummy antenna (see "Accessories Available" under Specifications) is a multi-purpose termination which enhances the usefulness of the hp 606A by:
a. providing a matched 50 -ohm rermination and reducing the source impedance to 25 ohms.
b. providing a 20 db ($10: 1$) divider which also reduces source impedance to 5 ohms.
c. providing a dummy aotenna having the IEEE standard characteristics for receiver measurernents.

Specifications

Frequency range: 50 kc to 65 mc in six bands: 50 to 170 kc ; 165 to $560 \mathrm{kc} ; 530$ to $1800 \mathrm{kc} ; 1.76$ to $6 \mathrm{mc} ; 5.8$ to 19.2 $\mathrm{mc} ; 19$ to 65 mc .
Frequency accuracy: within $\pm 1 \%$.
Frequency callbrator: crystal oscillator provides check points at 100 kc (useful to 6 mc), and 1 mc intervals (useful to 65 mc), accurate within 0.01% from 0° to $50^{\circ} \mathrm{C}$.
RF output level: continuously adjustable $0.1 \mu \mathrm{v}$ to 3 v into a 50 -ohm resistive load; calibration in volts and dbm (0 dbm is 1 mw or 0.223 v rms into 50 ohms).
Output accuracy: within $\pm 1 \mathrm{db}$ into 50 ohm resistive Ioad.
Frequency response: within $\pm 1 \mathrm{db}$ into 50 -ohm resistive load over entire frequency range, any output level setting.
Output Impedance: 50 ohms; swi less than 1.1 on 0.3 volt and lower ranges, less than 1.2 on 1 volt and 3 volt ranges; BNC output connector (female).
Spurlous harmonle output: less than 3%.
Leakage: negligible; permits receiver sensitivity measurements down to at least 0.1 microvolt.
Amplitude modulation: continuously adjustable from 0 to 100%, indicated by a panel meter; modulation level is constant within $\pm 0.5 \mathrm{db}$ regardless of carrier frequency and output level changes.
Internal modulation: 0 to 100% sinusoidal modulation at $400 \mathrm{cps} \pm 5 \%$ or $1000 \mathrm{cps} \pm 5 \%$; intemal modulation voltage appears at modulation jack.
Modulation bandwidth: dc to 20 kc maximum, depends on carrier frequency, f_{c}, and per cent modulation as shown in the following table:

Max. mod.	30% mod.	70% mod.	Square-wave mod.
Frequency	$0.06 \mathrm{i}_{\mathrm{c}}$	$0.02 \mathrm{i}_{\mathrm{c}}$	$0.003 \mathrm{f}_{\mathrm{c}}(3 \mathrm{kc}$ max)

Spurious AM: hum and noise sidebands are 70 db below carrier down to thermal level of 50 ohm output system.
Frequency dritt (on $1 \vee$ and lower ranges): less than 0.005% or S cps, whichever is greater, for a 10 -minute period after warm-up or restabilization at frequency of use.
Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to $1000 \mathrm{cps}, 135 \mathrm{w}$.
Dlmensions: cabinet: $203 / 4^{\prime \prime}$ wide, $121 / 2^{\prime \prime}$ high, $143 / 4^{\prime \prime}$ deep ($527 \times 318 \times 370 \mathrm{~mm}$); rack mount: $19^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $13.3 / 8^{\prime \prime}$ deep behind panel ($483 \times 266 \times 340$ mm).
Weight: net $54 \mathrm{lbs}(24,3 \mathrm{~kg})$, shipping $65 \mathrm{lbs}(29,3 \mathrm{~kg})$ (cabinet); net $51 \mathrm{lbs}(23 \mathrm{~kg})$, shipping $66 \mathrm{lbs}(29,7$ kg) (rack mount).
Accessories avallable: 11507 A Output Termination with So ohms termination, 5 ohms termination (10:1 volt. age division), and JEEE standard dummy antenna ($10: 1$ voltage division), \$70.
Price: hp 606A, $\$ 1350$ (cabinet); hp 606AR, $\$ 1335$ (rack mount).

608C,D VHF SIGNAL GENERATORS

Finest tools available for measurements 10 to 480 mc

Advantages:

Wide range, direct calibration
Convenient operation
Incidental FM less than 1 kc
Drift less than 0.005%
High power output
Microsecond pulsing
Broad modulation capabilities

Uses:

Testing and aligning vhf communications receivers
Measuring gain, sensitivity, selectivity, image rejection of receivers, IF amplifiers, broadband amplifiers and other shf equipment
Driving bridges, slotted lines, antennas, filter networks, etc.

Hewletr-Packard 608C,D are designed as broadly applicable vhi signal generators. They offer the highest stability attained in production equipment of their rype. There is almost a complete absence of incidental FM (less than 1 kc for the 608D), and frequency drift is held low despite line voltage variations. This performance is possible because of the master oscillator-output amplifier construction and close filament regulation of the tubes.

Premium quality 608D

Output of the 608 D is calibrated from 0.1μ volt to 0.5 volt throughout the frequency range of 10 to 420 mc . A built-in crystal calibrator provides accurate frequency check points in 1 and 5 mc steps throughout the range. Modulation capabilities are extremely broad, allowing pulse and transient testing of whf receivers. At the same time, enve. lope distortion, incidental FM and drift are kept low, so
that measurements of high-slope, narrow-band circuits are accurate and reliable. Low incidental FM is the result of using a buffer amplifier between the master oscillator and power amplifier. Pulses as short as $1 \mu \mathrm{sec}$ are available at rf output frequencies above 100 mc . Percentage modulation is read directly on a front-panel meter.

Finest construction

An important feature of the hp 608D is the mechanical design and construction employed throughout. Aluminum castings and cabinets reduce weight at no sacrifice in strength or ruggedness. Circuitry is clean and accessible. Diai, capacitor and turret drives are all precision-built and ball-bearing equipped. Variable capacitors are specially manufactured by Hewletr-Packard and feature electrically welded Invar low temperature steel plates to minimize drift. Sealed transformers are used throughout, and construction is militarized.

608C VHF Signal Generator

The 608 C is a bigh-power, stable and highly accurate vhi signal generator for general laboratory and field use. Utilizing a master oscillator-power amplifier circuit, Model $608 C$ provides 1 volt maximum output and a broad frequency coverage of 10 to 480 mc . It can be amplitude modulated to 95% and provides high-quality pulses as short as $1 \mu \mathrm{sec}$ at of output frequencies above 100 mc . As in the 608 D , if leakage is negligible, and the if attenuator is calibrated to 0.1μ volt.

The 608 C is especially suited for measurements of gain, selectivity, sensitivity or image rejection of receivers, IF amplifiers, broadband amplifiers and other whf equipment. It aiso provides ample output for driving bridges, slotted lines, transmission lines, antennas, filter networks and other circuits operating in the whf band.

6080

Accessories

Terminated output cable 11508A is designed for use with hp 608 C and 608D VHF Signal Generators. It provides an accurate termination which may be directly connected to the point of a circuit at which the signal is to be injected.

Another accessory, the 11509 A Fuseholder, is particu. larly useful for these signal generators when tests on transceivers are being made. The fuseholder protects the output attenuator of the signal generator should the transmitter be keyed while the 608 is connected to the antenna.

Specifications

Frequency range: 608C, 10 to 480 mc in 5 bands; 608D, 10 to 420 mc in 5 bands.
Tuning controi: main dial calibrated in $\mathrm{mc}, 45^{\prime \prime}(1143 \mathrm{~mm})$ scale length; calibration every other mc, 130 to 270 mc , every 5 mc above 270 mc ; vernier interpolation dial.
Frequency callbration accuracy: $608 \mathrm{C}, \pm 1 \%$ full range; $608 \mathrm{D}: \pm 0.5 \%$ full range.
Resettability: better than $\pm 0.1 \%$ after warm.up.
Crystal calibrator (608D only): provides frequency check points every 1 mc (useful to 270 mc) or 5 mc over the range of the instrument; headphone jack provided for audio frequency output (headphones not included); crostal frequency accuracy berter than 0.01% at normal ambient temperakres; cursor on frequency dial adjustable over small range to aid in interpolation adjustment; calibrator may be turned off when not in use.
Frequency drift: less than 0.005% over a 10 -minute interval after initial instrument warm-up (15 to $35^{\circ} \mathrm{C}$ ambient); when frequency is changed by dial, instrument must restabilize one minute for each 10% frequency change; when frequency is changed by band-switching, 10 min utes maximum are required to restabilize.
Output level: $608 \mathrm{C}, 0.1 \mu \mathrm{v}$ to 1 v into 50 -ohm resistive load, attenuator dial calibrated in volts and dbm; 608D, $0.1 \mu \mathrm{v}$ to 0.5 v into 50.0 hm resistive load, attenuator dial calibrated in volts and dbm: (0 dbns equals 1 mw).

Output voltage accuracy: $\pm 1 \mathrm{db}$ over entire frequency and attenuation range into 50.0 hm load.
Generator impedance: 50 ohms; maximum swr 1.2
internal amplitude modulation: $400 \mathrm{cps} \pm 10 \%$ and 1000 $c \mathrm{ps} \pm 10 \%$.
Exterral amplitude modulation: 0 to 95% at output levels of 0 dbm and below at modulation frequencies 20 cps to 20 kc ; inpur requirements, 0.5 v rms across 15 K .
Modulation meter accuracy: $\pm 10 \%$ of full scale, 30% to 95% modulation.
Envelope distortion: less than 5% at 30% sine-wave modulation; less than 10% at 50% sine-wave modulation.
External pulse modulation: positive 5 r peak pulse required; 40 mc to 220 mc , combined rise and decay time of rf pulse less than $4 \mu \mathrm{sec}$; above 220 mc . combined rise and decay time of rf pulse less than $1 \mu \mathrm{sec}$; pulse on-off ratio at least 20 db .
Incidental FM: 608 C , less than 0.0025% at 30% amplitude modulation for rf output frequencies 21 to 480 mc ; 608D. less than 1000 cps peak at 50% amplitude modulation for rf frequencies above 100 mc , less than 0.001 c at 30% amplitude modulation below 100 mc .
Leakage: negligible; permits sensitivity measurements to at least $0.1 \mu^{\mathrm{V}}$.
Power: 115 or $230 \mathrm{v} \pm 10 \%$. 50 to $1000 \mathrm{cps}, 220 \mathrm{w}$.
Dimensions: cabinet: $131 / 4^{\prime \prime}$ wide, $163 / 8^{\prime \prime}$ high, $21^{\prime \prime}$ deep ($337 \times 416 \times 533 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, 13. $31 / 32^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep behind panel ($483 \times 355 \mathrm{x}$ 467 mm).
Weight: net $62 \mathrm{lbs}(27,9 \mathrm{~kg})$, shipping $74 \mathrm{lbs}(33,3 \mathrm{~kg})$ (cabinet); net $62 \mathrm{lbs}(27,9 \mathrm{~kg}$). shipping $87 \mathrm{lbs}(39,2$ kg) (rack mount).
Accessorles avallable: 11508A Output Cable. \$18: 10503A Video Cable Assembly, $\$ 6.50 ; 11500 \mathrm{~A}$ RF Cable As. sembiy, 515 ; 360A Low-Pass Fiter, 570; 11509A Fuseholder, $\$ 25$.
Price: hp 608C, $\$ 1200$ (cabinet); hp 608CR, $\$ 1220$ (rack mount); hp 608D, $\$ 1300$ (cabinet); hp 608DR, s 1320 (cack mount).

230A SIGNAL GENERATOR POWER AMPLIFIER
 Provides more than 4.5 watts, 10 to 500 mc

The Boonton 230A Signal Generator Power Amplifier is the ideal solution to high of power requirements, including receiver testing, wattmeter calibration, antenna testing, filter and component testing and attenuation measurements.

The amplifier may be conveniently driven with any conventional signal generator and is designed to reproduce

AM, FM and pulse modulation characteristics of the driving generator with minimum distortion.

The 230A employs three tuned, cascaded stages of grounded-grid amplification fed from a regulated power supply. An if output voltmeter is also included and the unit is designed for either standard 19" rack or cabinet use.

Specifications

Radio frequency characteristics

RF range: total range: 10 to 500 mc ; number bands: $\sigma_{;}$ band ranges: 10 to $18.5 \mathrm{mc}, 18.5$ to $35 \mathrm{mc}, 35$ to 65 $\mathrm{mc}, 65$ to $125 \mathrm{mc}, 125$ to $250 \mathrm{mc}, 250$ to 500 mc .

RF callbration: increments of approximately 10%, accurate to $\pm 10 \%$.

RF output: range: up to 15 volts (across external 50 - hm load); calibration: 0.2 to 3 volts f.s., increments of approx. $5 \% ; 1$ to 10 volts $f . s$. increments of approx. $5 \% ; 2$ to 30 volts $f . s$. , increments of approx. 5%; accuracy: $\pm 1 \mathrm{db}$ of i.s. (10 to 250 mc), $\pm 1.5 \mathrm{db}$ of f.s. (250 to 500 mc); impedance: 50 ohms; leakage: effective shielding is greater than 40 db .

RF bandwidth:* $>700 \mathrm{kc}$ (10 to 150 mc); $>1.4 \mathrm{mc}$ (150 to 500 mc).

RF input: level**: ≤ 0.316 volts, 30 db gain, (10 to 125 mc); ≤ 0.446 volts, 27 db gain, (125 to 250 mc); ≤ 0.63 volts, 24 db gain, (250 to 500 mc).

[^13]Amplifude modulatlon characterlstics
AM range: reproduces modulation of driving signal gen. erator 0 to 100% t.
AM distortion: $<10 \%$ added to distortion of driving signal generatorst.
Frequency modulation characteristics
FM range: reproduces modulation of driving signal generator except as limited by the of bandwidth.
Incldental AM: 10% added to modulation of driving signal generator (at 150 kc deviation).
FM distortion: negligible distortion added to distortion of driving signal generator for deviations and modulation frequencies $<150 \mathrm{kc}$.

Physical characteristics

Dimenslons: $191 / 2^{\prime \prime}$ wide, $7.3 / 16^{\prime \prime}$ high, 17.11/16" deep ($495 \times 183 \times 449 \mathrm{~mm}$).
Wolght: net $37 \mathrm{lbs}(16,7 \mathrm{~kg}$); shipping $45 \mathrm{lbs}(20,3 \mathrm{~kg})$.
Power: 105 to 125 or 210 to $250 \mathrm{v}, 50$ to $60 \mathrm{cps}, 150 \mathrm{w}$.
Price: Boonton 230A, $\$ 1200$.

[^14]
240A SWEEP SIGNAL GENERATOR

Continuous coverage 4.5 to 120 mc ; includes crystal birdie and variable pip markers

The Boonton 240A Sweep Signal Generator has been designed for use in the development and testing of radio frequency passband amplifiers over the frequency range of 4.5 to 120 mc . It consists of a precision cw signal generator which may be amplitude modulated, and a sweep frequency generator providing linear frequency deviation over the range from $\pm 1 \%$ of center frequency to $\pm 30 \%$ of center frequency or $\pm 15 \mathrm{mc}$, whichever is smafler.

Features of the 240 A include a marker system which produces (a) crystal-referenced birdie-type markers, (b) adjustable pip incerpolation markers, and (c) a composite signal conkaining the markers added to the response of the spstem under test. A precision output attenuator system operates on both cw and swept outputs. Provisions are included for sweeping from an external source of sweeping voltages and for providing to an oscilloscope the synchronized sweep voltage.

The 240A is useful in the determination of selectivity and sensitivity of test circuits, the study of bandpass characteristics, the adjustment of stagger tuned circuits, the study of cable characteristics, determination of linearity of FM discriminators and the study of crystal modes.

Specificatlons

Radlo frequency characteristles
RF range: total range: 4.5 to 120 mc ; number bands: 5 ; band ranges: 4.5 to $9 \mathrm{mc}, 9$ to $18 \mathrm{mc}, 18$ to 35 mc , 35 to $75 \mathrm{mc}, 75$ to 120 mc .
RF accuracy: $\pm 1 \%$ (after four-hour warm-up) may be standardized against internal crystal to $\pm 0.005 \%$.
RF output: range: $1 \mu \mathrm{v}$ to $0.3 \mathrm{v}^{*}$ (sweep), $1 \mu \mathrm{v}$ to $0.1 \mathrm{v}^{*}$ (cw and AM) ; accuracy: $\pm 20 \%$ of full scale RF level meter reading; impedance: 50 ohms (25 ohms at terminals of 501B Output Cable).

- across external 90.0 hm load.
\dagger deeceases to $=0.7 \mathrm{~s} \mathrm{mc}$ or $=1.9 \%$ at 1000 cps repetition rate.

Swapt-frequency characterlstics
Sweep range: internal: $\pm 1 \%$ to $\pm 15 \mathrm{mc}$ or $\pm 30 \%$ of center frequency, whichever is smaller; extemal: $\pm 1 \%$ to $\pm 12 \mathrm{mc}$ or $\pm 24 \%$ t of center frequency, whichever is smaller (20 to 200 cps repetition rate).
Sweep linearity: $\pm 10 \%$ over central $\pm 80 \%$ of sweep excursion; $\pm 20 \%$ over outer 20% of sweep excursion.
Output flatness: flat within $<7 \%$.
Repetition rate: internal: 20 to 70 cps (provision for synchronization with line frequency); external: 20 to 1000 cps.
BlankJng: internal blanking of rf output provides zero base line display during return cycle of internal sweep.
Sweeping voltage output: 20 volts $\mathrm{P} \cdot \mathrm{P}$ (triangukar waveform) available at front-panel posts.
Marker chapacterlstics
Crystal brdie markers: frequency: $0.1,0.5$, and 2.5 mc ; accuracy: $\pm 0.005 \%$.
Pip markers: number of markers: 2; position: continuously adjustable to any position on sweep excursion.
Internal mixer: fonction: adds markers to output of circuit under test; markers do not pass through circuit under test; gain: approx. 10 (for input level range 0.1 to s v p-p).
Amplitude modulation characteristics
AM level: approx. 30% from internal 1000 cps oscillator. Physical characteristics

Dimenslons: $141 / 2^{\prime \prime}$ wide, $18^{\prime \prime}$ high, $1914^{\prime \prime}$ deep (368 x $457 \times 489 \mathrm{~mm})$.
Welght: net $76 \mathrm{lbs}(34,2 \mathrm{~kg})$; shipping $100 \mathrm{lbs}(45 \mathrm{~kg})$.
Power: 240A, 105 to 125 volts, $60 \mathrm{cps}, 280$ watts; 240 AP , 105 to 125 volts, $50 \mathrm{cps}, 280$ watts.
Accessory furnished: 501B Output Cable.
Price: Boonton 240A, \$1995, Boonton 240AP, \$1995; for rack mount models, add $\$ 25$.

3200A VHF OSCILLATOR

Continuous coverage 10 to 500 mc ; up to 200 mw output

The Boonton 3200A VHF Oscillator is designed for general-purpose laboratory use, including receiver and amplifier testing, driving bridges, slotted lines, antenna and filter networks and as a local oscillator for heterodyne detector systems in the frequency range from 10 to 500 mc .

The push-pull oscillator is housed in a rugged aluminum casting for maximum stability and extremely low leakage; six frequency ranges are provided for adequate bandspread on the slide-rule dial. Internal $c w$ operation is provided; AM and pulse modulation may be obtained through the use
of a suitable external source. The rf output is coupled through a waveguide-below-cutoff variable attentator; in addition, an eiectrical rf level vernier is included as a frontpanel control.

A solid-state power supply furnishes all necessary operat. ing voltages, including regulated de to the oscillator heaters for minimum hum modulation and maximum tube life. The cabinet is designed for bench use and can be readily adapted for standard 19 -inch rack mounting.

Specifications

Radlo frequency characteristics

RF range: total range: 10 to 500 mc ; number bands: 6 ; band ranges: 10 to $18.8 \mathrm{mc}, 18.5$ to $35 \mathrm{mc}, 35$ to $68 \mathrm{mc}, 68$ to $130 \mathrm{mc}, 130$ to $260 \mathrm{mc}, 260$ to 500 mc .
RF accuracy: $\pm 2 \%$ (after $1 / 2$ hour warm-up).
RF callbration: increments of less than 4%.
RF stability*: short term: $\pm 0.002 \%$ (5 minutes); long term: $\pm 0.02 \%$ (1 hour); line voltage: $\pm 0.001 \%$ (5 volts).
RF output: maximum power**: $>200 \mathrm{mw}$ (10 to 130 mc) ; $>150 \mathrm{mw}$ (130 to 260 mc) ; $>25 \mathrm{mw}$ (260 to 500 mc) ; range: 0 to $>120 \mathrm{db}$ attenuation from maximum output; load impedance: 50 ohms nominal.
RF leakage: sufficiently low to permit measurements at $1 \mu \mathrm{v}$.
*after 4-hour warm-up, under 0.2 mw load.

* * across external 50 ohm load.

Amplitude modulation characteristics
AM range: external: 0 to 30%.
AM distortion: $<1 \%$ at 30% AM.
External AM requirements: approximately 30 volts rms into 600 ohms for 30% AM.

Pulse modulation characteristics

External PM source requirements: 140 volts peak pulse into 2000 ohms for maximum power output; typically 10 volts peak (except 50 volts on 260 to 500 mc range) for 1 mw peak power output.
Physical characteristics
Dimenslons: $7.25 / 32^{\prime \prime}$ wide, $61 / 2^{\prime \prime}$ high, $12.17 / 32^{\prime \prime}$ deep ($198 \times 165 \times 318 \mathrm{~mm}$).
Weight: net $15 \mathrm{lbs}(6,8 \mathrm{~kg})$; shipping $19 \mathrm{lbs}(8,6 \mathrm{~kg})$.
Power: 105 to 125 or 210 to 250 volts, 50 to $60 \mathrm{cps}, 30$ watts.
Price: Boonton 3200A, $\$ 475$.

612A UHF SIGNAL GENERATOR

All-purpose uhf signal generator, 450 to 1230 mc

Here is an all-purpose, precision signal generator particularly designed for utmost convenience and applicability throughout the important uhf-tv frequency band. It is ideally suited for measurements in uhf-television broadcasting, studio-transmitter links. citizen's radio and public service communications system5. The hp 612A also covers the important frequencies used in aircraft navigation aids such as DME, TACAN and air. borne transponders. Accessory modulators, available from many of the manufaccurers of these navigational aids, enable the 612 A to provide the complex modulation patterns required for testing and aligning these systems. In the laboratory, the 612 A is a convenient power soutce for driving bridges, slotted lines, antennas and filter netroorks. In addition, the hp 8731 PIN Modulators (pages 190, 191) can be used with the 612A to obtain of pulses with 30 nsec rise time and $0.1 \mu \mathrm{sec}$ minimum duration - with on-off ratios approaching 80 db .

MO.PA circuit

The master oscillator-power amplifier circuit in hp 612A provides 0.5 volt into 50 ohms over the full frequency range of 450 to 1230 mc . There is very low incidental FM (less than 0.002% at 30% AM) and excellent modulation capabilities by all frequencies from 20 cps to 5 mc . The degree of modulation is easily read from the large Percent Modulation meter. The instrument can be amplitude modulated (either internally or
externally), and provision is made for external pulse modulation, as well. Pulse modulation can be applied to the amplifier, or directly to the oscillator when high on-off signal ratios are required (signal may be complerely cut off between pulses). Modulation can be up or doun from preset level to simulate tv modulation characteristics accurately.

Advanced design

The osciliator-amplifier circuit in the 612A employs highfrequency pencil triodes in a cavity-tuned circuit for precise tracking over the entire band. Non-contacting cavity plungers are die cast to precise tolerances, then injection molded with a plastic fller for optimum Q. The frequency drive is a direct screw-operated mechanism, frec from backlash. A waveguide-beyond-cutoff piston attenuator and crystal monitor circuir are used to insure accurate, reliable output down to 0.1μ volt. The attenuator is calibrated over a range of 131 db and has been carefully designed to provide a constant impedance-versusfrequency characteristic. The swr of the $50 \cdot 0 \mathrm{hm}$ ourput system is less than 1.2 over the complete frequency range.

Specifications

Frequency range: 450 to 1230 mc in one band; scale length approximately $15^{\prime \prime}(381 \mathrm{~mm})$.
Callbration accuracy: within $\pm 1 \%$; resetrability better than 5 mc at high frequencies.
Output voltage: 0.1 uv to 0.5 v into $90.0 h m$ load; calibrated in v and dbm ($0 \mathrm{dbm}=1 \mathrm{mw}$).
Output accuracy: $\pm 1 \mathrm{db}, 0$ to -127 dbm over entire frequency range.
Internal impedance: 50 ohms; maximum swe 1.2.
Leakage: negligible; permits receiver sensitivity measurements down to $1 \mu \mathrm{~V}$
Amplitude modulation: 0 to 90% at audio frequencies, indicated by panel meter; accuracy, $\pm 10 \%$ of full scale, 30 to 90% modu. lation.
Incidental FM: Jess than 0.002% for 30% AM.
Internal modulation: 400 and $1000 \mathrm{cps} \pm 10 \%$; envelope distortion less than 2% at 30% modulation.
External modulation: 20 cps to 5 mc ; above $470 \mathrm{mc}, 2$ y ms pro. duces 85% AM at modulating frequencies up to 1 me , at least 40% AM at 5 mc ; modulation may be up or down from the carrier level of symmetrical about the carrier level; positive or negative pulses may be applied to increase or deccease of output from the carcier level.

Pulse modulation

Pulse 1 (pulse applied to amplifier): positive or negative pulses, 4 to 40 v peak produce an of on-of ratio of at leasr 20 db ; minimum rf output pulse length, $0.2 \mu_{\text {sec }}$
Pulse 2 (pulse applied to oscillator): positive or negative pulses, 4 to 40 v peak; no rf output during off time; minimum rf output pulse length, $1 \mu \mathrm{sec}$.
Power: 115 or 230 volts $\pm 10 \%, 50$ to $1000 \mathrm{cps}, 215$ watts.
Dimenslans: cabinet: $131 / 2^{\prime \prime}$ wide, $161 / 2^{\prime \prime}$ high, $211 / 2^{\prime \prime}$ deep ($34 j \mathrm{x}$ $419 \times 546 \mathrm{~mm}$) : rack mount: $19^{\prime \prime}$ wide, $13-31 / 32^{\prime \prime}$ high, $20 \frac{1 / 4 " ~}{4 \prime \prime}$ deep behind panel ($483 \times 355 \times 5!4 \mathrm{~mm}$).
Weight: net $57 \mathrm{lbs}(25,5 \mathrm{~kg})$, shipping $68 \mathrm{lbs}(30,5 \mathrm{~kg})$ (cabinet); net $57 \mathrm{lbs}(25.5 \mathrm{~kg}$), shipping 83 lbs ($37,5 \mathrm{~kg}$) (rack mount).
Accessorles avaliable: 11500A RF Cable Assembly, 515 : 10503A Video Cable Assembly, $\$ 6.50$: 360 B Low-Pass Filer (may be used where harmonic output must be reduced to a minimum, as in slotted line measurements), $\$ 60$.
Price: $h_{p} 612 \mathrm{~A}, 51400$ (cabinet) ; hp 61zAR, \$1420 (rack mount).

8614A, 8616A SIGNAL GENERATORS; 8614B, 8616B SIGNAL SOURCES

Stable, easy to use, cover 800 to $\mathbf{4 5 0 0} \mathrm{mc}$

Advantages:

High frequency accuracy, digital dial
Precision attenuator, digital dial
Amplitude modulation capability and automatic power leveling in the signal generators
Compact, only $51 / 4^{\prime \prime}(133 \mathrm{~mm})$ high

Use to measure:

Receiver sensitivity
Standing wave ratios
Transmission line characteristics
Conversion gain
The hp 8614A and 8616A Signal Generators are easy-touse instruments which provide stable, accurate signals from 800 to $2400 \mathrm{mc}(8614 \mathrm{~A}$) and from 1800 to 4500 mc (8616 A). Both frequency and attenuation are set on direct. reading digital dials, while function is easily selected by pushbuttons. Selectable functions include cw, leveled output, square-wave modulation, and external amplitude, pulse or frequency modulation. Aroplitade, frequency and squarewave modulation can be accomplished simultaneously with or without leveling.

Two outputs

Two if power outputs are simultaneously available from separate front-panel connectors. One provides at least 10
mw (2 mw abore 3000 mc) or a leveled output from 0 to -127 dbm . The leveled output is bat within $\pm 0.5 \mathrm{db}$ (8614 A) or $\pm 0.8 \mathrm{db}$ (8616 A) across the respective bands with no resetting of the attenuator or power monitor.

The second output is at least 0.5 mw across the band and is independent of attenvator setting. This signal can be used for phase locking the signal generators when extreme stability is desired, or it can be monitored with a frequency counter for extrerne frequency resolution. In any case, the second output can be utilized without adversely affecting the primary output.

Modulation capabilities

A unique PIN diode modulator permits amplitude modulation from dc to 1 mc or furnishes rf pulses with a $2 \mu \mathrm{sec}$ rise time. This broad modulation bandwidth permits remote control of output level or precise leveling usiog extemal equipment. The internal leveling is also obtained by using a PIN modulator.

When up to one watt output is required above 1 gc , the $\mathrm{hp}_{\mathrm{p}} 489 \mathrm{~A}(1$ to 2 gc) or hp 491 C (2 to 4 gc) Microwave Amplifers (see page 202) serve as ideal power boosters. The hp 8731 and 8732 Series PIN Modulators, driven by the hp 8403A Modulator (see pages 190 and 191), also are available for use with the signal generators when a sophisticated high-speed, low-jitter modulation system is required.

Signal Sources

The hp 8614 B and 8616 B retain the convenience of the " A " models. Functions are selected by pushbuttons, and frequency and attenuarion are set on digital dials. Although the signal sources do not have power monitors or internal PIN diode modulation, relative power measurements can be made, using the precision attenuator. Modulation capabilities include internal square-wave modulation, plus external pulse and frequency modulation. For added convenience, a friction clutch arrangement permits setting the attenuator dial to any suitable reference while outpur power is held constant. Thus the attenuator can be calibrated directly in dbm or insertion loss.

The versatility of the $h p 8614 \mathrm{~B}$ and 8616 B makes them suitable for both laboratory and general-purpose measurements. Indeed, these signal sources can be used in many applications previously requiring signal generators.

Simplined block diagram of ho 8614A and 8616A Signal Generators. The dashed line shows the leveling control circult.

Specifications

Frequency range: 8614 A and $8614 \mathrm{~B}, 800$ to 2400 mc ; 8616 A and $8616 \mathrm{~B}, 1800$ to 4500 mc .
Leveled output: constant within $\pm 0.5 \mathrm{db}$ (8614 A) and $\pm 0.8 \mathrm{db}$ (8616 A) across entire frequency range at any attenuator setting below 0 db ; output power can be adjusted from the normal calibrated level with the Automatic Level Control; not available with 8614 B and 8616B.
Frequency calibration accuracy: $8614 \mathrm{~A}, \pm 5 \mathrm{mc} ; 8614 \mathrm{~B}$, $\pm 5 \mathrm{mc}$ or $\pm 0.5 \%$, whichever is greater; $8616 \mathrm{~A}, \pm 10$ $\mathrm{mc} ; 8616 \mathrm{~B}, \pm 10 \mathrm{mc}$.
Vernler: $\triangle \mathrm{F}$ control has a minimum range of 1.5 mc for fine tuning.

Frequency stability

WIth temperature: approximately $0.005 \% /{ }^{\circ} \mathrm{C}$ change in ambient temperature.
With llne voltage: less than 0.003% change for line volt. age variation of $\pm 10 \%$.
Residual FM: 8614A and 8616A, less than 2500 cps peak; 8614 B , less than 0.0003% peak; 8616 B , less than 6 kc peak.

RF output power

$8614 \mathrm{~A}:+10 \mathrm{dbm}(10 \mathrm{mw})$ to $-127 \mathrm{dbm}(0.1 \mu \mathrm{v})$ into a $50-0 h m$ load; output attenuator dial directly calibrated in dbm from 0 to -127 dbm .
8614B: at least 15 mw max., controlled by attenuatoc.
$8626 \mathrm{~A}:+10 \mathrm{dbm}(10 \mathrm{mw})$ to $-127 \mathrm{dbm}(0.1 \mu \mathrm{~V})$ into a soobm load, 1800 to $3000 \mathrm{mc} ;+3 \mathrm{dbm}$ (2 $\mathrm{mw})$ to $-127 \mathrm{dbm}\left(0.1 \mu^{\mathrm{V}}\right)$ into a 50 -ohm load, 3000 to 4500 mc ; output attenuator directly calibrated in dbm from 0 to -127 dbm .
86168 ; at least 15 mw maximum, 1800 to 3000 mc ; at Jeasi 3 mw maximum, 3000 to 4500 mc ; controlled by attenuator,
All models: a second, uncalibrated of output (approximately 0.5 mw) is provided on the front panel.
RF output power accuracy (with respect to attenuator dial)
8614A: $\pm 0.75 \mathrm{db}+$ attenuator accuracy from 0 to -127 dbm , including leveled output variations.
8616A: $\pm 1 \mathrm{db}+$ attenuator accuracy from 0 to -127 dbm , including leveled output variations.

Attenuator accuracy

8614A: $+0,-3 \mathrm{db}$ from 0 to -10 dbm .
8616A: $+0,-1 \mathrm{db}$ from 0 to -10 dbm .
All models: $\pm 0.2 \mathrm{db} \pm 0.06 \mathrm{db} / 10 \mathrm{db}$ from -10 dbm to -127 dbm ; direct-reading linear dial, 0.2 db in. crements.

Internal impedanca: 50 ohms nominal.
SWR: 8614A, less than $2 ; 8614 \mathrm{~B}$, less than $1.5 ; 8616 \mathrm{~A}$, less than $2 ; 8616 \mathrm{~B}$, less than 1.7 .

Modulation

Internal square wave: 950 to 1050 cps .
Square-wave sync: square wave can be synchronized with a +1 to +10 volt signal applied to the Pulse input.
External AM (8614A and 8616A only): dc to 1 mc .
Incidental FM (8614A and 8616A oniy): negligible for power levels below - 10 dbm .
External pulse:
8614A and 8616A: 50 cps to $50 \mathrm{kc}, 2 \mu \mathrm{sec}$ rise time, +20 to +100 volts input.
86148 and 86168 (below 4000 mc) : 50 cps to 500 kc ; +25 to +50 volts peak inpur; minimum rf pulse width, 300 nsec; rf rise time, typically 200 nsec .
External FM: (a) front-panel connector capacitively coupled to klystron repeller; input impedance, 220 K shunted by approximately 300 pf ; (b) rear-panel connector is de-coupled to the klystron repeller.
Power: 115 or 230 volts $\pm 10 \%, 50$ to 60 cps , approximately 125 watts.
Dlmensions: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep (426 x $141 \times 467 \mathrm{~mm}$); hardware furnished for conversion to rack mount $19^{\prime \prime}$ wide, $5.7 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panel ($483 \times 133 \times 416 \mathrm{~mm}$).
Weight: 8614 A and 8616 A : net $48 \mathrm{lbs}(2 \mathrm{l}, 6 \mathrm{~kg})$, shipping $53 \mathrm{lbs}(23,9 \mathrm{~kg}) ; 8614 \mathrm{~B}$ and 8616 B : net 37 Jbs ($16,7 \mathrm{~kg}$), shipping $42 \mathrm{lbs}(18,9 \mathrm{~kg})$.
Price: hp 8614A, $\$ 2100$; hp 8614B, \$1450; hp 8616 A , $\$ 2100 ; \mathrm{hp} 8616 \mathrm{~B}, \$ 1450$.
Option 01.: External modulation input connectors on rear panel in parallel with front-panel connectors; if con. nectors on rear panel only; add $\$ 25$.

8730 PIN MODULATORS, 8403A MODULATORS
 Versatile modulation

8730 PIN Modulators

The Hewlett-Packard 8730 Series PIN Modulators in-
 and sources by providing increased modulation capability. With PIN modulators, signal sources, including klystrons, can be pulse modulated, leveled or amplitude modulated with sinusoidal and complex waveforms. Incidental FM is virtually eliminated, because modulation is accomplished by absorption of rf power, independent of the signal source, with a nearly constant match presented to both the source and load. Thus, the source can operate continuously at its optimum output level. Extremely fast rise times, typically 30 nsec , also result from the absorption type of modulation, which sidesteps the bandwidth limitations imposed by the high-Q of output circuits.

The 8730 PIN Modulators cover the coaxial range from 0.8 to 12.4 gc in four overlapping bands, in addition to X -band in waveguide. Troo models are available within each band: an " A " model, which provides at least 35 db of attenuation range, and a " B " model, which provides at least 80 db .

Physically, the PIN modulator comprises a number of PIN diodes mounted as shunt elements across a transmission line. Since PIN diodes have appreciable storage time, they do not rectify at signal frequencies above 100 mc . However, when a de forward bias is applied, the diodes conduct, and their resistance goes down. Thus, the diodes act as low-reactance, variable resistors shunting the ransmission line. Their resistance and the degree of attenuation of an rf signal are functions of the modulating current. However, due to the storage time of the diodes, specially shaped modulation signals must be applied to realize the fast if rise and decay times of which the PIN modulators are capable. The hp Model 8403A Modulator is specifically designed to supply these modulation signals.

8403A Modulator

The Model 8403A provides complete control of the PIN modulators, supplying the appropriate modulation wave shapes and bias levels for fast rise times, rated on/off ratios and amplitude modulation. An internal square-wave and pulse modulator, which can be synchronized with ex. ternal signals, has a free-running prifrom 50 cps to 50 kc . In the pulse-modulation mode borh pulse width and pulse delay are adjustable from 0.1 to $100 \mu \mathrm{sec}$, and jitter with respect to the sync pulse and pulse width is less than 1 nsec. An external AM input permits remote control of attenuation or sinusoidal modulation from dc to 10 mc .

The Model 8403A also provides square wave and pulses for general pulse applications. Repetition rate, delay and jitter are the same as above. The output signal has an amplitude of 25 to 30 volts.

For situations requiring an absorption-type modulator complete with controls in a single unit, a PIN modulator can be installed in the Model 8403A. This combination is fully portable and convenient for bench use.

Specifications, 8403A

Output characteristics

AM and pulse output for driving 8730 PIN Modulators: pulse output specially shaped for optimum of rise and decay times.
Pulse output for general pulse applications: positive dccoupled pulse 25 to 30 volts in amplitude, approximately symmetrical about 0 volt; no AM signal.
Output signals available concurrently from separate frontpanel connectors.

Internal modulation

Square wave
Frequency: continuously variable from 50 cps to 50 $\mathrm{kc}, 3$ decade ranges.
Symmetry: better than $45 / 55 \%$.
Pulse
Repetition rate: continuously variable from 50 cps to $50 \mathrm{kc}, 3$ decade ranges.
Delay: continuously variable from $0.1 \mu \mathrm{sec}$ to $100 \mu \mathrm{sec}$, in 3 decade ranges, between sync out pulse and if output pulse.
Width: continuously variable from $0.1 \mu \mathrm{sec}$ to $100 \mu \mathrm{sec}$ in 3 decade ranges.
Maximum duty cycle: see graph.

External sync

Amplitude: 5 volts to 15 volts peak.
Waveform: pulse or sine wave.
Polarly: either positive or negative.
input impedance: approx. 2000 ohms, dc-coupled.
Rate: subject to internal recovery time considerations; see graph.
Trigger out
Syne out: 0.1 to $100 \mu \mathrm{sec}$ in advance of output pulse, as set by "Delay" control.
Delayed sync out: simultaneous with output pulse.
Amplitude: approximately -2 volts.
Source Impedance: approximately 330 obms.

External modulation

Pulse input
Amplitude and polarlty: 5 volts to 15 volts peak, either positive or negative.
Repetition rate: maximum average prf, $1 \mathrm{mc} / \mathrm{sec}$; maximum peak prf, $2 \mathrm{mc} / \mathrm{sec}$.
Input Impedance: approx. 2000 ohms, dc-coupled.
Minimum width: $0.1 \mu \mathrm{sec}$.

Maximum width: $\frac{1}{\text { prf }}-0.4 \mu \mathrm{sec}$.

Continuous amplitude modulation

Maximum frequency: 10 mc , sinusoidal.
Sensitivity: approximately $10 \mathrm{db} /$ volt with hp 8730 A Series, approximately $20 \mathrm{db} /$ volt with hp 8730 B Series.
Input Impedance: approximately 1000 ohms.
Level control: AM input is dc-coupled, permitting control by bias of AM input; rear-panel control for use with ac-coupled modulation.

General

Power: 115 or 230 volts $\pm 10 \%, 50$ to 1000 cps , ap. proximately 10 watts.

Dimensions: $163 / 4^{\prime \prime}$ wide, $33 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ($425 x$ $96 \times 467 \mathrm{~mm}$); hardware furnished for conversion to rack mount $19^{\prime \prime}$ wide, $3-15 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep be. hind panel ($483 \times 88 \times 416 \mathrm{~mm}$).
Welght: net $141 / 2 \mathrm{lbs}(6,5 \mathrm{~kg}$); shipping $20 \mathrm{lbs}(9 \mathrm{~kg})$. Price: hp 8403A, \$700.

Options

1. hp 8731 A PIN Modulator installed, add $\$ 350$.
2. hp 8731B PIN Modulator installed, add $\$ 550$.
3. hp 8732A PIN Modulator installed, add $\$ 350$.
4. hp 8732 P PIN Modulator installed, add $\$ 550$.
5. hp 8733A PIN Modulator installed, add $\$ 350$.
6. hp 8733B PIN Modulator installed, add $\$ 550$.
7. hp 8734 A PIN Modulator installed, add $\$ 350$.
8. hp 8734B PIN Modulator installed, add $\$ 550$.

Specifications, 8730 Series

hp Modid	8731A	8731B	8732A	8732 B	8733A	8733 B	8734A	87348	8735A	87358
Frequency range (ge)	0.8-2.4	0.8-2.4	1.8-4.5	1.8-4.5	3.7-8.3	3.7-8.3	7.0-12.4	7.0-12.4	8.2-12.4	8,2-12.4
Dynamic range (db)	35	80	35	80	35	80	35	80	35	80
$\begin{aligned} & \text { Min. insertion } \\ & \text { loss (db)] } \\ & \hline \end{aligned}$	<1.5	<2.0	<2.0	<3.52	<2.0	<3.0	<4.0	<5.0	<4.0	<5.0
Typical rise (ime (nsec) ${ }^{3}$	40	30	40	30	30	30	30	30	30	30
Typical decay time (nsec)	30	20	30	20	20	20	20	20	20	20
SWR, min. attenuation	1.5	1.6	1.5	1.64	1.8	2.0	1.8	2.0	1.7	1.9
SWR, max. attenuation	1.8	2.0	1.8	2.0	2.0	2.2	2.0	2.2	2.0	2.2
Maximum input power, Deak or cw (watls)	1	1	1	1	1	1	,	1	1	1
Bias limits (volis) ${ }^{5}$	+20, -10	$\underline{+20,-10}$	+20,-10	+20, -10	$+20,-10$	+20. -10	+20, -10	+20, -10	+20. -10	+20, - 10
Typical forward bias input resistance (ohims) 6	300	100	300	100	300	100	300	100	300	100
RF connector type	N	N	N	N	N	N	N	N	W/67	W/G7
Weight, net $\begin{array}{l}\text { (lbs) } \\ (\mathrm{kg})\end{array}$	$\begin{aligned} & \hline 23 / 4 \\ & 1,2 \\ & \hline \end{aligned}$	$\begin{aligned} & 51 / 2 \\ & 2,5 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 / 1 \\ & 1,2 \\ & \hline \end{aligned}$	$\begin{aligned} & 51 / 2 \\ & 2,5 \\ & \hline \end{aligned}$	$\begin{gathered} 2 \\ 0,9 \end{gathered}$	$\begin{gathered} 3 \\ 1,6 \\ \hline \end{gathered}$	$\begin{array}{r} 2 \\ 0.9 \\ \hline \end{array}$	$\begin{gathered} 3 \\ 1,4 \\ \hline \end{gathered}$	$\begin{aligned} & 2 \\ & 0,9 \end{aligned}$	$\begin{gathered} 3 \\ 1,4 \end{gathered}$
shipping $\left.\begin{array}{c}(\mathrm{lbs}) \\ (\mathrm{kg})\end{array}\right)$	$\begin{gathered} 4 \\ 1,8 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 3,2 \end{gathered}$	$\begin{aligned} & 4 \\ & 1,8 \end{aligned}$	$\begin{gathered} 7 \\ 3,2 \end{gathered}$	$\begin{aligned} & 3 \\ & 1,4 \end{aligned}$	$\begin{aligned} & 4 \\ & 1,8 \end{aligned}$	$\begin{gathered} 3 \\ 1,4 \end{gathered}$	$\begin{gathered} 4 \\ 1,8 \end{gathered}$	$\begin{aligned} & 3 \\ & 1,4 \end{aligned}$	$\begin{gathered} 4 \\ 1,8 \end{gathered}$
$\substack{\text { Dimensions } \\ \text { Length }}$ (in) (mm) (im)	$\begin{aligned} & 111 / 8 / 8 \\ & 283 \end{aligned}$	$\begin{aligned} & 111 / 8 / 8 \\ & 289 \end{aligned}$	$\begin{aligned} & 111 / 3 \\ & 283 \end{aligned}$	$\begin{aligned} & 113 / 23 / 2 \\ & 289 \\ & \hline \end{aligned}$	$\begin{gathered} 83 / 6 \\ 213 \end{gathered}$	311	$\begin{array}{r} 83 / 8 \\ 213 \\ \hline \end{array}$	$\begin{aligned} & 12114 \\ & 311 \end{aligned}$	$\begin{gathered} 83 / 4 \\ 171 \end{gathered}$	$\begin{aligned} & 101 / 25 \\ & 267 \end{aligned}$
Width(in) (mm)	$\begin{aligned} & \hline 31 / 4 \\ & 83 \end{aligned}$	$\begin{aligned} & 41 / 8 \\ & 124 \end{aligned}$	$\begin{aligned} & 31 / 4 \\ & 83 \\ & \hline \end{aligned}$	$\begin{gathered} 41 / 8 \\ 124 \end{gathered}$	$\begin{aligned} & 31 / 4 \\ & 83 \\ & \hline \end{aligned}$	$\begin{aligned} & 31 / 4 \\ & 83 \end{aligned}$	$\begin{aligned} & 31 / 4 \\ & 83 \end{aligned}$	$\begin{aligned} & 31 / 4 \\ & 83 \end{aligned}$	$\begin{aligned} & 31 / 4 \\ & 83 \\ & 83 \end{aligned}$	$\begin{aligned} & 31 / 4 \\ & 83 \end{aligned}$
Height (in) (mm)	$\begin{aligned} & 21 / 2 \\ & 57 \end{aligned}$	$\begin{aligned} & 21 / 4 \\ & 57 \\ & \hline \end{aligned}$	$\begin{aligned} & 21 / 4 \\ & 57 \end{aligned}$	$\begin{aligned} & 21 / 4 \\ & 57 \end{aligned}$	$\begin{aligned} & 21 / 4 \\ & 57 \\ & \hline \end{aligned}$	$\begin{aligned} & 21 / 6 \\ & 57 \end{aligned}$	$\begin{aligned} & 21 / 4 \\ & 57 \\ & \hline \end{aligned}$	$\begin{aligned} & 21 / 4 \\ & 57 \\ & \hline \end{aligned}$	$\begin{aligned} & 21 / 3 \\ & 57 \end{aligned}$	$\begin{aligned} & 21 / 4 \\ & 57 \end{aligned}$
Price	\$300	\$500	\$300	\$500	$\$ 300$	\$500	\$300	\$500	\$300	\$500

' +5 y blas
1 4.0. 4.0 to 4.5 gC

- Drlven by ho 8403 A modulator
- $2.0,4.0$ to 4.5 gc

Negative voltage applles forward blas to diodes (increases attenuation)
b At attenuatlon levels of 10 db or more
, Fits $1 \times 1 / 2$ in. (WR 90) wavegulde

DY-2650A OSCILLATOR SYNCHRONIZER DY-2654A FREQUENCY STANDARD SYNCHRONIZER

Generate highly stabilized microwave signals

Dymec synchronizers permit absolute control of frequency by phase locking a klystron oscillator to a crystal reference, achieving essentially the stability of the references. The synchronizer introduces no frequency error. Instruments will stabilize most reflex klystrons, 1 to 12.4 gc , with complete elimination of klystron long-term deift and minimization of all incidental FM caused by klystron noise, power supply ripple and mechanical shock. Sideband noise is typically 70 db down measured in any 1 kc band from 3 kc to beyond 100 kc from the desired output frequency. Theory of operation of the DY-2650A is detailed on page 160; the DY-2654A operation involves similar principles.

The DY-2650A incorporates an internal crystal reference to achieve stability of 1 part in 10^{*} per second, 1 part in 10^{*} per week. Temperature stability is 1 part in 10^{6} from 0 to $50^{\circ} \mathrm{C}$. The standard instrument stabilizes frequencies from 1 to 12.4 gc . Standard modifications are available to extend frequency coverage from 0.1 to 15 gc and to cover specified frequency ranges to 40 gc . The synchronizer samples less than 0 dbm of the klystron power. Additional capabilities of the DY. 2650A permit FM to be applied to a klystron oscillator with deviations up to 500 ke at rates to 50 kc . A front-panel control permits manual roning of the klystron frequency over a 2 mc
range. The instrument may also be used to monitor a microwave signal frequency and provide an output for measurement by an electronic counter or frequency meter. The synchronizer samples less than 0 dbm of the klystron power.

The DY-2654A is similar to the DY-2650A, but phase-locks to an external 5 me frequency standard such as hp 104AR and hp 107AR,BR Quartz Oscillators (pages 100, 101). Stability is essentially equal to that of the standard. In the case of the $107 \mathrm{AR}, \mathrm{BR}$, short-term (1 second) stability is better than 2 parts in 10^{11}; 24 -hour stability is 5 parts in 10^{10}. Frequency lock points are available at 60 mc intervals through the 1 to 12.4 gc range.

Both the DY-2650A and DY-2654A are available as individual instruments to be coupled by the user with a klystron, power supply and, if applicable, 5 me quartz oscillator. They are also available as complete, fully specified frequency generation systems. A choice of klystrons is available for these systems, covering all or part of the 8.2 to 12.4 gc range, at output powers from 30 to 500 mw . Data sheets are avaitable on the DY-2041A System (incorporating the DY.2650A, hp_{p} 716B Klystron Power Supply and DY.2655A Klystron Signa) Source) and DY-2042A (incorporating DY-2694A, hp 716B, DY-265SA and hp 107BR).

Specifications, DY-2650A

Input frequency: 1 to 12.4 gc .
Stablity (using Internal crystal): $1 / 10^{8}$ per second, $1 / 10^{9}$ per week (over $\pm 3^{\circ} \mathrm{C}$), $1 / 10^{\circ}$ over range 0 to $50^{\circ} \mathrm{C}$.
Output clrcultry: suirable for connection to klystron reflector; float. ing and insulated up to 2000 vdc ; a phase lag network provides optimum characteristics for matching klystron sensitivities to $4 \mathrm{mc} / \mathrm{v}$.
Input power: 0 dbm at 12.4 gc ; less at lower frequencies; maximum power input, +20 dbm .
RF reference: internal: provided by internal quartz crystal, 100 mc standard, others on special order; extemal: 100 to $400 \mathrm{mc}, 2$ volts into 50 ohros.
IF reference: intermal: quartz crystal $10 \mathrm{mc} \pm 0.001 \%$ of VFO runable 29 to 31 mc by front-panel control ; external: 29 mc to 31 $\mathrm{mc}, 0.5 \mathrm{v}$ into 56 K , also 10 mc or 15 mc at higher levels.

Power: 115 or 230 volts $\pm 10 \%, 50$ to $1000 \mathrm{cps}, 85$ watts.
Dimensions: $163 / 4^{\prime \prime}$ wide, $51 / 4^{\prime \prime}$ high, $163 /$ 月 " deep behiad panel $^{\prime \prime}$ ($425 \times 133 \times 416 \mathrm{~mm}$) ; hardware furnished converts unit to $19^{\prime \prime}$ wide rack mount.
Weight: net 21 lbs ($9,5 \mathrm{~kg}$) : shipping 35 lbs ($15,9 \mathrm{~kg}$).
Price: DY.2650A, $\$ 1450$ (supplied wich 100 me nf reference crystal; with special order crystal, \$1480).

Specifications, DY-2654A
 (Same as DY-2650A except)

Stabillty: equal to external oscillator (with ho 107AR, BR, 2/1011 rms averaged over $1 \mathrm{sec}, \mathrm{S} / 10^{10}$ per 24 hours).
RF reference, IF reference: taken from quartz oscillator.
Price: DY-2654A, $\$ 1750$.

614A, 616B UHF SIGNAL GENERATORS

Direct reading, direct control, 800 to 4200 mc

Ease of operation, direct-reading one-dial frequency control, high stability and accuracy and broad frequency coverage are all advantages of these widely used signal generators.

The 614 A covers frequencies from 800 to 2100 mc , has constant internal impedance with less than 1.6 swr , and output accuracy of $\pm 1 \mathrm{db}$ over the range of -10 dbm to -127 dbm . The 616 B gives complete coverage of frequencies from 1.8 to 4.2 gc , has constant internal impedance with less than 1.8 swr , and output accuracy of $\pm 1.5 \mathrm{db}$ from -7 dbm to -127 dbm .

On both instmuments, operation is extremely simple. Carrier frequency is ser and read directly on the lacge runing dial. No voltage adjustments are necessary during operation because of the coupling device which causes oscillator repeller voltage to track irequency changes automatically. Oscil-
lator output is set and read directly on a simplified dial. Output may be continuous or pulsed, or frequency modulated at power line frequency. Pulse modulation may be provided externally or internally. Internal pulsing may be synchronized with either positive or negative external pulses, or sine waves.

The oscillator portion of both the $614 A$ and 6168 consists of a reflex klystron in an external coaxial resonator. Frequency of oscillation is determined by a movable plunger which varies the resonant frequency of the resonator. Oscillator output is monitored by a temperature-compensated thermistor bridge circuit which is virtually unaffected by ambient temperature conditions. Voltage output is read directly. A logging scale on the frequency dial provides a resettability of 0.1%.

614A

Specifications

Frequency range: $614 \mathrm{~A}, 800$ to $2100 \mathrm{mc} ; 616 \mathrm{~B}, 1800$ to 4200 mc .
Frequency accuracy: $\pm 1 \%$.
Frequency stability: $0.005 \% /{ }^{\circ} \mathrm{C}$ change in ambient temperature; line voltage changes of $\pm 10 \%$ cause less than 0.01% frequency change.
Output power range (into $50 \cdot \mathrm{ohm}$ load) : 614A, 0.5 mw or 0.158 volt to $0.1 \mu \mathrm{v}(-3$ to $-127 \mathrm{dbm})$ from 800 to $900 \mathrm{me}, 1 \mathrm{mw}$ or 0.224 volt to $0.1 \mu \mathrm{v}$ (0 to -127 dbm) from 900 to 2100 mc ; 616B, 1 raw or 0.224 volt to $0.1 \mu v$ (0 to -127 dbm).
Power aceuracy (at the end of 6 ft output cable, terminated in $50.0 h m$ load): 6144 , within $\pm 1 \mathrm{db}$ from -10 to -127 dbm : 616 B , within $\pm 1.5 \mathrm{db}$ from $\rightarrow 7$ to -127 dbm .
Internal impedance: 614A, 50 ohms, swi less than $1.6 ; 616 \mathrm{~B}$, $\$ 0$ ohms, swr less than 1.8.
Modulation: interoal or external puise or FM.
Internal pulse modulation: pulse repetition rate variable from 40 to 4000 per sec; pulse length variable from 1 to $10 \mu \mathrm{sec}$; delay variable from 3 to $300 \mu s e c$ between synchronizing signal and rf pulse.
External pulse modulation: by external pulses, ± 40 to $\pm 70 v, 1$ to 2500μ sec wide; may be square-wave modulated, 40 to 4000 eps .

Trigger pulses out: (1) simultaneous with rif pulse; (2) in advance of rf pulse, variable from 3 to 300 usec (both approximately 1 $\mu \mathrm{sec}$ rise time, amplitude +10 to +50 volts)
External synchronization: pulses, ± 10 to ± 50 volts, 1 to $20 \mu \mathrm{sec}$ wide; may also be synchronized with sine waves.
Frequency modulation: oscillator sweeps at power line frequency; deviation and phase adjustable; maximum deviation approx. 3 mc .
Power: 115 or 230 volts $\pm 10 \%, 50$ to 1000 cps , approx, 160 warts.
Dimensions: cabinet: $171 /$ " wide, $^{\prime 2} 3 / 8^{\prime \prime}$ high, $131 / 2^{\prime \prime}$ deep ($438 x$ $346 \times 343 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $13-31 / 32^{\prime \prime}$ bigh, $121 / 8^{\prime \prime}$ deep behind panel ($483 \times 355 \times 308 \mathrm{~mm}$).
Weight: net 59 lbs ($26,5 \mathrm{~kg}$) ; shipping $72 \mathrm{lbs}(32,4 \mathrm{~kg})$
Accessory furnlshed: 11500A RF Cable Assembly.
Accessories available: $614 \mathrm{~A}: 360 \mathrm{C}$ Low-Pass Filter, $f_{s}=2200$ me, $\$ 50$; 10503 A Video Cable Assembly, $\$ 6.50$; 616B: S281A Waveguide-to-Coax Adapter, 2.6 to $3.95 \mathrm{gc}, \$ 50$; G281A Wave-quide-to Coax Adapter, 3.95 to $5.85 \mathrm{gc}, \$ 40 ; 360 \mathrm{D}$ Low-Pass Filter, $f_{0}=4.1 \mathrm{gc}, \$ 50 ; 10503 \mathrm{~A}$ Video Cable Assembly, $\$ 6.50$.
Price: hp 614A or hp 616B, $\$ 1950$ (cabinet); hp 614AR or hp 616BR, $\$ 1970$ (rack mount).

618B, 620A SHF SIGNAL GENERATORS

Multiple-purpose signal generators for measurements 3.8 to 11 gc

Advantages:

Direct-reading frequency dial
Direct-reading output in voltage or dbm
Internal FM, cw, pulsed or square-wave modulation
Broadband coverage
Wide frequency range
High stability, high accuracy

Use to measure:

Receiver seasitivity
Selectivity or rejection
Signal-to-noise ratio
Antenna gain
Transmission line characteristics

Hewlett-Packard 6188 and 620A SHF Signal Generators bring the simple yet versatile operation and the varied pulsing capabilities of hp uhf signal generators to the 3.8 to 11 gc frequency range.

These generators offer internal or external pulse modulation, internal square-wave modulation and FM. The pulse repetition rate is continuously variable from 40 to 4000 pps , and pulse width is variable from 0.5 to 10 microseconds. Sync out signals are simultaneous with the rf pulse, or in advance of the cf pulse by any time span from 3 to 300 microseconds. The instruments may be symchronized with an external sine wave or with positive or negative pulse signals.

Sawtooth sweep

For internal frequency modulation, both the 618 B and 620 A have a sawtooth voltage variable from 40 to 4000 cps , providing a variable frequency deviation. For external FM, the instruments provide capacitive coupling to the repeller of the klystron oscilsator. Deviation is approximately 2.5 mc .

Both generators maintain the same high standards of accuracy found in hp whf and uhf signal generators. Both also feature the same simple operation, Carrier frequency is set and read directly on the large central tuning dial. (Calibration of this dial is linear.) No voltage adjustments are necessary during operation because of an hp-developed coupling device which causes oscillator repeller voltage to track frequency changes automatically. RF output also is set and read directly; no calibration charts are needed for either voltage or frequency control or determination. A logging scale on the frequency dial permits you to reset frequencies within 0.1%.

Reflex klystron oscillator

The 618B and 620A Generators both feature oscillators of the reBex klystron rype, with extemal resonant cavity. Oscillator fsequency is determined by a movable plunger
which varies the length of the cavity. Oscillator output is monitored by a temperature-compensated thermistor bridge circuit. This circuit operates virtually unaffected by ambient temperature conditions. Identical piston attenuators couple power to the monitor and output terminal. The power monitor attenuator is linked to the output attenuator cursor to compensate for klystron output variation as frequency is changed.

Models 618B and 620A are designed to be the most broadly useful, accurate and dependable signal generators available in their frequency ranges. Their high stability, broad frequency coverage, precision accuracy and varied pulsing capabilities make them ideal for virtually all measurements requiring precisely known and controllable shf signals. They are sturdily built of the best components, many parts being specially manufactured for or by Hewlett-Packard. Circuitry is clean and accessible. The generators are designed for years of dependable service with little or po maintenance.

Specifications
 hp 618B

Frequency range: 3.8 to 7.6 gc covered in a single band; repeller voltage automatically tracked and proper mode automatically selected.

Callbration: direct reading; frequency calibration accuracy better than 1%.

Frequency stability: frequency variation less than 0.006% per degree centigrade change in ambient temperature; line voltage change of $\pm 10 \%$ causes less than 0.02% frequency change.

Output range: 1 milliwatt or 0.223 volt to 0.1 microvolc (0 dbm to -127 dbm) into 50 ohms; directly calibrated in microvolts and db (coaxial Type N connector).

Output accuracy: within $\pm 2 \mathrm{db}-7 \mathrm{dbm}$ to -127 dbm , within $\pm 3 \mathrm{db} 0$ to -7 dbm at the end of 6 foot output cable, terminated in $50-\mathrm{hm}$ load.

Internal impedance: 50 ohms nominal, swr less than 2.
Modulation; internal or external pulse, FM, square wave.
Internal pulse modulation: repetition rate variable from 40 to 4000 pps , pulse width variable 0.5 to $10 \mu \mathrm{sec}$.

Sync out signals: (1) simultaneous with if pulse-positive; (2) in advance of rf pulse-positive, variable 3 to 300 $\mu \mathrm{sec}$; (better than I $\mu \mathrm{sec}$ rise time and 25 to 100 volts amplitude into 1000 -ohm load).

External synchronization: (1) sine wave: 40 to 4000 cps , amplitude s to 50 volts rms; (2) pulse signals: 0 to 4000 PPs and 5 to 50 volts amplitude, both positive and negative, pulse width 0.5 to $5 \mu \mathrm{sec}$, sise time 0.1 to 1 $\mu \mathrm{sec}$.

Internal square-wave modulation: variable 40 to 4000 cps , controlled by "pulse rate" control.
Internal frequency modulation: sawtooth sweep rate adjustable between 40 and 4000 cps ; maximum frequency deviation approximately 2.5 mc over most of the band.
External pulse modulation: pulse requirements: amplitude from 20 to 70 volts positive or negative, width 0.5 to $2500 \mu \mathrm{sec}$.
External frequency modulation: provides capacitive coupling to repeller of klystron; maximum deviation approximately 2.5 mc over most of the band.
Power: 115 or $230 \mathrm{v} \pm 10 \%, 50$ to $60 \mathrm{cps}, 250$ watts.
Dimensions: cabinet: $171 / 2^{\prime \prime}$ wide, $14^{\prime \prime}$ high, $191 / 2^{\prime \prime}$ deep ($445 \times 353 \times 496 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $14^{\prime \prime}$ high, $173 / 8^{\prime \prime}$ deep behind panel ($483 \times 356 \times 441 \mathrm{~mm}$).
Waight: net $94 \mathrm{lbs}(42,5 \mathrm{~kg})$; shipping $120 \mathrm{lbs}(54 \mathrm{~kg})$.
Accessorles furnished: 11500 A Cable Assembly.

Accessories avallable: 10503 A Video Cable Assembly, $\$ 6.50 ; 11001$ A Cable Assembly, $\$ 5.50$.

Price: hp 618B, \$2250 (cabinet); hp 618BR, $\$ 2270$ (rack mount).

Specifications
 hp 620A

(Same as hp 618B except as follows)
Frequency range: 7 to 11 gc covered in a single band; repeller voltage automatically tracked and proper mode automatically selected.

Output accuracy: within $\pm 2 \mathrm{db}$ from -7 dbm to -127 dbm ; within $\pm 3 \mathrm{db}$ from 0 to -7 dbm , at pancl connector, terminated in $50-0 h m$ load.

Price: $h_{p} 620 A, \$ 2250$ (cabinet); hp 620AR, $\$ 2270$ (rack mount).

626A, 628A SHF SIGNAL GENERATORS

Direct reading, high power, 10 to $15.5 \mathrm{gc}, 15$ to 21 gc

Advantages:

Direct-reading frequency control
Direct-reading output control
10 mw output over full range
CW, FM or pulse modulation
Internal square-wave modulation
Broad pulsing capabilities
Low internal swr
High stability
Operate to 40 gc with hp 938, 940 Frequency Doubler Sets

Use to measure:

Receiver sensitivity
Selectivity or rejection
Signal-to-noise ratio
Transmission line characteristics

Here are two hp signal generators which extend the measuring versatility, convenience and accuracy of hp vhi signal generators to 21 gc . The 626A covers frequencies 10 to 15.5 gc , and the 628A covers frequencies is to 21 gc . In design and operation, the instruments are similar to hp generators for lower frequency ranges. Operation is very simple. Carcier frequency is set and read directly on the large tuning dial. No voltage adjustment is necessary during tuning because repeller voltage is tracked with frequency changes automatically. Oscillator output also is set and read directly, and no frequency correction is necessary throughout operating range. A frequency logging scale permits frequency to be reset within 0.1%.

The high power output of these signal generators make them ideally suited for driving hp 938A and 940A Frequency Doubler Sets (18 to 26.5 gc and 26.5 to 40 gc respectively). These doubler sets (see page 198) recain the modulation and stability of the driving source and have accurate power monitors and attenuators.

Versatile modulation

Both the 626A and 628A offer internal and external pulse modulation, as well as internal square-wave modulation and FM. Pulse repetition rate is continuously variable from 40 to 4000 pps , and pulse width is variable from 0.5 to $10 \mu \mathrm{sec}$. Sync out signals are simultaneous with the rf pulse, or in advance of the if puise by any time span from 3 to $300 \mu \mathrm{sec}$. The pulse generators may be synchronized with an external sine wave and also with positive or negative pulse signals.

For internal FM, both instruments feature a sine wave sweep at power line frequency. Frequency deviation is variable up to $\pm 5 \mathrm{mc}$. For external FM , the generators have capacitive coupling to the klystron oscillator repeiler.

Figure 1 shows the basic circuits of the hp signal generators. The seflex klystron oscillator is tuned by a plunger driven by the direct-reading frequency dial and control. Repeller voltage is automatically tracked, so that correct operating potentials are maintained over the entire frequency range. Klystron output is introduced into a power monitoring meter. The directional coupler provides uniform coupling over the entire frequency range. A rotary attenuator which follows the coupler assures high accuracy and stability, because the attenuation is governed by a precise

Figure 1. Basic circult, ho 626A, 628A.
mathematical law related to the angular rotation of the attenuator. The conductivity of the attenuating film does not affect the attenuation; thus, the output of the generator is independent of humidity, temperature or the effect of longterm aging. The attenuator also provides low swr over the complete frequency range. On both hp 626A and 628A, the output connector is waveguide. Adapters furnished permit the instruments to be connected to WR-42, WR-62 or WR. 90 waveguide. Thus, the generators can be employed with all EIA (RETMA) and JAN guides suitable for the 10 to 21 gc range.

Specifications

Frequency range: $626 \mathrm{~A}, 10$ to $15.5 \mathrm{gc} ; 628 \mathrm{~A}, 15$ to 21 gc . Frequency callbratlon: dial direct reading in gigacycles; accuracy better than $\pm 1 \%$.
Output range: 10 mw to $1 \mathrm{pw}(+10 \mathrm{dbm}$ to -90 dbm , $0 \mathrm{dbm}=1 \mathrm{mw}$); attenuator dial directly calibrated in outpuk dbm; swe less than 2.5 at $+10 \mathrm{dbm}, 1.2$ at 0 dbm and lower.
Output monitor accuracy: better than $\pm 1 \mathrm{db}$.
Output attenuator accuracy: better than $\pm 2 \%$ of attenuation in db introduced by output attenuator.

628A

Leakage: less than minimum calibrated signal generator output.
Modulation: internal or external pulsed, FM, of squarewave.

Internal pulse modulation: repetition rate variable from 40 to 4000 pps ; pulse width variable 0.5 to $10 \mu \mathrm{sec}$.
internal square-wave modulation: variable 40 to 4000 cps controlled by "pulse rate" control.
Internal frequency modufation: power line frequency, deviation up to $\pm 5 \mathrm{mc}$.

External pulse modulation: pulse requirements: amplitude 15 to 70 volts peak positive or negative; width 1 to $2500 \mu \mathrm{sec}$.

External frequency modulation; provided by capacitive coupling to repeller of klystron; maximum deviation approximately $\pm 5 \mathrm{mc}$.
Sync out signals: positive 20 to 50 volts peak into 1000 ohm load; better than $1 \mu \mathrm{sec}$ rise time; (1) simultaneous with rf pulse; (2) in advance of if pulse, variable 3 to $300 \mu \mathrm{sec}$.

External synchronlzation: (1) sine wave, 40 to 4000 cps , amplitude 5 to 50 volts rms; (2) pulse signals 0 to 4000 PPs, 5 to 50 volts amplitude, positive or negative; pulse width 0.5 to $5 \mu \mathrm{sec}$; rise time $1 \mu \mathrm{sec}$ or less.
Power. 115 or 230 volts $\pm 10 \%, 50$ to 60 cps , approx. 200 watts.
Dimenslons: cabinet: $17^{\prime \prime}$ wide, $14^{\prime \prime}$ high, $15^{\prime \prime}$ deep ($432 \times$ $356 \times 381 \mathrm{~mm})$; rack mount: $19^{\prime \prime}$ wide, $14^{\prime \prime}$ high, $12-13 / 16^{\prime \prime}$ deep behind panel ($483 \times 356 \times 313 \mathrm{~mm}$).
Weight $626 \mathrm{~A}, \mathrm{AR}$: net $65 \mathrm{lbs}(29,3 \mathrm{~kg})$, shipping 74 lbs $(33,3 \mathrm{~kg}) ; 628 \mathrm{~A}, \mathrm{AR}:$ net $63 \mathrm{lbs}(28,4 \mathrm{~kg})$, shipping 71 3bs (32 kg).
Accessories furnlshed: 626A (a) MX 292B Waveguide Adapter, WR-75-to-WR-90 guide; (b) MP 2928 Wave. guide Adapter, WR-75-to-WR-62 guide; 628A (a) NP 292A Waveguide Adapter, WR-51-to-WR-62 guide; (b) NK 292A Waveguide Adapter, WR-51-to-WR-42 guide.
Accessorles avallable; 10503A Video Cable Assembly, $\$ 6.50$; for 626A: M362A Low-Pass Filter, $\$ 350$; for 628A: N362A Low-Pass Filter, $\$ 350$.
Price: hp 626A or 628A, $\$ 3400$ (cabinet); hp 626AR or 628AR, $\$ 3420$ (rack mount).

938A, 940A FREQUENCY DOUBLER SETS

Generate stable signals to 40 gc with these precision instruments

Hewlert-Packard Model 938A and Model 940A Frequency Doubler Sers bring you low-cost signal-generation capability in K - and R-bands (18 to 40 gc). Model 938A supplies power from 18 to 26.5 gc when it is driven by a 9 to 13.25 gc source; Model 940A supplies power from 26.5 to 40 gc when it is driven by a 13.25 to 20 gc source.

These frequency doubler sers consist of broadband crystal harmonic generators suitably mounted in a waveguide section, a power monitor, a broad stopband low-pass filter and a precision attenuator. They may be driven by klystrons, by signal generators, such as hp Models 626A and 628A (pages 196, 197) or by sweep oscillators such as hp Models 694A, 694B and 695A (pages 199.201).

Since Model 938A and Model 940A are broadband instruments, the input signal may be cw , pulsed or swept. Thus, the frequency doubler sets retain all the versatility of the driving source.

Output monitor

Models 938A and 940A have power monitors and pre. cision rotary-vane attenuators for accurately setting output
level over a range from 0 to -100 db . Output power depends on input power and is typically 0.5 to 1 mw when a $626 \mathrm{~A}, 628 \mathrm{~A}, 694 \mathrm{~A}, \mathrm{~B}$ or 695 A is used as a driving source. Further, since Models 938A and 940A contain a power monitor, output power is known even though an uncalibrated signal source is used.

Signal generator or swept-frequency operation

Models 938A and 940A have the same output versatility as the driving source. For instance, if you drive Model 938A with Model 626A you may have cw output, pulsemodulated output with a repetition rate from 40 to 4000 pps, square-wave modulated output with modulation frequencies from 40 to 4000 cps , or 60 cps (power line frequency) FM output. In addition, pulsed ourput may be synchronized with external signals or output may be exrernally pulse or frequency modulared.
To obtain a swept-frequency output, you simply drive the frequency doubler set from a swept-frequency source such as Model 694A, 694B or 695A.

Specifications

Frequency range: $938 \mathrm{~A}, 18$ to 26.5 gc ; 940A, 26.5 to 40 gc.
Conversion loss: less than 18 db at 10 mw input.
Output power: depends on input power supplied; approx. 0.5-1 mw when used with typical 626A, 628A Signal Generators.
Input power requlred: 10 mw design center.
Maximum input power: 100 mw .
Output monltor accuracy: $\pm 2 \mathrm{db}$.
Output attenuator accuracy: $\pm 2 \%$ of reading or $\pm 0.2 \mathrm{db}$, whichever is greater.
Attenuator range: 100 db .
Output swr: approximately 2 at full output; less than 1.5 with attenuator set to 10 db or more attenuation.
Input flange: 938A, M-band flat cover flange for WR. 75 waveguide: 940A, N-band flat cover flange for WR-S1 waveguide.
Output flange: 938A, UG.995/U flat cover flange for WR-42 waveguide (K-band); 940A, UG.599/U flat cover flange for WR. 28 waveguide (R-band).

Dimenslons: cabiner: $191 / 4^{\prime \prime}$ wide, $53 / 8^{\prime \prime}$ high, $18^{\prime \prime}$ deep ($489 \times$ $137 \times 457 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide. $5.7 / 32^{\prime \prime}$ high, $161 / 2^{\prime \prime}$ deep behind panel ($483 \times 133 \times 419 \mathrm{~mm}$).
Welght: net 20 lbs (9 kg); shipping $35 \mathrm{lbs}(15,8 \mathrm{~kg}$).
Accessorles avallable: 938A, X281A Waveguide-to.Coax Adapter, 8.2 to $12.4 \mathrm{gc}, \mathrm{s} 25$; MX292B and MP292B Wave-guide-to-Waveguide Adapters, $\$ 40$ each (1 each furnished with 626A): 11504A X-band Flexible Waveguide, \$35; 11503A P.band Flexible Waveguide, 48; 940A, MP292B and NP292A Waveguide-to-Waveguide Adapters, 840 each (1 each furnished with 628A); 11503A P-band Flexible Waveguide, $\$ 48$.
Complementary equipment: 938A, 626A Signal Generator; 694A,B and 695A Sweep Oscillators. 940A, 626A and 628A Signal Generators; 695A Sweep Oscillator.
Price: hp 938A or hp 940A, $\$ 1700$ (cabinet) : hp 938AR or hp 940AR, $\$ 1720$ (rack mount).

690 SWEEP OSCILLATORS

Today's most convenient, versatile sweep oscillators

Advantages:

High fexibility with three automatic sweeps, two broadband, one narrow-band
PIN diode attenuator for $A M$ and leveling in " B " models
Reduced oscilloscope and $x-y$ recorder set up time

Uses:

Combined broad, narrow range testing
Source of leveled microwave power
The Hewlett-Packard 690 Sweep Oscillators are today's most advanced sweepers. Incorporating performance and operating characteristics proved to be desirable in literally thousands of swept-frequency measurements, they combine many unique features which make them the most flexible and most accurate sweep oscillators available. Inexperienced personncl can operate the instruments with ease; the front panel is straightforward, and no combination of front-panel controls can cause damage.

Model designations

Two model designations are used in the 690 Series. The " A " models, covering 1 to 40 gc , use conventional BWO grid modulation and meet the requirements of most types of measurements. The " B " models cover the 1 to 12.4 gc range and include PIN diode attenuators which permit all of the amplitude-modulation functions, including leveling, to be performed independent of the BWO tube. The result
is the virtual elimination of frequency pulling, which, in torn, results in extremely high frequency accuracy and linearity and very low incidental FM. Thus the 690B units meet the demands of the most exacting applications.

Sweep functions and markers

All 690 Sweep Oscillators provide a broadband "StartStop" sweep whose end points can be set anywhere in the band with independent controls. Thus, the units can sweep up or down, depending only on the setting of the start frequency with respect to the stop frequency.

Two independent frequency markers, set on separate digital dials and direct reading in $g c$, can be positioned anywhere in the band. The markers amplitude-modulate the of output, providing triangular markers sharp enough to give high resolution on narrow sweeps, yet broad enough to be quite visible on the widest sweeps. Marker amplitude can be adjusted from the front panel.

The markers can be used as end points for a second broadband sweep. This sweep starts at the Marker 1 frequency and ends at the Marker 2 frequency. Thus, the 690's have two independently adjustable broadband sweeps, providing a high degree of fexibility.

These sweep oscillators also provide a calibrated narrowband sweep, the ΔF sweep. which is symmetrical about a center frequency. Calibrated directly in me, $\triangle F$ sweep width is continuously adjustable from zero to 10% of the band. The frequency markers can be applied to the $\triangle \mathrm{F}$ sweep, as well as the Start-Stop sweep.

Sweep modes

Recurrent, triggered and manual sweeps are available. Recurrent and triggered sweep times are adjustable from 0.01 to 100 seconds, and the recurcent sweeps can be synchronized with the power line frequency, effectively eliminating residual FM. To enhance the clarity of oscilloscope presentations, if power is blanked during retrace to produce a zero baseline; however, rf power is restored before the start of the sweep to eliminate transients. Blanking can be disabled with a rear-panel switch. For $x-y$ recorder presentation, an automatic pen-lift circuit is provided.

On manual sweeps, a front-panel control varies if frequency between the limits set on the selected sweep function. With the use of the manual sweep, x - y recorder set-up time is reduced to seconds.

Leveling

All 690 Sweep Oscillators can be leveled extemally, and the lower frequency units can be leveled internally, as well. External closed-loop leveling is accomplished by driving the built-in leveling amplifier with a signal detected at the system point where constant power is desired. This technique has the advantage of eliminating transmission variations with frequency between the oscillator and the test point. Power variation using extemal leveling is primarily determined by coupler and detector variation. The detector can be either a power meter or crystal detector.

The internally leveled units (available under Option 01.) are useful in less critical applications where transmission variations between oscillator and test point are not significant or a package free from external elements is desired. The power level control, which has a 30 db range when the if output is unleveled, becomes a level set control during leveled operation with a range of at least 10 db in " B " models and 6 db in " A " models.

Modulation

All modulation functions are selected by pushbutton. Included is internal square-wave modulation, with a range of 950 to 1050 cps , plus external AM and FM. External FM permits frequency programming, including externally controlled sweeps over all or any part of the band.

Specifications, all models

Sweep functlons

Start-Stop sweep: sweeps from "Start" to "Stop" frequency setting; range: both settings continuously and independently adjustable over entire frequency range; can be set to sweep either up or down in frequency; end-point accuracy: same as frequency accuracy.
Marker sweep: sweeps from "Marker 1" to "Marker 2" frequency setting; range: both settings continuously and independently adjustable over entire frequency range, can be set to sweep either up or down in frequency; end-point accuracy: same as frequency accuracy.
$\triangle F$ sweep: sweeps upward in frequency, centered on cw setting; width: continuously adjustable from 0 to 10% of frequency band, calibrated directly in mac; width accuracy: $\pm 10 \%$ of $\triangle \mathrm{F}$ being swept $\pm 1 \%$ of maximum $\triangle F(\pm 20 \% \pm 2 \%$ respectively for $691 A$ and 691B) ; center-frequency accuracy: same as frequency accuracy.

Frequency markers; two frequency markers, independently adjustable over the entire frequency range, amplitude modulate the rf output; amplitude is adjustable from the front pariel; the markers are also available for external use; accuracy: same as frequency accuracy; resolution: better than 0.05% at any frequency; marker output: triangular pulse, typically -5 v peak into 1000 ohm load.
CW operation: single-frequency of output selected by StartStop or Maxker 1 control, depending upon sweep function selected; accuracy: same as frequency accuracy; preset frequencies: Start-Stop sweep end points and marker frequencies can be used as 4 preset cw frequencies.
Residual AM: at least 40 db below CW output.
Spurlous signals: harmonics, at least 20 db below cw output; non-harmonics, at least 40 db below cw output.

Swoep mode

Auto: sweep recurs automatically.
Manual: front-panel control provides continuous manual adjustment of frequency between end frequencies set in any of the above sweep functions.
Triggered: sweep is actuated by front-panel pushbutton or by externally applied signal $<-25 \mathrm{v}$ peak, >1 $\mu \mathrm{sec}$ pulse width, and $>0.1 \mathrm{v} / \mu \mathrm{sec}$ rise.
Sweep time: continuousiy adjustable in 4 decade ranges, 0.01 to 100 seconds; can be synchronized with the power line frequency.
Sweep Indicator: front-panel indicator lights during the sweep to provide indication of sweep duration on slower sweep times.
Sweep output direct-coupled sawtooth, 0 to approximately +15 v , concurrent with swept if output; 0 at start of the sweep, approximately +15 v at the end of the sweep regardless of sweep width or direction; source impedance, 10,000 ohms.
Reference output: direct-coupled voltage proportional to rf frequency, approximately +4 v at the low end of the band, approximately +70 v at the high end; output impedance, 2000 ohms.
Frequency linearityt: sarde as frequency accuracy.
Blanking: if automatically turned off during retrace, tumed on after completion of retrace; on automatic sweeps, if is on long enough before sweep stacts to stabilize external circuits and equipment whose response is compatible with the selected sweep rate; blanking disable switch provided; blanking automatically disabled for power meter leveling.
Pen Ilft: for use with x - y graphic recorders; pen lift terminals shorted dusing sweep, open Juring retrace.
Power varlation, unleveled: $<10 \mathrm{db}$ over the entire band.
Power levellng amplifier: internal dc-coupled leveling ampliGer provided.
Crystal input: approximately -20 to -350 mv for specified leveling at rated output, for use with negativepolarity detectors such as 780 Series Directional Detectors (pages 238, 239), 423A and 424A Series Cryscal Detectors (page 235).
Power mater Input: 1000 -ohm input resistance and amplifier characteristics matched to recorder output characteristics of 431 Power Meters (pages 220, 221).
t Correlation between frequency and either the sweep or reference output.

Leveling Indicator: front-panel light fashes when power level set too high to permit leveling over entire selected sweep range.
Equlvalent source match: externally leveled: depends upon coupler; anleveled: <2.5:1.

Modulation

Internal AM: square-wave modulation continuously adjustable from 950 to 1050 Cps on all sweep times; on/off ratio greater than 20 db at rated output.
External AM
Frequency response: de to 350 kc unleveled; dc to 50 kc leveled.
Sensitivity: -10∇ reduces off output level at least 30 db below rated cw output.
Input Impedance: approximately 1000 ohms.

External FM

Frequency response: dc to 20 kc .
Sensitivity: deviation from cw setting approximately 3% of the frequency band per volt.
Maximum range: full band for modulation frequencies up to 150 cps (approx. $35 \mathrm{v} \mathrm{p}-\mathrm{p}$ input), decreases to about 1% of the band for 20 kc modulation.
input Impedance: approximately 100,000 ohms.

General

Power: 115 or 230 volts $\pm 10 \%$, 50 to 60 cps , approx. 350 watts.
Dimensions: $163 / 4^{\prime \prime}$ wide, $9^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep (426 x $229 \times 467 \mathrm{~mm}$) ; hardware furnished for rack mount $19^{\prime \prime}$ wide, $8-23 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panal ($483 \times 221 \times 416 \mathrm{~mm}$).
Weight, net $75 \mathrm{lbs}(34 \mathrm{~kg})$; shipping $97 \mathrm{lbs}(43,5 \mathrm{~kg})$.
External leveling accessorles avallabla
Directional detectors: 780 Series (pages 238, 239), 1 to $12.4 \mathrm{gc}, \$ 300$ to $\$ 350$.
Dleectlonal couplers: coaxial: 790 Series (pages 238 ; 239), 1 to $8 \mathrm{gc}, \$ 200$ to $\$ 225$; waveguide: 752 Series (pages 236,237), 2.6 to $40 \mathrm{gc}, \$ 125$ to $\$ 450$.
Crystal detectors: coaxial: 423A (page 235), 10 mc to $12.4 \mathrm{gc}, \$ 125$; waveguide: 424A Series (page 235), 2.6 to $18 \mathrm{gc}, \$ 135$ to $\$ 250$ and 422 A (page 235). 18 to $40 \mathrm{gc}, \$ 250$.
Power moter: 431B (pages 220, 221), $\$ 450$.
Thermistor mounts: coaxial: 478A (page 221), 10 mc to $10 \mathrm{gc}, \$ 155$; waveguide: 486A Series (page 221), 2.6 to $40 \mathrm{gc}, \$ 145$ to $\$ 375$.

Specifications, 690 Series

hp Mosel	Fraquemoy range	Frequanoy nexirney	Malanm lavaled powir	Frequmnoy stablitiv				Dowor varti1lon, ariernal Savaling*	Orput 3mpadance	Output 00name ter	Prias	Optan 03. lateranal bovoilina			$\begin{aligned} & \text { option } \\ & \text { ox qif } \\ & \text { ourlpot } \\ & \text { on roar } \\ & \text { panol } \\ & \hline \text { Priton } \end{aligned}$
					Wlith 10% Chnage m lins vollay	Wht 10 db poiver covel ohsuge	Realdual FM								
				$\begin{gathered} \text { wilf } \\ \substack{\text { coanfora. } \\ \text { furn }} \end{gathered}$								Fown virlo allon	tyuly14.5es mistoh	Prkas	
691 A	1102 gc	$\pm 1 \%$	$\geq 100 \mathrm{mw}$	=0.01\% $/{ }^{\circ} \mathrm{C}$	$\pm 1 \mathrm{mc}$	$=20 \mathrm{mc}$	< 30 xc peak	$\pm 0.2 \mathrm{db}$	50 ohms	Type N	\$3200	$\pm 0.6 \mathrm{db}$	1.13:1	\$325	\$15
6918	1 to 2 gc	$\pm 10 \mathrm{mc}$	$\geq 60 \mathrm{nW}$	$\pm 0.01 \% /{ }^{\circ} \mathrm{C}$	$=1 \mathrm{mc}$	-500 kc	<30 ke pesk	-0.1 db	50 ohms	Type M	\$3550	$=0.3 \mathrm{db}$	1.13:1	525	115
692A	$2 \mathrm{to4gc}$	$\pm 1 \%$	$\geq 70 \mathrm{mw}$	$\pm 0.01 \% /{ }^{\circ} \mathrm{C}$	+1 mic	$=40 \mathrm{mc}$	$<30 \mathrm{ks} \mathrm{peak}$	$-0.2 \mathrm{db}$	50 ohms	Type N	23000	x 0.4 db	1.16:1	\$325	515
H01-692A	1.7104 .2 gc	- 17	$\geq 30 \mathrm{mw}$	$\pm 0.01 \% /{ }^{\circ} \mathrm{C}$	-1 me	$=40 \mathrm{mc}$	<30 ke peak	$=0.200$	50 ohms	Type N	\$3300	± 0.50	1.16:1	\$325	515
6928	2104 gc	$\pm 10 \mathrm{mc}$	$\geq 40 \mathrm{~mm}$	$\pm 0.01 \% /{ }^{\circ} \mathrm{C}$	-1 me	$\pm 500 \mathrm{kc}$	$<30 \mathrm{kc}$ peak	± 0.180	50 ohms	Type N	\$3350	$\pm 0.36 \mathrm{~b}$	1.15:1	\$325	\$15
H01-6928	1.7 to 4.2 gc	$\pm 13 \mathrm{mc}$	$\geq 15 \mathrm{mw}$	$\pm 0.01 \% /{ }^{\circ} \mathrm{C}$	- 1 mc	$\pm 500 \mathrm{kc}$	<30 he peak	-0.1 db	50 ohms	Type N	\$3650	$\pm 0.4 \mathrm{db}$	1.16:1	5375	\$15
693A	4 to 8 gc	※1\%	$\geq 20 \mathrm{mw}$	$\pm 0.01 \% /{ }^{\circ} \mathrm{C}$	- 2 mc	- 50 mc	< 50 kc peak	$=0,2 \mathrm{db}$	50 ohms	Type N	\$3000	$=0.5 \mathrm{db}$	1.25:1	5350	$\$ 15$
H01-6933	3.700 .3 gc	* 18	$\geq 10 \mathrm{~mm}$	$\pm 0.01 \% /{ }^{\circ} \mathrm{C}$	- 2 mc	- 50 mc	< 50 kc peak	- 0.2 db	50 ohms	Type N	\$3300	$\pm 0.5 \mathrm{db}$	1.25:1	\$350	\$15
693日	40088 c	$\pm 20 \mathrm{mc}$	$\geq 15 \mathrm{~mm}$	$\sim 0.01 \% /{ }^{\circ} \mathrm{C}$	$\pm 2 \mathrm{mc}$	$\pm 1 \mathrm{mc}$	< 50 kc posk	± 0.180	50 ohms	Type N	\$3350	$\pm 0.4 \mathrm{dt}$	125:1	\$350	515
H01-6938	3.7 to 8.3 sc	$\pm 25 \mathrm{mc}$	$\geq 5 \mathrm{~mm}$	- $0.01 \% /{ }^{\circ} \mathrm{C}$	- 2 mc	m1 mc	< 50 kc poak	$-0.1 \mathrm{db}$	50 ohms	Typa N	53650	$\pm 0.4 \mathrm{db}$	1.25:1	\$350	515
694A	8 to 12.4 sc	- 1%	$\geq 20 \mathrm{~mm}$	- $0.01 \% /{ }^{\circ} \mathrm{C}$	= 2 mc	$\pm 50 \mathrm{mc}$	< 50 kc peak	-0.2 db	50 ohms	Type N	83100	$\pm 0.7 \mathrm{db}$	$1.25: 1$	3575	\$15
H01-694A	7 to 12.4 gc	$\pm 1 \%$	$\geq 10 \mathrm{~mm}$	= $0.01 \% /{ }^{\circ} \mathrm{C}$	+2mc	- 50 mc	< 50 kc pesk	$\pm 0.2 \mathrm{do}$	50 ohms	Type N	\$3400	-1 db	2:1	1400	\$15
6948	81012.4 gt	$\pm 30 \mathrm{mc}$	$\geq 10 \mathrm{~mm}$	$\pm 0.01 \% /{ }^{\circ} \mathrm{C}$	- 2 me	- 1 mc	< 50 kc peah	$=0.1 \mathrm{db}$	50 ohms	Typt N	\$3450	$\pm 0.6 \mathrm{db}$	125:1	\$375	\$15
H01-6948	7 to 12.4 gc	$=40 \mathrm{mc}$	$\geq 5 \mathrm{mw}$	$=0.01 \% /{ }^{\circ} \mathrm{C}$	-2 mc	-) mc	< 50 xc pe8k	$\pm 0 . \mathrm{dbb}$	50 ohms	Type N	\$3750	$\pm 1 \mathrm{db}$	2:1	\$400	115

hp Moded	685a	8884	e. 74
Frequency range	12.4 to 18 gc	18 to 26.5 4 c	26.51040 gc
Frequancy accuracy (over a 6 du range)	$\pm 1 \%$	- 1%	- 1%
Maximum leveled power	$\geq 40 \mathrm{mw}$	$\geq 10 \mathrm{mw}$	$\geq 5 \mathrm{mw}$
$\frac{\text { Frequency stability }}{\text { With temperature }}$	$\pm 0.015 /{ }^{\circ} \mathrm{O}$	$=0,01 \% /{ }^{\circ} \mathrm{C}$	-0.01\% $/{ }^{\circ} \mathrm{C}$
With 10% change in line voltage	$=10 \mathrm{mc}$	$\pm 15 \mathrm{mc}$	me20 mic
Residual $5 M$	$<150 \mathrm{kc}$	$<200 \mathrm{kc}$	<350 kc
Power variation, oxternal loveling*	± 0.2 db	$\pm 0.2 \mathrm{db}$	$\pm 0.2 \mathrm{db}$
Output connector	UG-AI9JU	UG*595/U	UG. 599/U
Price	hp 685A. $\mathbf{3 5 0 0}$	ho 696A, 14500	hp 697A, 5800

*Excluding couplas and datector variation.

489A-495A TRAVELING-WAVE TUBE AMPLIFIERS

Broadband, high-gain, high:power amplification, 1 to 12.4 gc

Advantages:

DC-coupled modulation circuitry allows power leveling and semote programming PPM focusing means fewer alignment problems

Uses:

Antenna efficiency and pattern measurements
Extends attenuation measuring systems capability by at least 30 db

Amplification of frequencies from 1 to 12.4 gc is accomplished in four ranges by the Hewlett-Packard microwave amplifiers. Each delivers at least 1 watt with an input of 1 mw or less, a gain of at least 30 db .

Amplitude modulation circuitry has been designed for wide bandwidth (down to dc) and with internal amplification, so that small modulation signals cause a large output power change. This unique modulation circuitry also per-
mits power leveling with external elements, plus remote programming. Spurious phase modulation of 0.1° or less and residual $A M$ at least 45 db below carrier are assured by regulation of the filament, anode and helix power supplies. TWT cathode current is monitored by a front-panel meter and can be controlled by the Gain adjustment for rated power output, or for reducing tube current to extend tube life when full output power is not required. Helix, collector and anode current can be measured at an easily accessible test point board.

Periodic permanent magnet focusing reduces weight, size and power consumption and at the same time alleviates alignment problems. Protective features incorporated to prevent TWI failure include an overload relay on the helix power supply, a three-minute time delay on the beam supply and a fail-safe circuit that disconnects ac power whenever the regulated filament supply voltage exceeds a predetermined level.

Speciflcations

	489A	4916	498A	485A
Frequency range (gc)	1-2	$2-4$	4-8	7-12.4
Pawer output (with 1 mm or less input)	1 w	I W	IW	1 w
Gain at razed output	30 db	30 do	30 db	30 db
Gain variation with freq. at rated output small signal across any 10% of band across fuil band	$\begin{aligned} & \leq 6 \mathrm{db} \\ & \leq 5 \mathrm{db} \\ & \leq 10 \mathrm{db} \end{aligned}$	$\begin{aligned} & \leq 6 \mathrm{db} \\ & \leq 5 \mathrm{db} \\ & \leq 10 \mathrm{db} \end{aligned}$	$\begin{aligned} & \leq 6 \mathrm{db} \\ & \leq 5 \mathrm{db} \\ & \leq 12 \mathrm{db} \\ & \hline \end{aligned}$	$\begin{aligned} & \leq 6 \mathrm{db} \\ & \leq 5 \mathrm{db} \\ & \leq 10 \mathrm{db} \end{aligned}$
Gain variation with $\pm 10 \%$ variation from rated line voltage	$\leq 1 \mathrm{db}$	$\leq 1 \mathrm{db}$	$\leq 1 \mathrm{db}$	$\leq 1 \mathrm{db}$
Noise max. noise fligure typ. noise dower out	$\begin{gathered} 30 \mathrm{db} \\ -10 \mathrm{dbm} \end{gathered}$	$\begin{gathered} 30 \mathrm{db} \\ -10 \mathrm{dbm} \end{gathered}$	$\begin{aligned} & 30 \mathrm{db} \\ & 0 \mathrm{dbm} \end{aligned}$	30 db 0 dbm
Price	\$2250	\$2250	\$2800	\$2600

For afl models
Maximum of input 100 mw .
input/output characteristics: impedance, 50 ohms; swr, 2.5 or less (cold) ; connectors, Type N female.

Amplitude modulation
Sensitivity: a signal - 20 volts peak or less at the modulation input reduces of output by more than 20 db . Frequancy response: dc to 100 kc (3 db). Input impedance: 100 K shunted by approx. 50 pf . Pulse response: $0.5 \mu \mathrm{sec}$ rise and fall times. Residual AM: at least 45 db below carrier.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep (426 x $141 \times 467 \mathrm{~mm}$); hardware fumished for conversion to cack mount $19^{\prime \prime}$ wide, $5.7 / 32^{\prime \prime}$ high, $163 / 8^{\prime \prime}$ deep behind panel ($483 \times 133 \times 416 \mathrm{~mm}$).
Weight: net $40 \mathrm{lbs}(18 \mathrm{~kg})$; shipping $46 \mathrm{lbs}(20,7 \mathrm{~kg})$.
Power 115 or 230 volts $\pm 10 \%$, 50 to 60 cps , approx. 225 watts.
Accessories avallablei 11500A Cable Assembly, \$15; 11501 A Cable Assembly, \$15.

623B, 624C, DY-5636 RF TEST SETS

For testing transmitters, receivers, communications systems

Advantages:

Direct reading of power, frequency
Stable, accurate input, output attenuators
Compact package for easy portability in field

Uses:

Measure receiver sensitivity, selectivity
Test transmitter timing, power level
Test complete communications, control, video relay, radar, beacon systems
Each of these Dymec instruments consists of a combination signal generator, frequency meter and power meter and permits measurement of receiver sensitivity and selectivity, transmitter tuning and power level. Each is easy to use, fast and accurate.

The 623B SHF Test Set is suitable for testing complete communications and video relay station equipment in the range 5925 to 7750 mc , using 3 klystrons. It can be frequency-modulated from an internal source or pulse-modulated from an external soucce, as can the DY-5636.

The DY. 5636 H -Band Test Set more than covers the entice government communications band, 7125 to 8400 mc , and offers higher power than the 623 B , permitting testing of receivers through directional couplers.

The 624C X-Band Test Set is designed for testing complete radar or fire control systems or radar beacon equipment. It covers the frequency range of 8500 to $10,000 \mathrm{mc}$. The 624 C can be frequency- or pulse-modulated from an internal or external source.

Specifications

Model	Frequenay range (ma)	$\begin{gathered} \text { Frequenoy } \\ \text { meter } \\ \text { range (ma) } \end{gathered}$	Output pow (dbm)	Output afterneatar range (dt)	Internal modulathon	External madalatian	Power measurament ranye (ew)	Panel helght	Prioe
623B	$\begin{aligned} & 5925.6575 \text { or } \\ & 6515.7175 \text { or } \\ & 7125.7750 \end{aligned}$	5820.7780	$\stackrel{0}{(1 \mathrm{mw})}$	70	FM, 1 kc	FM, pulse, square-wave, 30 cps 10100 kc	-6 to +3 dbm	$\begin{gathered} 111 / 2^{N} \\ (292 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \$ 2250 \\ \text { (transit case) } \end{gathered}$
DY-5636	7100.8500	7100.8500	$\begin{gathered} 15 \\ (30 \mathrm{mw}) \end{gathered}$	100	FM. 1 Kc	FM, pulse, square-wave, 30 cps to 100 kc	-6 to + 40 dbm	$\begin{gathered} 14^{\prime \prime} \\ (355 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \$ 3800 \\ \text { (transit case) } \end{gathered}$
624 C	8500-10,000	8500-10,000	$\stackrel{0}{(1 \mathrm{mw})}$	100	FM, power line frequency; pulse, 35 to 3500 pps	FM, pulse, square-wave, 35103500 cps	-6 to +28 dbm	$\begin{gathered} 101 / 2^{\prime \prime} \\ (266 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline \$ 2265 \text { (cabinet) } \\ \$ 2250 \\ \text { (rack mount) } \end{gathered}$

211 A CRYSTAL-MONITORED SIGNAL GENERATOR, 213A PHASE TEST SET
 Tests and calibrates aircraft VOR and ILS localizer receivers

211A Signal Generator

The Boonton 211A Signal Generator is specifically designed for the testing and calibrating of aircraft VOR and ILS localizer radio receiving equipment operating within the frequency range from 88 to 140 mc . It also may be used for laboratory and development work where a precision-type amplitude-modulated rf signal source is required.

A demodulator stage is included within the 211A Signal Generator which supplies to front-panel binding posts a portion of the demodulated sf carrier. This feacure permits checking the actual modulation process within the instrument and enables the identification of beat points by the use of earphones in standardizing the master oscillator against harmonies of the crystal frequencies,

Specifications, 211A

Radio frequency characteristics

RF range: master oscillator: 88 to 140 mc in one range; crystal oscillator: 110.1 and 114.9 mc .
RF output: range: $0.1 \mu^{\mathrm{v}}$ to 0.2 volts (across external 50 ohm load); impedance: 50 ohms; spurious output: all spurious of output voltages are better than 40 db below desired output.
Amplitude modulation characteristics: AM range, 0 to 100% in two ranges.
Physical characteristics
Dimenslons: 211A and 211AP1 (Power Supply): 191/2" wide, $101 / 2^{\prime \prime}$ high, $91 / 2^{\prime \prime}$ deep ($495 \times 267 \times 241 \mathrm{~mm}$).
Welght: net $63 \mathrm{lbs}(28,4 \mathrm{~kg})$; shjpping $86 \mathrm{lbs}(38,7 \mathrm{~kg})$.
Power, 105 to 125 volts, 50 to $60 \mathrm{cps}, 150$ watts.
Price: Boonton 211A, 211 AP1, $\$ 2190$.

213A Phase Test Set

The Boonton 213A Test Set was developed to provide a simple and precise method of measuring and adjusting overall phase shift in the 211A Crystal-Monitored Signal Generator. It is furnished complete with all interconnecting cables but requires the use of an auxiliary audio oscillator and oscilloscope.

Specifications, 213A

"30 Cycle Bridge" operation; sensitivity such that a phase shift of 1° can be made to produce at least $2^{\prime \prime}$ defection on the oscilloscope screen for modulation percentages of the 211 A of 30% or greater; self-calibrating for measurements of phase shift with a calibration error of less than 0.1° when the 1° "Bridge Calib" position is used.
"Direct" measurements: useful at any modulation frequency between 20 and $11,000 \mathrm{cps}$ (must be phased and have gain adjusted at each modulation freguency at which phase shift is checked).

Accessorles furnished: 5 cables, 3 ft . long, mating with microphone jacks on test set at one end and terminating in clip leads for 4 cables and a phone plug for one cable.

Dimensions: $71 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $51 / 4^{\prime \prime}$ deep ($174 \times 174 \times$ 133 mm).

Weight: net 11 lbs (5 kg); shipping $15 \mathrm{lbs} .(6,8 \mathrm{~kg}$).
Price: Boonton 213A, \$230.

232A GLIDE SLOPE SIGNAL GENERATOR

Tests and calibrates aircraft ILS glide slope receivers

Advantages:

Provides 20 crystal-controlled rf output frequencies and one crystal-controlled IF output frequency
Internal alternator driven by a synchronous motor modulates either the rf or IF generator simultaneously with 90 and 150 cps audio
Modulation depth resulting from each tone can be independently adjusted to equality, and relative levels subsequently varied
A 1000 cps audio oscillator included for general-purpose work
Conrinuously variable attenuator calibrated in microvolts controis outpur of the rf or IF generator
Demodulated output from the rf or IF generator available at front-panel terminals

Uses:

Calibrating, resting glide slope receivers used in aircraft instrument landing systems
Provides calibrated signals for measuring sensitivity, aligning ri and IF section of receiver
Measuring. calibrating sensitivity and centering of receiver system for indicating vertical course position of airplane
General study of receiver characteristics with 1000 cps modulated carriers

The FAA Instrument Landing System for aircraít includes a glide slope receiver for indicating the proper rate of descent. The glide slope signal generator 232 A was designed for use in testing and calibrating these glide slope receivers.

The Boonton 232 A includes two complete generators: an of generator and an IF generator. Each is capable of being modulated to a depth of 100% by self-contained modulation sources or by an external modulation source.

Both generators use a common carrier monitor merer to indicate output level and a per cent modulation meter to indicate per cenr modulation. The output of each generator is adjusted by a common knob and indicared in microvolts on a common attenuator dial. The rf generator supplies 20 crystal-controlled frequencies from 329.3 mc to 335 mc in 0.3 mc steps, and the IF generaror supplies one crystal-controlled frequency. The IF frequency is 20.7 mc but can be changed to other frequencies from is to 30 me by a change of crystals and internal adjustments. The power supply is internally regulated.
The glide slope receives in an aircraft receives two carriers of the same frequency: one is modulated with 90 cps audio, and the other is modulared with 150 cps audio. The airplane's position is indicated at the output of the receiver by the relarive levels of these two modulations. The if carrier from the 232A can be internally modulated with 90 and 150 cps audio simultaneously, and the relative amounts of modulation can be varied by a front-panel switch. This provides a test of the sensitivity and course correctness of the receiver under test.

Specifications

Radio frequency characteristics

RF range: (A) 329.3 to 335 mc in increments of 0.3 mc: (B) 20.7 mc ; other frequencies berween 15 and 30 mc available on special order.
RF accuracy: $\pm 0.0065 \%$ (crystal controlled).
RF output: range: $1 \mu v 100.2 \mathrm{~V}$ (across external 50 -ohm load) : accuracy: $\pm 10 \%$ approximately; impedance: 50 ohms.
RF leakage: sufficiently low to permit measurement at $1 \mu \mathrm{v}$.

Amplitude modulation characteristies

AM range: internal: 0 to 100% in nvo ranges; external: 0 to 100\% in two ranges.
AM calibration: incremients of $2 \%, 0$ to 50% : increments of $10 \%, 0$ to 100%.
Demodufated output: available at front-pane! posts through 2 $\mu \mathrm{f}$ capacitor.
Modusating oscillator characteristics
OSC frequency: (A) 1000 cps ; (B) 90 to 150 cps in the following tone ratios: 0 db . $\pm 0.5 \mathrm{db}, \pm 1 \mathrm{db}, \pm 2 \mathrm{db}, \pm 3.3 \mathrm{db}$, \pm infinite $d b$ (calibrate).
Accessories furnished: 505B Attenuator; 506B Patching Cable: 507B Adapter: 514B Output Cable.
Accessorles available: 5028 Patching Cable, $\$ 6.50 ; 504 \mathrm{~A}$ Adapter, \$3.75: 509B Atlenuator, $\$ 33$: 3108 Attenuator, 535.25 .
Physical characteristics
Mounting: cabinet for bench use ; when rennoved, suitable for 19" rack mounting.
Finish: gray wrinkle, engraved panel (other finishes available on special order).
Dimensions: $207 / 8^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $12^{\prime \prime}$ deep ($511 \times 267 \times$ 305 mm).
Weight: net $64 \mathrm{lbs}(28.8 \mathrm{~kg})$: shipping $75 \mathrm{lbs}(33,8 \mathrm{~kg})$.
Power: 105 to 125 vols. $60 \pm 1 \mathrm{cps}, 150$ warts.
Price: Boonton 232A, $\$ 2375$.

8925A DME/ATC TEST SET

Specifically designed for testing, calibrating DME and ATC transponder aircraft equipment

The Boonton 8925A DME/ATC Test Set is specifically designed for the testing and calibration of DME (Distance Measuring Equipment) and ATC (Air Traffic Control) transponder aircraft equipment. The test set is completely self-contained (except for video modulators) and consists of a continuously tuneable signal generator, direct-reading frequency counter, solid-state modulator, frequency meter, peak power measuring system and all necessary circuitry for interconnection to the radio set under test.

The basic test signal is generated by a Hewlett-Packard H01-8614A Signal Generator, which covers the range 962 to 1213 mc . The test frequency is indicated approximately on the front-panel dial of the signal generator and is simultaneously monitored and indicated on a solid-state hp 5245 L Electronic Counter, employing a s254A Frequency Converter. Frequency may be set to within 50 kc with the $\triangle f$ control on the H01-8614A. The rf output of the signal generator is auromatically leveled, eliminating the need to adjust the output level as frequency is varied, and the output attenuator is calibrated to read out directly the applied sig. nal level to the radio under test over the range from -10 to -100 dbm .

The cwoutput of the signal generator is modulated by a Hewlett-Packard H01-8403A Modulator employing PIN diodes as modulator elements. Pulsed video test signals simulating DME / ATC ground emission are fed to the modulator from either an external Collins Radio 578D-1 DME Bench Test Set modified for Gaussian pulse output or 578 X . 1 ATC Transponder Test Set. The modulator also incorporates complete provisions for side-lobe suppression measurements, in that the second pulse of a train of two or three pulses may be varied over the range $+\varepsilon$ to -10 db from the first pulse with a calibrated front-panel control. TACAN bearing information also may be simulated, employing an external audio frequency source.

The modulated rf output is fed into a Boonton 13505A Isolator-Monitor, which performs three separate functions. Isolation is provided for the high-power transmitter output of rhe radio set under test by a microwave circulator, protecting the signal generator and modulator. Auxiliary calibrated rf outputs are provided for operation of the frequency meter and peak power measuring system. A diode and a linear heterodyne monitor are provided for viewing the pulsed rf test signals on an external oscilloscope such as the hp 175A (pages 283, 284). Switching from the norma\} operating mode to the monitoring mode is simply accomplished by operating a front-panel control which activates an internal electrically-operated coaxial switch. A transmitter interlock is provided via rear terminals for de-energizing the DME/ATC transmirrer when the test set load is removed from the antenna of the radio set under test.

A Boonton 8905A Wavemerer provides direct measurement to $\pm 0.5 \mathrm{mc}$ of the ATC reply frequency over the range from 1070 to 1110 mc . Response of the self-powered transmission-rype wavemeter is directly indicated on a frontpanel meter.

A Boonton 89008 Peak Power Calibrator provides com-
plete facilities for measuring the peak power output of DME and ATC transmitters over the range from 10 to 2000 watts. In operation, an external oscilloscope is connected to the video output, the front-panel controls are adjusted by observing the oscilloscope display, and the peak power is read directly on the panel meter. The calibrator also incorporates a wideband detector for viewing transmitter wave. forms on an external oscilloscope. This output also provides a reply signal for DME distance measurements. The individual modules are mounted in an enclosed rack cabinet which includes a master power distribution system and forced air cooling. All necessary interconnecting cables are included.

Specifications

Radto frequency characteristics

RF range: 962 to 1213 mc .
RF accuracy: determined by ability to set to desired read. ing on counter.
RF settabillty: better than 100 kc .
RF stablity: temperature, approx. 0.005% per degree C; line voltage, $<0.003 \%$ ($\pm 10 \%$ line voltage change).
RF output
Range: -10 to -100 dbm across external 50 -ohm load at output jack.
Accuracy:

Attenuator setting	ATC $(1015$ to 1045 mc$)$	OME (962 to 1213 mc$)$
$-10 \mathrm{to}-17 \mathrm{dbm}$	$\pm 0.7101 .2 \mathrm{db}$	+1.1 to 1.6 db
-17 dbm	$\pm 0.6 \mathrm{db}$	$\pm 1 \mathrm{db}$
$-17 \mathrm{to}-100 \mathrm{dbm}$	$\pm(0.8+0.06$ per 10 db$) \mathrm{db}$	$\pm(1.2+0.06$ per 10 db$) \mathrm{db}$

Leveled output: (fixed atten. position) ATC, $\pm 0.2 \mathrm{db}$; DME, $\pm 0.6 \mathrm{db}$.
Impedance: 50 ohms.
VSWR: <1.35:1.

Pulse modulation characteristics

PM source: simulation of DME/ATC ground emission as provided by Collins $578 \mathrm{X}-1$ and 578D-1 (modified for Gaussian pulse) Test Sets.
PM rise time: ATC, >50 nsec and <100 nsec; DME, controlled by pulse source to meet "Pulse Shape" Spec., Sect. G, Appendix A, RTCA 167.59/DO.99.
PM fall time: ATC, >50 nsec and <200 nsec; DME, controlled by pulse source to meet "Pulse Shape" Spec., Sect. G, Appendix A, RTCA 167-59/DO-99.
PM overshoot: ATC, $<5 \%$; DME, not meaningful.
Sidelobe suppression: the second pulse of a train of 2 (or 3) pulses may be varied +1 to -10 db from the first pulse when its leading edge is $\geq_{2} \mu \mathrm{sec}$ from the first pulse leading edge; (see RTCA 181-61/DO-112, Appendix A, T-6, Steps $1,2,3,4,9,10$); calibrated SLS control accurate to $\pm 0.5 \mathrm{db}$.

Simulated bearing input: audio frequency input to BNC jack under TACAN button will simulate bearing mod. ulation to a depth of 55% max. (3.8 db above puise tips).
Power measurement characteristics
RF range: 962 to 1213 mc .
RF power range: 100 to 2000 watts peak (ARINC units); 10 to 200/200 to 2000 watts peak* (Gen. Aviation \& ARINC units) available as factory modification with accessory attenuator.
RF power accuracy: $\pm 1.2 \mathrm{db}$ ($\pm 0.6 \mathrm{db}$ from calibration curve).
Frequency measurement characteristics
RF range: 1070 to 1110 mc .
RF accuracy: $\pm 0.5 \mathrm{mc}$; direct meter indication for peak power 250 to 1000 watts; video output for external scope indication for input peak power down to approx. 10 watts.
Monitor characteristics
Signal generator monitor (Monitor-Sig Gen), heterodyne monitor (Het Mon):
Frequency range: 1018 to 1032 mc (for beating oscilla. ior $1025 \pm 1 \mathrm{mc}$).
Output levei: 0.5 volts peak minimum at -10 dbm of level (at IF center frequency).
Load impedance: 150 ohms nominal.
Bandwidth: 9 mc nominal (equivalent low-pass bandwidth 4 mc).
Linearity: $\pm 0.5 \mathrm{db}(-10$ to -20 dbm of level).
Dlade monitor (Diode Mon):
Frequency range: 962 to 1213 mc . Output level: 0.1 v peak min. at -10 dbm sf level. Low-pass bandwidth: s me nominal.

Transmifter Monitor (Monitor-Xmer)

Output level: approx. 0.2 v peak for 200 watrs peak input (100 to 2000 watts peak power range); 20 watts peak input (10 to 200 watts peak power range).
Load impedance: 150 ohms nominal.
Bandwidth: 10 mc nominal.
Linearity: $\pm 1 \mathrm{db}$ for 200 to 2000/20 to 200 watts peak input.
Transmitter interlock: terminals are provided for de-energizing the transmitter when the system internal load is removed from the transmitter antenna.

Instrument complement: hp H01.8614A Signal Generator, hp H01-8403A Modulator, hp 5245L Electronic Counter, hp 5254B Frequency Converter, I3505A Isolator-Monitor, 8900 B Peak Power Calibrator, 8905 A Wavemeter.
Accessories avallable: hp 175A Oscilloscope, Collins 578D. 1
DME Bench Test Set, Collins 578X-1 ATC Transponder Test Set.
Physical characteristics
Mounting: enclosed rack mounting complete with forced. air cooling.
FInlsh: gray (other finishes available on special order).
Dimenslons: $23^{\prime \prime}$ wide, $321 / 4^{\prime \prime}$ high, $26^{\prime \prime}$ deep (584×819 $\times 660 \mathrm{~mm}$).
Weight: aet $285 \mathrm{lbs}(129,3 \mathrm{~kg})$; shipping $335 \mathrm{lbs}(150.8$ kg).
Power: 105 to 125 or 210 to 250 volts, 50 to $60 \mathrm{cps}, 400$ watts; a master circuit breaker/switch controls power to the complete rack.
Price: Boonton 8925 A, $\$ 12,090$ complete; $\$ 8315$ less hp 5245L/5254A Counter.

[^15]
202H FM-AM SIGNAL GENERATOR

FM, AM, CW and pulse coverage 54 to 216 mc

The Boonton 202H FM-AM Signal Generator covers the frequency range from 54 to 216 mc and is designed for the testing and calibration of FM receiving systems in the areas of broadcast FM, whf, tv, mobile and general communica-
tions. The generator consists of a three-stage rf unit, together with a modulating oscillator and power supply, all housed in a single cabinet which may be readily adapted for rack mounling.

Specifications

Radio frequency characteristics

RF range: total range: 54 to 216 mc ; number bands: 2 ; band ranges: 54 to 108 mc 108 to 216 mc .
RF accuracy (after 1 hour warm-up): main dial: $\pm 0.9 \%$; electronic vernier: $\pm(10 \%+1 \mathrm{kc})$.
RF stability: $<0.01 \%$ per hour (after two hour warm-up).
RF output: range: $0.1 \mu \mathrm{v}$ to 0.2 v (across external 50 ohm load ar panel jack); accuracy: $\pm 10 \%, 0.1 \mu v$ to 50 K $\mu \mathrm{V} ; \pm 20 \%, 50 \mathrm{~K} \mu \mathrm{v}$ to 0.2 volts; Auto level set: holds rf monitor meter to "red line" over band.
impedance: 50 ohms.
VSWR: <1.2.
Spurious output: All spurious rf output voltages are at least 30 db below desired fundamental.
RF leakage: sufficiently low to permit measurements at $0.1 \mu^{r}$.
Amplitude modulation characterstics
AM range: internal: 0 to 50%; external: 0 to 100%.
AM accuracy: $\pm 10 \%$ of reading at 400 cps at 30% and 50% AM.
AM calibration: $30,50,100 \%$.
AM distortion: $<5 \%$ at $30 \%,<8 \%$ at $50 \%,<20 \%$ at 100%.
AM fidellty: $\pm 1 \mathrm{db}, 30 \mathrm{cps}$ to 200 kc .
External AM requirements: approximately 60 volts rms into 500 ohms for 100% AM.
Frequency modulation characteristles
FM deviation range: internal or external, 0 to 250 kc in 4 canges.
FM deviation aceuracy: $\pm 5 \%$ of full-scale (for 400 cps sine wave).

FM calibration: 0 to 7.5 kc in increments of $0.5 \mathrm{kc}, 0$ to 25 kc in increments of $1 \mathrm{kc}, 0$ to 75 kc in increments of $5 \mathrm{kc}, 0$ to 250 kc in increments of 10 kc .
FM distortion (at 400 eps mod, freq.): $<0.5 \%$ at 75 kc $(100 \mathrm{mc}),<1 \%$ at 75 kc (54 to 216 mc), $<10 \%$ at 250 kc (54 to 216 mc).
FM fidellty: $\pm 1 \mathrm{db}, 5 \mathrm{cps}$ to 200 kc .
Signal-to-noise ratio: $>50 \mathrm{db}$ below 10 kc .
Microphonism: extremely low; shock-mounted of unit
External FM requirements: <3 volts rms into 2 K ohms for 250 kc deviation.
DC FM input: permits control of output frequency over a limited range with an external dc voltage.
Pulse modulation characterlstics
PM source: external, $P M$ rise time: $\leq 0.6 \mu \mathrm{sec}$.
PM decay time: $<0.8 \mu \mathrm{sec}$.
Modulating oscillator characteristics
OSC frequency: $50 \mathrm{cps}, 400 \mathrm{cps}, 1000 \mathrm{cps}, 3000 \mathrm{cps}, 7.5$ $\mathrm{kc}, 10 \mathrm{kc}, 15 \mathrm{kc}, 67 \mathrm{kc}$.
OSC accuracy: $\pm 5 \%$.
OSC distortion (at FM terminals): $<0.5 \%, 50 \mathrm{cps}$ to 15 $k c ;<1.0 \%, 67 \mathrm{kc}$.
Physical characterlstics
Dimensions: $163 / 4^{\prime \prime}$ wide, $103 / 8^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ($425 \times$ $263 \times 467 \mathrm{~mm}$).
Weight: net $45 \mathrm{lbs}(20,3 \mathrm{~kg})$, shipping $100 \mathrm{lbs}(45 \mathrm{~kg})$.
Power: 105 to 125 or 210 to $250 \mathrm{v}, 50$ to $60 \mathrm{cps}, 100 \mathrm{w}$.
Accessorles furnished: 502B Patching Cable.
Price: Boonton 202H, \$1475.

202J TELEMETERING SIGNAL GENERATOR

FM, AM, cw and pulse coverage, 195 to 270 mc

The Boonton 202J Telemetering Signal Generator covers the frequency range from 195 to 270 mc and is designed for the testing and calibration of FM telemetering receiving systems in the 215 to 260 mc band. The generator
consists of a three-stage rf unit, together with a modulating oscillator and power supply, all housed in a single cabinet which may be readily adapted for rack mounting.

Specifications

Radlo frequency tharacteristlcs
RF range: 195 to 270 mc .
RF accuracy: main dial: $\pm 0.5 \%$; electronic vernier: \pm $(10 \%+1 \mathrm{kc})$ after one-hour warm-up.
RF stability: $<0.2 \%$ per hour, after two-hour warm-up,
RF output: range: $0.1 \mu \mathrm{v}$ to 0.2 v (across extemal 50 ohm load at panel jack); accuracy: $\pm 10 \%, 0.1 \mu v$ to $50 \mathrm{~K} \mu \mathrm{v} ; \pm 20 \%$, $50 \mathrm{~K} \mu \mathrm{v}$ to 0.2 v ; auto level set: holds of monitor meter to "red line" over band; impedance: 50 ohms; vswr: <1.2; spurious output: all spurious if output voltages are at least 25 db below desired fundamental.
RF leakage: sufficiently low to permit measurements at $0.1 \mu \mathrm{j}$.
Amplitude modulation characteristics
AM range: internal, 0 to 50%; external, 0 to 100%.
AM accuracy: $\pm 10 \%$ of reading at 400 cps at 30% and 50% AM.
AM callbration: $30,50,100 \%$.
AM distortion: $<5 \%$ at $30 \%,<8 \%$ at $50 \%,<20 \%$ at 100%.
AM fidelity: $\pm 1 \mathrm{db}, 30$ cps to 200 kc .
External AM requirements: approximately so volts rms into 7500 okms for 100% AM.
Frequency modulation characteristics
FM deviatlon range: internal, 0 to 300 kc in 4 ranges; external, 0 to 300 kc in 4 ranges.
FM deviatlon accuracy: $\pm 5 \%$ of full scale (indication proportional to p-p modulating waveform at 400 cps).

FM calibration: 0 to 15 kc in increments of $0.5 \mathrm{kc}, 0$ to 30 kc in increments of $1 \mathrm{kc}, 0$ to 150 kc in increments of $5 \mathrm{kc}, 0$ to 300 kc in increments of 10 kc .
FM non-linearlty: $<1.5 \%$ at $190 \mathrm{kc},<5 \%$ at 300 kc ; ("least squares" departure from straight line passing through origin.)
FM fidelity: $\pm 1 \mathrm{db}, 5 \mathrm{cps}$ to $500 \mathrm{kc} ; \pm 3 \mathrm{db}, 3 \mathrm{cps}$ to I mc.
Spurious FM: total ems spurious FM from 60 cps power source is at least 60 db below $150 \mathrm{kc}(<150 \mathrm{cps})$.
Microphonism: extremely low; shock-mounted of unit.
External FM requirements: <I volt rms into 100 K ohms in parallel with less than 50 pf for 150 kc deviation.
Pulse modulation characteristles: PM source: external.
PM rise time: $<0.25 \mu \mathrm{sec}$.
PM fall time: $<0.8 \mu \mathrm{sec}$.

Modulation oselllator characteristics

OSC frequency: $50 \mathrm{cps}, 400 \mathrm{cps}, 1700 \mathrm{cps}, 3900 \mathrm{cps}, 10.5$ $\mathrm{kc}, 30 \mathrm{kc}, 70 \mathrm{kc}, 100 \mathrm{kc}$.
OSC accuracy: $\pm 5 \%$.
OSC distortion: $<0.5 \%$
Accessory furnished: 502B Patching Cable.
Physical characteristics
Dimensions: $163 / 4^{\prime \prime}$ wide, $103 / 8^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ($425 x$ $263 \times 467 \mathrm{~mm}$).
Weight: net $45 \mathrm{lbs}(20,3 \mathrm{~kg}$) ; shipping $60 \mathrm{lbs}(27 \mathrm{~kg})$.
Power 105 to 125 or 210 to $250 \mathrm{v}, 50$ to $400 \mathrm{cps}, 100 \mathrm{w}$.
Price: Boonton 202], $\$ 1595$.

219A FM STEREO MODULATOR

Provides complete, versatile measurements on stereo broadcast receivers

The Boonton 219A FM Stereo Modulator is designed to provide a multiplex output signal in accordance with FCC Docket 13506 when fed with left (L) and right (R) audio stereo channel inputs and/or subsidiary communications FM subcarriers (SCA). The output of the modulator may be switched to provide either ($L+R$), $(L-R)$. 19 kc pilot carcier, 38 ke residual carrier or the complete multiplex signal which can then be used to modulate a suitable FM signal generator. When used with the Boonton 202 H , no external audio oscillator or other equipment is required, since the seven fixed 202 H modulating oscillator test frequencies may be fed directly into either the left (L) or right (R) input of the 219A.

The Boonton 519A Output Cable (available as an optional accessory) provides a convenient means of interconnecting the FM stereo modulator with the 202 H Signal Generator (page 208). Direct connection is provided between the output of the 219 A and the external FM modula tion input of the 202 H .

A peak-reading metering system, calibrated in per cent of system deviation, is provided for setting and monitoring the levels of the individual sub-carriers, The internal matrix may be switched from the normal condition to provide either ($L+R$) or ($L-R$) null for checking the matrix in the receiver under test. The modulator is completely self-contained and housed in a single cabinet which may be adapted for standard rack mounting.

Specifications

Input characterlstics: (Left (L) and right (R) inputs)
Frequency range: 50 cps to is kc
Level: 1.7 ± 0.3 volts rms (for 90% peak multiplex output with either an L or R input)
Impedance: 10 K ohms shunted with 30 pf .
Pre-emphasis: $75 \mu \mathrm{sec}$ pre-emphasis switchable in or out of circuit.
Subsidiary Communications (SCA) Input
Frequency range: 20 to 75 kc .
Level: 1 v rms (for approx. 10% peak multiplex output).
Impedance: 10 K ohms.
Modulating oseillator characteristles
OSC.. frequency: 1 kc .
OSC. accuracy: $\pm 10 \%$.

OSC. output: switchable into either L or R input.
OSC. distartion: <1\%.
Output charscterlstics
Level: 0 to 7.5 volts peak (multiplex output).
Load impedance: >1500 ohms shunted with <200 pf.
Residual hum and noise: >60 db below 100% output,
Crosstalk ($L-R$) into ($L+R$): $>40 \mathrm{db}$ below 100% output.

Metering

Range: 0 to 10% (19 kc and 38 kc only) ; 0 to 100% (mulciplex output; output adjustabie 0 to 7.5 volts peak for 100% meter indication).
Calibration: 0 ro 10% in increments of 1%. 6 to 10%; 0 to 100% in increments of 5%.
Accuracy: $\pm 2 \%$ f.s. ($\pm 1 \%$ relative accuracy at 45% ($L+R$) and ($\mathrm{L}-\mathrm{R}$) and at $1 / 2$ of 90% for multiplex signal).
Matrix: normal, $\mathrm{L}+\mathrm{R}$ oull, $\mathrm{L}-\mathrm{R}$ null.
Output modes: switchable for $L+R, L-R, 19 \mathrm{kc}$ pilot carrier, 38 kc residual carrier or multiplex signal.
Pilot carrler: frequency, 19 kc ; accuracy, $\pm 0.01 \%$; level, 0 to 30% (multiplex output).
Monaural (L + R): output level: 0 to 100% (multiplex output with either an L or R signal).
Fldellity: 50 cps to $15 \mathrm{kc}, \pm 1 \mathrm{db}\left(\pm 0.2 \mathrm{db}\right.$ and $\pm 1.5^{\circ}$ relative to ($\mathrm{L}-\mathrm{R}$)).
Distortion: $<1 \%$ (at 45% composite output).
Double sideband suppressed carrler (L - R)
Frequency: 38 kc .
Frequency accuracy: $\pm 0.01 \%$.
Carrier level: <0.5\% (composite output).
Output tevel: 0 to 100% (composite output with either an I or 8 signal).
Fidelity: 50 cps to $15 \mathrm{kc} \pm 1 \mathrm{db}$ ($\pm 0.2 \mathrm{db}$ and $\pm 1.5^{\circ}$ relative to ($\mathrm{L}+\mathrm{R}$)).
Distortion: <1\% (at 45\% composite output)
Subsldary Communications (SCA)
Output level: 0 to 20% (composite output).
Fdellty: 20 to $75 \mathrm{kc} \pm 0.5 \mathrm{db}$.
Distorion: $<1 \%$ (at 10% composite output).
Oscilloscope synchronlzing slgnal
Frequency: 19 kc .
Output level: 0.5 volts mis nominal.
Impedance: 23 ohms nominal.
Physleal characteristics
Dlmensions: $163 / 4^{\prime \prime}$ wide, $5-7 / 32$ " high, $163 / /^{\text {" }}$ deep ($425 \times 133 \times$ 417 mm).
Weight: net 35 lbs ($15,8 \mathrm{~kg}$) ; shipping $45 \mathrm{lbs}(20,3 \mathrm{~kg}$).
Power: 105 to 125 or 210 to 250 volts, 50 to $60 \mathrm{cps}, 130$ wats.
Price: Booaton 219A, $\$ 975$.

207H UNIVERTER

Provides extended frequency coverage 100 kc to 55 mc for 202H, J Signal Generators

The Boonton 207 H Univerter, a frequency converter with unity gain, is designed for use with Boonton 202H FM-AM Signal Generator (page 208) and the 202J Telemetering Signal Generator (page 209) to provide additional frequency coverage from 100 kc to 55 mc , including commonly used intermediate frequencies.

The univerter consists essentially of a semi-fixed frequency, 200 mc heterodyne oscillator, a wideband amplifier and a self-contained regulated power supply. In operation, the internal heterodyne oscillator beats with the output sig. nal of the 202 H (199.9 to 145 mc) or 202) (200.1 to 255 mc), and the difference frequency is passed through the wideband amplifier to the output system.

The output frequency of the univerter is easily determined by subtracting 200 mc from the frequency dial reading of the 202 J or subtracting the 202 H frequency dial reading from 200 mc . In addition, a front-panel incre-
mental frequenc' control, calibrated in 5 kc increments provides continuous control over a $\pm 300 \mathrm{kc}$ range. External adjustments are provided for setting the overall gain of the instrument to unity and for adjusting the center frequency of the local oscillator to zero beat with the 200 mc dial calibration of the 202 H or 202 J .

To use the univerter, it is only necessary to connect the If outpur of the associated 202 H or 202 J Signal Generator to the input of the univerter; three separate outputs are pro. vided. The XI output provides unity gain, under the control of the signal generator attenuator, and is suited for most general-purpose applications. The X0.01 output attenuates the input signal level, as well as the random noise power output, 40 db , and is specifically provided for recenver measurements in the low microvolt region. An uncalibrated, high. level outpur provides a minimum of one volt into a $300-$ ohm load, with 0.1 voll input.

Speciflcations
(when used with 202H and 202J Signal Generators)

Radlo frequency characteristics

RF range: 100 kc to 55 mc (with 199.9 to 145 mc input from 202 H , with 200.1 to 255 mc inpur (rom 202 J).
RF callbration: incremental range, $\pm 300 \mathrm{kc}$: incremental calibration, increments of $s \mathrm{kc}$; incremental accuracy. $\pm(3 \%+1 \mathrm{kc})$.
RF stability: short-term, $<0.001 \%{ }^{\dagger}$ (5 minutes); long rerm, $<0.005 \% \dagger$ (1 hour); line voltage. $<400 \mathrm{cps} / \mathrm{v}$.
RF output
Range: (A) $1 \mu^{v}$ to $0.1 v^{*}(X 1)$; (B) $0.01 \mu^{\mathrm{v}}$ to $1 \mathrm{mv*}$ (X 0.01) ; (C) $>$ L $^{* *}=$ high ourput.
Accuracy: (A) reproduces output of 202 H or $202 \mathrm{~J} \pm 1$ db : (B) reproduces outpu: of 202 H or $202 \mathrm{~J} \pm 2 \mathrm{db}$.
Impedance: (A) 30 ohms nominal; (B) 50 ohms nominal: (C) 300 ohms nominal.
Spurious output: all spurious output voltages ate better than 25 dta below desired output; spurious oucput of 207 H alone consists of random noise and 200 mc local oscillator: at X0.01 ourput, noise porer essentially equivalent to 50 -ohm resistor at room temperature.

Modulation characteristics

Range: duplicates FM and AM modulation of 202 H or 202 J .

Distortion: FM, no appreciable distortion; AM. no appreciable distortion for inpur levels <0.05 :
Accessories furnished: 52 fA Patching Cable; high-oupur plug.
Accessories available: 501B Output Cable, $\$ 15.50$; 502 B Patch. ing Cahle, $\$ 6.50$: 506 B Patching Cable, $\$ 6.50 ; 51+\mathrm{B}$ Output Cable, \$13.30.

Physical characteristles

Mounting: cabinet for bench use; readily adaptable for 19" rack mounting.
Finish: gray panel; blue cabinet (other finishes available on special order).
Dimenslons: $163 / 4^{\prime \prime}$ wide, $5-33 / 64^{\prime \prime}$ high, $183 /$ " "deep ($425 \times$ $140 \times 467 \mathrm{~mm}$).
Welght: net 26 lbs ($11,7 \mathrm{~kg}$) : shipping 38 lbs ($27,1 \mathrm{~kg}$).
Power: 207H: 95 to 130 volts, 60 cps , 50 Natts; $207 \mathrm{HP}: 95$ to $130 / 190$ ro 260 volts, $50 \mathrm{cps}, 50$ w'atts.
Price: Boonton $207 \mathrm{H}, \$ 595$; Boonton $207 \mathrm{HP}, 5595$.

[^16]
ACCESSORIES FOR BOONTON SIGNAL GENERATORS

Cables, adapters, attenuators

501B, 514B, 517B Output Cables

The S01B Output Cable consists of shielded coaxial cable with a characteristic impedance of 50 ohms terminated at one end with a plug type BNC connector. The other end is terminated in a 50.0 hm resistor mounted in a moided holder, connected across two binding post connectors. Open circuit impedance across the binding posts, with the BNC connectoc connecred to a $50-0 h m$ signal generator is 25 ohms. Overall length is 3 ft 3 in . (991 mm). Connects signal generators to receivers. Price: Boonton 501B, $\$ 15.50$.

The s14B Output Cable consists of a shielded coaxial cable with a characteristic impedance of 50 ohms terminated at one end in a plug-type BNC connector. The other end is rerminated in a 50 -ohm resistor, mounted in a molded housing connecred across two alligator clips. Overall length is 6 ft (1829 mm). This cable is used generally at IF frequencies to connect signal generators to terminals within a receiver. Price: Boonton 514B, \$15.50.

The 519 B Output Cable consists of a coaxial cable with a characteristic impedance of 50 ohms terminated at one end in a jack-type BNC connector. The other end is terminated in a coaxially mounted 50.0 hm metalized disc resistor followed by a 25 -ohm series coaxial center conductor resistor to a plug.type BNC connector. It produces a 6 db attenuation between a voltage, when connected by a 50 ohm source impedance to the cable input and the terminated output voltage. Under these conditions, the impedance looking into the open circuit output is 50 ohms. Price: Boonton 517B, $\$ 24.75$.

502B, 506B Patching Cables

The 502B and 506B Patching Cables consist of shielded coaxial cabie with a characteristic impedance of 50 ohms terminated at each end by a plug-type BNC connector. Over. all length of 5028 is $3 \mathrm{ft}(914 \mathrm{~mm}$), of 506 B is 6 ft (1828 mm). These cables are intended for connecting signal generators to the attenuators and adapters listed on this page. Prices: Boonton 502B, $\$ 6.50$; Boonton 506B, $\$ 6.50$.

504A, 507B, 508B Adapters

The 504A Adapter consists of an interconnected jack-type BNC connector and plug-type N connector. The unit is intended for adapting plug-type BNC connectors on 502 B and 5068 Patching Cables to receivers with jack-rype N input connectors. Price; Boonton 504A, $\$ 3.73$.

The 507 B Adapter is used for connecting a $95-\mathrm{obm}$ balanced load to a $50-0 h m$ unbalanced source. It produces an attenuation of 6 db between the input voltage and the terminated output voltage when the input voltage is connected to the attenuator inpur chrough a 50.0 hm source impedance. Under these conditions, the impedance looking into the output is 95 ohms. The input connector is a jack-type BNC and the ourput connector is a plug-type small twin connector. Price: Boonton 507B, \$35.25.
The 508B unit adapts 300 -ohm balanced loads to 50 -ohm unbalanced sources. It produces an attenuation of 6 db between the input voltage and the terminated output voltage when the input voltage is connected to the attenuator input through a so-ohm source impedance. Under these conditions, the impedance looking into the output is 300 ohms. The input connector is a jack-type BNC connector and the output connection is to two binding posts. Price: Boonton 508B, $\$ 35$.

5058, 5098, 510B Attenuators

The $\operatorname{sos} B$ unit includes an unbalanced " T " type resistive attenuator inserted between a jack-type BNC and plug-type N connector. It produces an attenuation of 6 db between the input voltage and the terminated output voltage when the input voltage is connected to the attenuator input through a $50-0 \mathrm{hm}$ source impedance. Under these conditions, the impedance looking back into the output is 50 ohms. This unit is used for isolating receiver and signal generator and as a dummy antenna. Price: Boonton 505B, $\$ 34$.

The 509 B unit includes an unbalanced " T "' type resistive attenuator inserted beroreen two jack-rype BNC connectors. It produces an attenuation of 20 db between the input voltage and the terminated output voltage when the input voltage is connected to the attenuator input through a 30 -ohm source impedance. Under these conditions, the impedance looking into the output is 50 ohms. This attenuator is used for isolating the receiver from the signal generator and as a dummy antenna. Price: Boonton 509B, $\$ 33$.

The slob unir includes an unbalanced " T " type resistive attenuator inserted berween a jack-type BNC and plug-type UHF connector. It produces an attenuation of 6 db between the input voltage and the terminated output voltage when the input voltage is connected to the attenuator input through a $50-0 h m$ source impedance. Under these conditions, the impedance looking back into the output is 50 ohms. This unit is used for isolating receiver and signal generator and as a dummy antenna. Price: Boonton $\$ 10 \mathrm{~B}, \$ 35.25$.

360A-D, 362A LOW-PASS FILTERS; 8430 BANDPASS FILTERS

Effective elimination of undesirable signals

These Hewlett-Packard low pass and bandpass filters facilitate microwave measurements by eliminating undesirable signais (such as harmonics) from the measurement system. Suppression of such signals is particularly important in applications such as slotted-line measurements, where harmonics generated by the signal source could otherwise impair measurement accuracy. These filters also can be used as preselectors for the hp 851A/85s1A Spectrum Analyzer (pages 216, 217). As such. they permit the maximum utilization of the analyzer's broad spectrum. width capability while assuring virtually spuri-ous-free displays.

Specifications, 360 Series

hp Model	3604	3688	3606	3600
Cut-af írequency	700 mc	1200 mc	2200 mc	4100 mc
Inserton loss	$\leq 1 \mathrm{db}$ below 0.9 times cul-0fi frequency			
Rejection	≥ 50 db at 1.25 times cut-off frequency			
Impedance	50 ohms through passband; should be matched ior optimum performance			
SWR	<1.6 to within 100 mc <1.6 to <1.6 to of cut-of within 200 mc of 300 mc of cut-off cut-off			
Connectors	Type N , one male, one female			
Overall length (m) (mm)	$\begin{aligned} & 103 / 8 \\ & 276 \end{aligned}$	$\begin{gathered} 7-7 / 32 \\ 183 \end{gathered}$	$\begin{gathered} 10.25 / 32 \\ 274 \end{gathered}$	$\begin{gathered} 73 / 8 \\ 187 \end{gathered}$
Conter line (in) to malgend (mm)	$\begin{gathered} 21 / 8 \\ 54 \end{gathered}$	$\begin{gathered} 21 / 8 \\ 54 \end{gathered}$	-	-
$\begin{aligned} & \text { Center line (in) } \\ & \text { to femsle } \\ & \text { end (mm) } \end{aligned}$	$21 / 4$ 57	$21 / 4$ 57	\square	-
$\begin{aligned} & \begin{aligned} \text { Shipping } \\ \text { werght } \end{aligned}(\mathrm{lbs}) \\ &(\mathrm{kg}) \end{aligned}$	$\begin{aligned} & 2 \\ & 0,9 \end{aligned}$	2 0,9	$\begin{array}{r} 2 \\ 0.9 \end{array}$	$0,9$
Price	\$70	\$60	\$50	\$50

Specifications, 362A Series

hp Model	X36:2A	M362A	P362A	N362A	K3624	R3624 ${ }^{\text {a }}$
Passband (gc)	8.2-12.4	10.0-15.5	12.4-18.0	15.0-21.0	18.0-26.5	26.5-40.0
Stop band (gc)	16-37.5	19-4]	23-54	29-63	31-80	47-120
Insertion loss	less than 1 db	less than 1 db	less than 10 db	less than I db	less than id d	less Itan 2 db
Stopband rejection	at least 40 db	at least 40 do	at least 40 db	at last 40 db	at least 60 db	al least 35 db
SWR	1.5	1.5	1.5	1.5	1.5	1.8
Waveguids size, in. (EIA)	1×0.5 (WR 90)	0.850×0.475 (WR 75)	0.702×0.391 (WR 62)	0.590×0.335 (WR 51)	W/ $\times 1 / 1 /$ (WR 42)	0.360×0.220 (WR 28)
Length, in. (mm)	5-11/32(136)	4-15/32(114)	3-11/16(94)	3.1/32(77)	$21 / 2(64)$	1.21/32(42)
Shipping weight, lbs. (kg)	2(0,9)	2(0,9)	$1(0.45)$	1(0,45)	1/2 $(0,23)$	1/20,23)
Price	\$325	\$350	\$350	\$350	\$385	\$385

- Clircular tlange adapters: K-band (UG-425/U), ho 11515A, \$35 each; R-band (UG-381/U), hp 11516A, \$40 each.

Specifications, 8430 Series

hp Model	Passband trequenay (ge)	Max. passband Insertlon 1085	Rejeotion band attonuatlon				Dlmenstons		8hlpilng welght		Prlos
			Balow passhand		Above passhand						
			Fraquency		Fraquenay						
			(ga)	Antenuation	(90)	AHenuation	(In)	(mm)	(1b)	(kg)	
8430A	1 to 2	1.5 db	≤ 0.8	$\geq 50 \mathrm{db}$	2.21020	$\geq 45 \mathrm{db}$	$51 / 2 \times 43 / 4 \times 1$	$140 \times 121 \times 25$	3	1.4	\$210
8431A	2 to 4	1.5 db	≤ 1.6	$\geq 50 \mathrm{db}$	4.4 to 20	$\geq 45 \mathrm{db}$	$51 / 2 \times 3 \times 1$	$140 \times 76 \times 25$	2	0,9	\$210
8432A	4106	1.5 db	≤ 3.5	$\geq 50 \mathrm{db}$	6.5 to 20	$\geq 45 \mathrm{db}$	$41 / 2 \times 2 \times 1$	$114 \times 51 \times 25$	2	0.9	\$275
8433A	6108	1.5 db	≤ 5.5	$\geq 50 \mathrm{db}$	8.51020	$\geq 45 \mathrm{db}$	$4 \times 11 / 2 \times 1$	$102 \times 38 \times 25$	2	0.9	\$275
8434A	81010	1.5 db .	≤ 7.5	$\geq 50 \mathrm{db}$	10.5 to 17	$\geq 45 \mathrm{db}$	$48 / 8 \times 1 \times 1$	$118 \times 25 \times 25$	2	0,9	\$275
8435 A	4 to 8	1.560	53.2	$\geq 50 \mathrm{db}$	8.81020	$\geq 45 \mathrm{db}$	$35 / 8 \times 13 / 4 \times 1$	$92 \times 45 \times 25$	2	0,9	\$210
8436A	8 to 12.4	1.5 db	≤ 6.9	$\geq 50 \mathrm{db}$	13.5 to 17	$\geq 45 \mathrm{db}$	$21 / 8 \times 1 \times 1$	$73 \times 25 \times 25$	L	0,45	\$210

Connectors: Tyde N. one male, one temale.

SPECTRUM ANALYSIS

Spectrum analysis is the study of energy distribution across the frequency spectrum for a given electrical signal. Evaluation of the relative amplirudes and frequencies of the discrete components of rf signals yields information on bandwidths, modulation characteristics, spurious signal generation and other valuable data impossible or impractical to obtain by any other means.

Microwave spectrum analysis has assumed added importance since the introduction of the Hewlett-Packard Model 851A/8S51A Spectrum Analyzer. With its fully calibrated controls and displays, plus wide spectcum coverage, this analyzet brings welcome practicality to fre-quency-domain measurements and opens up new areas of application.

Broadband applications

Radio Frequency interference (RFI) testing, spectrum surveillance and gathering of spectrum signatures-these are important fields being revolutionized by the hp spectrum analyzer. The farranging sidebands of radar uansmitters, incermodulation products of multiple eransmissions and spurious signals generated by electronic and electrical devices can be quikkly detected and measured with the analyzer. Wide dynamic range and broad spectrum coverage in the hp spectrum analyzer permit measurements of signals widely separated in frequency and amplitude. Transients and random interference can be recorded by a time-exposed photo of the analyzer's cIt display taken with an oscilloscope camera. Displays of repetitive signals may be plotted on an $x-y$ recorder, using the vertical and horizontal output signals from the analyzer. Figure | shows the radiation present throughout the entice vhi spectrum in a large metropolitan area as viewed on the hp spectrum analyzer. Note the cluster of FM broadcast stations on the left and the television aural and video carriers ap. peacing at center-right of the display. This display represents only 15% of the analyzer's maximum spectrum width ca-

Figure 2. Nanosecond pulse and spoctrum resulting.
pability. Porver density measurements are another important application of the spectrum analyzer, made possible by cali. brated IF bandwidths. By knowing the effective noise bandwidth of the 3 F am. plifier. a calibrated ourput in terms of noise power per megacycle is possible using an of indicator such as the hp 41IA RF Millivolimeter (page 123) to measure the analyzer's 20 me IF output. Calibration is achieved by feeding a known signal level into the analyzer of input from a signal generator and noting the outpur level on the of millivoltmeter. This level then becomes a reference to which all power density measurements may be refersed.

Solid-state applications

Tuning waractor multiplier strings and parametric amplifier circuits can be tedious and time consuming by conventional rechniques. There also is a good chance that spurious signals may be present in the output of such devices, even when everything seems "peaked up" correchly. The $h p$ spectrum analyzer allows people working with microw'ave solid-state circuits to observe all output frequencies of such devices simultaneously and make adjustments for optimum output free of spurious signals.

Fast rising, short duration pulse waveforms in the nanosecond region can be generated by serriconductor diodes driving a shorted transmission line. Often, it is desirable to obrain a uniform output across large segments of the spectrum with such devices (Figure 2). With the broad frequency display and fat amplitude response of the 891 A 8551 A , it is a simple task to measure narrow, fast rising pulse spectra and make adjust. ments for discontinuities in the generating system.

Narrowband measurements

In addition to the broad spectrum capability of the analyzer, calibrated spectrum widths down to $10 \mathrm{kc} / \mathrm{cm}$ allow detailed analysis of very narrow segments of the band. A unique phase-lock stabilization system reduces local oscillator residual $F M$ in the analyzer to less than 1 ke peak-to-peak deviation when viewing narrower spectrum widths. This system permits stable displays of narrow spectra, plus the convenjence of remain. ing stabilized while tuning across the band. Narrow spectrum widths are useful for applications such as FM deviation measurements and residual FM checks on signal sources. The 60 db dynamic range and display makes RM measurements by the "carrier-zero" method extremely accurare since the modulation frequency may be adjusted to the precise point where all the signal energy is contained in the sidebands. The modulation frequency is measured on an electronic counter and noted. Then, usiag a table of Bessel functions, carrier deviation is a simple calculation:

$$
\begin{aligned}
& f_{i}=m f_{a} \\
& \text { where } f_{c}=\text { carrier deviation } \\
& m=\text { modulation index (from } \\
& \text { Bessel rable) } \\
& f_{a}=\text { modulation frequency }
\end{aligned}
$$

Application Note 63

Well illustrated applications and specific information on spectrum analysis are yours for the asking in hp Applica. tion Note 63. An introduction to spectrum analysis and interpretation of spectral displays explain the basic principles of this important branch of microwave measurements. More rigorous treatment of the subject is included in an appendix showing the application of Fourier Analysis to spectrum analyzer displays.

One section of the note contaiss spectrum analyzer applications in detail, sug. gesting time-saving methods and solutions of difficult measurement probiems. Your copy of Application Note 63 is available on request through hp Sales Offices in your area.

Spectrum analyzer requirements

The basic functions of a spectrum andlyzer are to translate electrical functions into their various frequency components and present their amplitudes on a visual display. To he versatile and do an effecrive job, the spectrum analyzer should have: 1) the ability to locare and identify signals over a wide frequency spectrom, 2) the ability to magnify portions of the spectrum for detailed analysis with stable calibrated sweeps and resolution, 3) minimum display clutter from spurious responses in the analyzer, and 4) wide dynamic range and flat frequency response.

A simplified block diagram of the hp 851 A/8551A Spectrum Analyzer is shown in Figure 3. The rf section contains the
local oscillators, mixers and two of the three IF amplifiers, comprising a triple conversion superheterodyne receiver. The ficst local oscillator is a backward wave oscillator which is capable of being swept or tuned from 2 to 4 gc . Input signals of 10 mc to 10 gc pass through the 0.60 db of attenuator to a crystal harmonic mixer and are converted to the 2 gc IF. After amplifcation, the 2 gc IF is converted to 200 mc , amplified, and converted again to 20 mc . The use of a 2 gc first IF keeps images 4 gc apart, preventing a confusing double response for a single input ficequency. The first mixer is carefully de. signed for minimum spurious generation and flat frequency response.

The display section contains the 20 mc IF attenuator, bandpass filters, amplifiers, and video detector, plus the crr, sweep generator and display shapers.

Except for the crt, this section is designed with solid-state components throughout. The input consists of an accurate 0.80 db atrenuator calibrated in 1 db steps. Bandpass filters, conrrolling the analyzer's resolution, follow the atrenuator. These have accurately controlled bandwidths of $1,3,10,100 \mathrm{kc}$ and 1 mc . The switching logic of the Sweep Time and Spectrum Width selectors automatically select the optimum filter for best resolution without sacrifice in gain. Manual selection of the filters also is provided. A current controlled attenuator and feedback network comprise a dis. play shaper which allows calibrated readout on the crt in terms of input power (square law), db (logarithmic) or voluge (linear). A fuil discussion of spectrum analyzer design considerations is included in Application Note 63.

Figure 3. HP Model 851A/8551A Spectrum Analyzer simplified block dlagram.

851A, 8551A SPECTRUM ANALYZER
 Totally new concept in microwave spectrum analysis

The new Hewlect-Packard 851A/8551A Spectrum Analyzer is truly an advance in the state of the art. It provides a 60 db display dynamic range, flat response over, spectrum widths from 100 kc to 2 gc and image separation of 4 gc all controls are calibrated, including the logarithmic, linear and squared vertical displays. High sensitivity and broad frequency range, plus a unique signal identifier, are additional features which make this instrument the most versatile and useful spectrum analyzer available today.

RF characteristics

The 8S1A/85s1A Spectrum Analyzer covers the frequency range from 10 mc to $40 \mathrm{gc}, 10 \mathrm{mc}$ to 10 gc in coax, 8.2 to 40 gc in waveguide with external mixers and adapters (Figure 1). The coaxial input is inherently broadband; however, the range can be limited with pre-selection filters such as the hp 360 and 8430 Series (page 213) to eliminate interference from signals outside the frequency range of interest.

Ten calibrated spectrum widths from 100 kc to 2 gc are available. This wide eange of spectrum widths permits observation of widely separated signals and broad spectra, as well as detailed examination of individual signals, distortion products, etc. The 4 go image sepatation (a 2 gc first IF) assures a display uncluttered by overlapping images. For investigation of signals close to 2 gc , a 200 mc first IF can be selected.

Amplitude control

Signal amplitude is controlled by a 0 to 60 db of attenuator (10 db steps) in the coaxial input system, plus a 0 to 80 db IF attenuator (l db steps plus vernier). When an external waveguide mixer is used, rf attenuation can be accomplished with the appropriate $h_{p} 382$ Waveguide Attenuator (page 225).

Calibrated IF bandwidths, important in power density measurements, can be selected either manually or automatically. In the automatic mode, IF bandwidth is selected for best resolution of a cw signal with each combination of spectrum width and sweep time. In addition, sweep time is calibrated, and the crt has an internal graticule for parallax-free viewing. A baseline clipper is provided to dim the base line on the crt for clearer and more comfortable viewing and improved photography of low-repetition-rate signals.

Specifications, 8551A RF Section

Frequency range: coaxial input: 10 mc to 10 gc ; waveguide input: 8.2 to 40 gc (accessory mixers and adapters required).
Spectrum width: 10 calibrated spectrum widths, 100 kc to 2 gc in a $1,3.10$ sequence to 1 gc ; vernier allows continuous adjustment between calibrated ranges and can reduce width to zero.
Swept-frequency linearlty*: $\pm 5 \%$ when local oscillator (LO) is stabilized and swept 10 mc or less; $\pm 10 \%$ (typically 9%) when LO is swept more than 10 mc .
Image separatlon: 4 gc .
Phaselock: internal phase-lock provided for stabilizing LO; LO sweep tracks sweep of voltage-tuned 10 me reference oscillator.
Phase-lock range: unit can be phase locked for spectrum widths up to $\mathrm{N} \times 10 \mathrm{mc}$, where N is the harmonic of the LO.
Phase lock tuning; reference oscillator automatically tracks with Tune control over 2 ge LO zange.
Tuning; selectable continuous coarse, fine and stabilized (phase locked) tuning determines center frequency about which LO is swept; tuning is accomplished with a single front-panel Tune control.
*Correlation between LO frequency and sweep position on Mode! 851 A ct as a percentage of the selected spectrum width.

Fine tuning: frequency change of LO fundamental is $10 \mathrm{mc}=2$ me per revolution of the Tune control; maximum accumulative error actoss the band, $\pm 20 \mathrm{mc}$; settability of a signal on the crt with the Tune control, $=50 \mathrm{kc}$ (fundamental mixing).
Stabillzed tuning: frequency change of $L O$ fundamental is 10 $\mathrm{mc} \pm 1 \mathrm{mc}$ per revolution of the Tune control; maximum accumulative error across the band, $\pm 2 \mathrm{mc}$; settability of a signal on the crt with the Tune control, $\pm 5 \mathrm{ke}$ (fundamental mixing).
Tuning accuracy: $\pm 1 \%$ of LO fundamental or harmonic.
Sensitivity (10 kc 1 FF bandwidth): 10 mc to $2 \mathrm{gc},-95 \mathrm{dbm} ; 1.8$ to $4.2 \mathrm{gc} .-100 \mathrm{dbm}$ (400 mc image separation); 2 to 4 gc . $-80 \mathrm{dbm} ; 4$ to $6 \mathrm{gc},-95 \mathrm{dbm} ; 6$ to $10 \mathrm{gc},-80 \mathrm{dbm}$; 8.2 to $18 \mathrm{gc},-80 \mathrm{dbm} ; 18$ to $26 \mathrm{gc},-75 \mathrm{dbm} ; 26$ to $40 \mathrm{gc} .-65$ dbm : with a source stability betrer than 1 kc , greater sensitivity can be achieved by using a narrower if bandwidth.
Coaxial input attenuator: range: 0 to 60 db in 10 db steps: insertion loss: 0 at 10 mc . less than 2 db at 10 gc .
Maximum Input power (for 1 db compresslon)

Coaxial Input		
Inpul ation, setting	Max. Input 20015	Tygioal max. lnput 200 mo IF
0 db	0 dbm	-5 dtm
10 dt	+10 dbm	+5 dbm
20 db	$+20 \mathrm{dbm}$	$+15 \mathrm{dbm}$
30 db	+ 30 dbm	+25 dbm
40 thru 60 db	+30 dbm	$+30 \mathrm{dbm}$
Wavequlde input		
$11521 \mathrm{~A}(8.21012 .4 \mathrm{gc})$		typically - 10 dbm
$11517 \mathrm{~A}(12.4$ to 40 gc)		typically - 15 dbm

Frequency response: coaxial input: $\pm 1.5 \mathrm{db}$ over any 200 mc tange using fundamental mixing, $\pm 3 \mathrm{db}$ over any 200 mc range using 2nd harmonic mixing. $\pm 9 \mathrm{db}$ (typically $\pm 3 \mathrm{db}$) over any 2 gc range except when signal or LO is within 60 mo of 2 gc , including mixer and of attenuator response with attenuator setting $\geq 10 \mathrm{db}$.
Signal identifier: switch shifts display in inverse propartion to harmonic of LO used in mixing; direction of shift depends upon whether signal frequency is higher or lower than LO harmonic.
IF output frequency: 20 mc .
Residual LO fm: I ke peak to peak or less when phase locked; approximately 30 kc peak to peak when not phase locked.
Residual responses (no input signal): less than -90 dbm referred to Signal Input on fundamental mixing (-85 dbm when LO is within 60 mc of 2 or 4 gc).
LO nolse sidebands: greater than 60 db below cw signal level 90 kc or more away from signal.
LO type: 2 to 4 gc backward wave oscillator.
LO output: approximateiy 1 mwa available for use with wavemeters or frequency counters; output connector, female Type N on rear panel.
RFI: conducted and radiated leakage limits are below those specified in MIL-I.618ID and MIL-I-16910C.
Power: 115 or $230 \mathrm{v} \pm 10 \%$. 50 to 60 cps , a pprox. 250 m .
Dlmensions: $163 / 4^{\prime \prime}$ wide, $121 / 2^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep ($425 \times 318 \times$ 467 mm) : hardware furnished for rack mount $19^{\prime \prime}$ wide, 12.7/32" high. $163 / \mathbf{s}^{\prime \prime}$ deep behind panel ($483 \times 310 \times 416$ mm).
Weight: net $95 \mathrm{lbs}(43 \mathrm{~kg})$; shipping $136 \mathrm{lbs}(61,2 \mathrm{~kg})$.
Accessories supplled: 4 cable assemblies to interconnect RF and Display Sections; 908A Termination for LO outpur.
Accessories available: 11517A Mixer for P., K- and R-bands (12.4 to 40 gc), $\$ 160$; 11518A Adapter, adaprs 11517A Mixer to P.band waveguide (12.4 to 18 gc), $\$ 65$; 11519 A

Adapter, adapts 11517A Mixer to K-band waveguide (18 to 26 gc), 565 ; 11520 A Adapter. adapts 11517 A . Mixer to Rband waveguide (26 to 40 kc), 365 ; 11521A Mixer for X-band waveguide. $\$ 75$.
Price: hp 8551A, \$7100.

Specifications, 851A Display Section

Vertical display: linear, square (power) or logarithmic
Dynamic range: linear, $70: 1$: square, $70: 1$; log. 60 db . Accuracy: linear, $: 3 \%$ of full scale; square, $=5 \%$ of full scale*; $\log , \pm 2 \mathrm{db}^{*}$.
IF bandwidth:
Manual: bandwidths of $1,3,10,100 \mathrm{kc}$ and Imc can be selected.
Auro-Select: one of the above bandwidths automatically selected for best resolution of a cw signal with each combination of spectrum width and sareep rate.
Bandwidth accuracy: individual bandwidkhs are calibrated within $\pm 20 \%$; bandwidth repeatability and stability lypically better than $\pm 3 \%$.
IF input: 20 mc center frequency; 50 ohms input impedance.
Maximum ew input signal: -14 dbm .
IF gain set two-section attenuator provides 0 to 80 db atrenua. tion in 1 db steps; one section provides 0 to 70 db attenuation in 10 db steps; the other, 0 to 10 db in 1 db steps; vernier provides continuous adjustment between 1 db steps.
IF gain set accuracy: 70 db section. $\pm 0.5 \mathrm{db}: 10 \mathrm{do}$ section. $\pm 0.1 \mathrm{db}$.
Sweep rate: six calibrated rates, $3 \mathrm{msec} / \mathrm{cm}$ to $1 \mathrm{sec} / \mathrm{cm}$ in a 1, 3, 10 sequence: vernier provides continuous adjusiment between calibrated rates and extends slowest rate to ar least $3 \mathrm{sec} / \mathrm{cm}$.
Sweep rate accuracy: $\pm 3 \%$.
Sweep synchronization: internal: sweep free runs; line: sweep synchronized with power line frequency; external: sweep synchronized with externally applied signal +3 to +15 volts peak: single sweep: sweep actuated by panel pushbutton.
Output signals: vertical and horizontal signals applied to cre are available for external monitoring; vertical: 0 to -4 volts, output impedance, 4700 ohms: horizontal: 10 volts $p-p \pm 0.3$ volt, sweep approximately symmetrical about zero, output impedance 4700 ohms.
Cathode ray tube: 7.5 kv post-accelerator rube with P 2 mediumpersistence phosphor (others optional) and internal graticule; light blue filer supplied.
Internal gratlcule: parallax-free $7 \times 10 \mathrm{~cm}$, marked in cm squares with 2 mm subdivisions on major vertical and horizontal axes.
RFI: conducted and radiated leakage limits are below those specified in MIL-1-6181D and MIL-I-16910C.
Power: 115 or $230 \mathrm{v} \pm 10 \%$. 50101000 cps , approx. 25 w .
Dimenslons: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $183 / 8^{" 1}$ deep ($425 \times 185 \mathrm{x}$ 467 mm) : hardware furnished for rack mount $19^{\prime \prime}$ wide. $6.31 / 32^{\prime \prime}$ high. $163 / 8^{\prime \prime}$ deep behind panel ($483 \times 177 \times 416$ mm).
Weight: net 34 lbs (15 kg): shipping 4s lbs (20.3 kg).
Accessory supplled: joining bracket kit for semi-permanently mounting 851 A on 8551 A .
Price: hp 851A, $\$ 2400$.
Options
07. P7 phosphor in lieu of P2 (amber filter supplied). no additional charge.
31. P31 phosphor in lieu of P2 (green filter supplied), no additional charge.
*Except pulse spectrums on 1 mc bandwideh.

MICROWAVE POWER MEASUREMENT

At microwave frequencies, the current and voltage in a circuit are complex in nature and difficult to evaluate in terms of their ability to do work. Power, on the other hand, is a real quantity that can be measured and easily related to circuit performance. Unlike the voltage and current levels along a transmission line, microwave power remains constant with position of measurement (in a lossless line). For these reasons, power is one of the basic measurements made at microwave frequencies.

A great many microwave power meas. urements are well below 10 milliwatrs where signal generators supply test sig. nais for checking receiver, small-signal amplifier and detector performance. In some cases the power level may be on the order of only a few microwatts, requiring high sensitivity and stability in the measuring equipment.

Bolometric power meters

Below 10 milliwatts, power is usually measured with bolometers (temperaturesensitive resistive elements) in conjunction with a balanced bridge. There' are two general types of bolometers: thermistors, whose resistance decreases with temperature (negative temperature coef. ficient), and barretters which have a positive temperature coefficient. The use of thermistors is more prevalent because they are more rugged, both physically and electrically, than barretters. These tiny bolometer elements are mounted in devices that ideally present a perfect impedance match to microwave transmission lines, either coaxial or waveguide. Such devices. are appropriately termed bolometer mounts and allow a "bias" connection to the bolometer element, as well as a proper entry point for rf. The bolometer is connected as one leg of a Wheatstone bridge (or modification thereof) through the bias connection, and bridge excitation is applied. The de or low-frequency ac bridge excitation serves as the bolometer element bias power which affects the bolometer's resistance. so that the bridge is essentially balanced. When the unknown microwne power is applied to the bolometer, the resulting temperature rise causes the element's resistance to change, tending to unbalance the bridge. By withdrawing a like amount of $d c$ or ac bias power from the element, the bridge may be returned to balance, and the amount of bias power removed can be measured and displayed on an indicating meter.

Automatic bolometer bridges

There are a oumber of bolometer bridge designs which provide various de-
grees of accuracy, speed, and convenjence. The Hewlett-Packard Model 431B Power Meter is a temperature-com. pensated, auromatically balanced thermistor bridge of versatile design. Operating with any of the hp temperature-compensated thermistor mounts, the 431 B automatically maintains bridge balance and reads substituted bias power to a basic accuracy of $\pm 3 \%$ of full scale. The 431 B power ranges of 10 microwatts to 10 milliwatts (full scale) encompass virtually all levels involved in small signal microwave power testing.

Since all bolometer elements are tem-perature-sensing devices, they are, in themselves, unable to distinguish between applied power level changes and environmental temperature changes. As bolometer bridge sensitivity is increased, cven minute remperatuce variations appear as though a varying power were being ap. plied to the bolometer element. The resuit, if not compensated for, is "zero drift" of the power meter and erroneous power measurements.

A dual bridge arrangement, as shown in Figure 1, is used in the 431 B to compensate for vaciations in temperature at the thermistor mount. The thermistor mounts used with the 431 B have two thermistor elements, one for sensing applied power (R_{f}) and one for sensing ambient temperature (R_{c}). Each element is connected to its own bridge circuit in the meter, which automatically controls bias power. The elements ace in close thermal proximity, but R_{c} is isolated from applied microwave power. This arrangement compensates for temperature changes, thus reducing zero drift in the 4318 by a factor of 100 over older uncompensated meters. Another advantage of the 431B design is that when zeroed
on the most sensitive range, the meter may be switched to any other power range without re-zeroing (zero-carryover is within 0.5% on all ranges). The 4318 also provides a de output proportional to the microwave power measured, an output useful for recording purposes or control of extersal circuits. This feature is extremely valuable for power meter leveling of microwave sweep oscillators and signal generators.

Thermistor mounts designed specif. cally for operation with the 431 B include the hp 478A Coaxial and 486A Wave. guide Series. The 478A Coax Mount operates from 10 mc to 10 gc , while the 486 A Series covers frequencies in wave. guide bands from 2.6 to 40 gc . All mounts present low swr over full waveguide bands without tuning. Full particulars on the Hewlett-Packard 431B Power Meter and the temperature-compensated thermistor mounts will be found on pages 220 and 221.

Non-temperature-compensated bridges

Also available is the hp Model 430C Power Meter, which operates with a number of non-temperacure-compensated barretter or thermistor mounts such as the hp 477 B Coaxial and 487 W aveguide Series. Accuracy of the 430 C in measuring substituted power is $\pm 5 \%$ of Eull scale. (See page 222 for full specifications on 430 C .)

Calorimetric power meters

Bolometer elements cannor be used for direct power measurement at levels above 10 to 50 milliwatts because of their physi. cal size. Calibrated directional couplers or attenuators are sometimes used to reduce the power level to the bolometer's range; however, this also reduces overall

Figure 1. Black diagram of hp 4318 Powar Meter. Dual bridge provides proper blas to thermistor mount to correct for tempersture variation and reduce zero drift.
accuracy because of the additional tolerances on coupling factor or attenuator calibration. Where better accuracy is desired, calorimetric techniques provide a more useful result.

Calorimetric power meters dissipate the unknown power in a resistive termination which ideally is matched to the transmission line or source impedance. The temperature rise caused by the power dissipation is then measured by a temperature sensor which is calibrated against known amounts of de power. Calorimerric power meters fall into two categories-dry and fluid. Dry calorimeters depend upon a static thermal path between the dissipative load and the temperarure sensor. This arrangement often requires several minutes for the termination and sensor to reach equilibrium, making measurements timeconsuming and too sluggish for tuning circuit parameters for optimum output.

Figure 2. Simplified diagram of hp 434A Calorimetris Power Meter, showing oil flow path.

Fluid calorimerers such as the hp 134A utilize a moving stream of oil to transfer heat quickly to the sensing element. An amplifier-feedback arrangement, in conjunction with the series oil flow system as shown in Figure 2, reduces measure. ment time in the 43.4 A to less than 5 sec . onds for full-scale response. The physical size of the termination and the fow rate of liquid passing over the termina. tion are primary factors which determine the maximum power that may be dissipated by a Auid calorimeter. The hp 434 A covers the important range of 10 moc to 10 watts. where medium-power TWT's, klystrons, and lor-poreer magnerrons produce power levels above the bolometer's range, and too low for large calorimetric systems. Further information on the 434A Calorimetric Power Merer is on page 224 .

Peak power measurement

A frequent requirement in microwave work is the measurement of peak power in a periodic pulse. This may be done by various indirect teciniques using bolometers or calorimeters. The Boonton Division of Hewletr-Packard produces
a versatile instrument that conveniently measures peak power directly in the 50 mc to 2 gc region. This instrument (the Boonton 8900 B) utilizes a video comparator technique to bring a known dc voleage, supplied by the 8900 B , in a known impedance to a level which is equal to the pulse being measured. This allows simple measurements of peak pulse power with a basic accuracy of 1.5 db , even when the wavelorm is not rectangular. The optional custom cali. bration chart increases accuracy to 0.6 db for critical applications. (See page 223 (or more information on the 8900 B .)

Application Note 64

Complete information on the theory and operation of bolometers and bridges, along with other types of power meters, is included in a comprehensive application note available from Hewlett-Packard. Application Note 64 contains up-to-date information on virtually all aspects of microwave ponec measurement, including detailed descriptions and illustrations of instruments, techniques, error analysis and applications. Sources of measurement error and systematic methods for error-reduction allow selection of the best procedure for a specific application. Application Nore 6f, entitled "Micro. r'ave Por'er Measurement", is a vailable on request through your hp sales office.

Steps toward better accuracy

The fundamental standards of microwave power lie in do or low-frequency ac voltage and resistance standards which may be accurately measured and used for comparison or substitution. Other factors, such as impedance matching and eff. ciency of the sensing device, play an important role in the overall steasurement accuracy.

The basic accuracy of hp power meas. uring equipment satisfies the requirements of most applications without complicated ser-ups requiring extensive manual operations and calculation. Certain other applications, however, demand varying degrees of accuracy improvement. The versatility and stability of hp equipment allows easy enhancement of its basic accuracy in a step-by-step manner until the degree of accuracy needed is achieved.

Tiners: Certaialy one of the most im. portanc steps for higher accuracy is the elimination of mismatch loss with a tuner. Hextert-Packard bolometer mounts and calorimeter inpur systems are designed and rested for good broad. band impedance match (low swr) to common microwave transmission lines. However, source swr must also be considered in any power measurement, and the combination of source and load swor can produce serious mismatch errors. To eliminate mismatch error, hp 870A

Waveguide Series or 872A Coaxial Slide. screw Tuners may be used ahead of the bolometer or calorimeter inpue.

Efficiency: A bolometric power meter can only measure power that is absorbed by the bolometer element, nor that which is dissipated elsewhere in the mount. Furthermore, the spatial distriburion of cursent and resistance within the element is slightly different for microwave frequencies and the de (or low-frequency ac) which is actually measured by the meter. The effects of these two sources of error are measured in certain frequency bands by NBS (N'ational Bureau of Standards) and presented as the effective effiency of the mount. Because of the importance of high efficiency to accurate power measurement, hp uses standards directly traceable to NBS, wherever possible, to test all bolometer mounts to assure consistently high efficiency throughout the operating range of the instrument. Broadband thermistor mounts are tested on a swept frequency basis, so the effects of even sharp resonances on efficiency are revealed and eliminated. Even though ditect NBS traceability is not yet available in certain bands, the extensive tests and cross. checks conducted by hp on literally thousands of thermistor mounts assure a uniformly high level of efficiency in all mounts. Similar efforts are applied to the calorimerric power merer to verify its efficiency.

Instrumentation: hp 431B power merers provide a basic accuracy of $\pm 3 \%$ in substituted poner to the thermistor. A de input on the rear pane! allows ex. ternal de substitution for increased accuracy when required. The hp 8402A Poner Merer Calibrator may be connecred to the de substitution jack on the 431B to reduce instrumentation error to $\pm 0.5 \%$. The recorder output current, also available from the Herlett-Packard 431 B , allows connection of a stable 1000 ohm resistor and digital voltmeter (such as the hp 3440A, pages $\mathbf{1 5 0 . 1 5 2 \text {) for }}$ high precision duplication of power meter readings.

The 434 A Calorimetric Power Meter basic accuracy is $\pm 5 \%$ of full scale, which includes both instrumentation error and efficiency. The built-in calibration source provides a 0.1 watt check point accurate to 1% for convenient verification of the 434A calibration. The inscrumentation uncertainty can be sub. stantially reduced by calibrating the 434A on the range to be used with an external ds rest set. The hp K02.434A DC Test Set provides calibration power levels in convenient steps from 2 mw to 10 w , and is accurare to $\pm 0.5 \%$ of output.

Step-by-step procedures with examples of error reduction and analysis are an im. portant part of hp Application Note 64.

431B POWER METER; 478A, 486A THERMISTOR MOUNTS, 8402A CALIBRATOR

Power measurements $1 \mu \mathrm{w}$ to 10 mw ; meter calibration

Continual zero-setting is a thing of the past, even on the $10 \mu \mathrm{w}$ range, with the hp 431B Power Meter. Extremely high stability means that in typical laboratory environments one zero setting will hold for hours. In addition, only one zero adjustment is needed to calibrate the 431 B for all ranges. Even in less favorable environments only occasional adjustment is necessacy.

The extreme temperature stability of this instrument makes possible (and usable) an additional 10 db of sensitivity compared to previously available equipment. Full-scale readings of $10 \mu \mathrm{w}$ to 10 mw are covered in? ranges. The meter face also is calibrated in dbm with $s \mathrm{db}$ berween ranges. Direct-reading accuracy is $\pm 3 \%$ of full scale.

Temperature-compensated thermistor mounts are required for operation with the hp 431B. The hp 478A Coaxial Mount covers 10 mc to 10 gc , and the 486 A Waveguide Mounts span 2.6 to 40 ge .

Microwave standards measurements can be made to high accuracy and resolution with the Model 431B by using the instrument as a transfer device. A do calibration input jack permits precise dc substitution power measurements. The grounded ourput jack will then drive an appropriate digital voltmeter for increased resolution.

The 4318 also has an optional rechargeable battery pack which will give up to 24 hours of completely portable operation. A front-panel control selects ac operation with trickle. charge, battery operation or barrery charge alone.

Circuit description

Two balanced bridges are employed in the hp 431B. Each contains a temperature-sensitive element, a thermistor, which is housed in an external thermistor mount. In close thermal proximity, the thermistors are electrically isolated. One therm. istor and bridge senses the if power. The other thermistor and bridge senses only the ambient temperature conditions and corrects for zeso drift. Both bridges are continuously maintained in a balanced condition so both thermistor elements have similar heat transfer characteristics at all rimes.

This unique circuit approach gives a self-balancing device for both rf powes and temperature changes, with all critical components located within a feedback loop. If thermistors and mounts were available that cracked identically with temperature, no zero setting would ever be necessary. The hp 478A and 486 A dual thermistor mounts use extremely high heat. conductivity metals and selected thermistors for exceedingly close tracking, even in the presence of thermal shocks.

Specifications, 431B

Instrument type: automatic, self-balancing power meter for use with temperature-compensated thermistor mounts.
Power range: 7 ranges with full-scale readings of $10,30,100$ and $300 \mu \mathrm{w}, 1,3$ and 10 mw ; also calibrated in dbm from -30 to +10 .
Extornal bolameter: temperature-compensated thermistor mounts required for operation (478A and 486A series).
Accuracy: $\pm 3 \%$ of full scale from $+20^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C} i \pm 5 \%$ of full scale from $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Meter movement: taut-band suspension: mirsor-backed meter scale matched to pointer deflection within $\pm 0.25 \%$ of full scale.

Zero carry-over: less than 0.5% of full scale when zeroed on most sensitive range.
Zero balance: continuous control about zero point; range below zero is equivalent to at least 3% of full scale.
Recorder/voltmeter output: phone jack on rear with 1 ma maximum into 1000 ohms $\pm 10 \%$; one side grounded.
Callbration input: binding posts on rear for calibration of bridge with 8402A or precise de standards.
Power: 115 or 230 volts $\pm 10 \%, 50$ to 1000 cps, 2.5 watts.
Dimensions: 7.25/32" wide, 6.3/32" high, $11^{\prime \prime}$ deep from front fanel ($190 \times 155 \times 279 \mathrm{~mm}$).
Weight: net $8 \mathrm{lbs}(3,5 \mathrm{~kg}$), shipping $11 \mathrm{lbs}(5 \mathrm{~kg})$; net with battery $111 / 2 \mathrm{lbs}(5,2 \mathrm{~kg})$, shipping with battery 14 lbs ($0,3 \mathrm{~kg}$).
Accessory furnished: $s \mathrm{ft}(1520 \mathrm{~mm})$ cable for hp tempera. ture-compensated thermistor mounts.
Accessorles avallable: 431B-95A Rechargeable Battery Pack for held installation, $\$ 100$; 431B-95B Recorder Output Cable, 86.50 .
Price: hp 431B, $\$ 450$.
Options

1. Rechargeable battery installed, provides up to 24 hours' continuous operation, add $\$ 100$.
2. Rear input connector wired in parallel with front-panel input connector, add \$is.
3. With $20 \mathrm{ft}(6100 \mathrm{~mm})$ cable for 100 . or $200 \cdot \mathrm{ohm}$ mount, add $\$ 50$.
4. With $50 \mathrm{ft}(15240 \mathrm{~mm})$ cable for 100 -ohm mount. add $\$ 100$.
5. With $100 \mathrm{ft}(30480 \mathrm{~mm}) \mathrm{cable}$ for $100-\mathrm{ohm}$ mount, add $\$ 150$.
6. With $200 \mathrm{ft}(60960 \mathrm{~mm})$ cable for 100 ohm mount, add $\$ 250$.
7. With 50 ft (15240 mm) cable for $200-\mathrm{ohm}$ mount, add $\$ 100$.
8. With $100 \mathrm{ft}(30480 \mathrm{~mm})$ cable for 200 -ohm mount. add $\$ 150$.
9. With 200 ft (60960 mm) cable for 200 -ohm mount, add $\$ 250$.

478A and 486A Thermistor Mounts

These thermistor mounts are designed for use with the h_{P} 431B Power Meter. Each mount contains a pair of negative. coefficient thermistor sets in similar thermal environments. One thermistor set responds to the rf input and ambient temperature; the other responds only to ambient temperature and compensates for tempecature changes. Extcemely close tracking is achieved, even with the application of thermal shocks. Hence, the instruments are remarkably free from drift and conveniently measure power as low as one microwatt. Furthermore, de calibration power may be applied and a de digital voltmeter used to read out from the 431B Power Meter. Such a precedure permits accurate, high-resolution, transfer-power measurements in standards systems.
Model 478A is designed for 50 -ohm coaxial systems which operate from 10 mc to 10 gc . The if thermistor pair presents a good match to $50-0 h m$ systems over its full frequency range. No tuning is required.

Model 486A mounts are designed for waveguide systems operating from 2.6 to 40 gc . Each mount provides a good match over its waveguide range, and no tuning is required.

Specifications

$\mathrm{hp}_{\text {Model }}$	Frequatay range, so	$\underset{B W r}{\text { Maxlmum }}$	Operadnı reistanoe (otims)	Probe
478A	$\begin{aligned} & 10 \mathrm{mc} \text { to } \\ & 10 \mathrm{gc} \end{aligned}$	1.6, 101025 mc $1.3,25 \mathrm{mc}$ to 7 gc $1.5,7$ to 10 gc	200	\$155
S486A	2.80 to 3.95	1.35	100	\$195
G486A	3.95 to 5.85	1.5	100	\$180
J486A	5.30 to 8.20	1.5	100	\$170
H486A	7.05 to 10.0	1.5	100	\$165
X486A	8.20 to 12.4	1.5	100	\$145
M486A	10.0 to 15.0	1.5	100	\$195
P486A	12.41018 .0	1.5	100	\$195
K486A ${ }^{\text {a }}$	18.0 to 26.5	2.0	200	\$300
f486A*	26.5 to 40.0	2.0	200	\$375

- Circular fiange adapters: K-band (UG-425/U) ho 11515A, \$35 each; R-band (U0.381/U) hp 11515A, \$40 each.

For all models

Power range with hp 431B: $1 \mu \mathrm{w}$ to 10 mv .
Output connector: mates with 431B cable.
Shipping weight: $1 \mathrm{lb}(0,5 \mathrm{~kg})$ except $5486 \mathrm{~A}, 3 \mathrm{lbs}(1,4 \mathrm{~kg})$. and $\mathrm{G} 486 \mathrm{~A}, 2 \mathrm{lbs}(0,9 \mathrm{~kg})$.

8402A Power Meter Calibrator

Full-scale calibration and meter tracking of hp Models 431A and 4318 can be verified with the 8402A Power Meter Cali-
brator, which also can be used with a precision voltmeter to measure operating resistance of a thermistor mount and thereby permit more accurate power measurements.
The 8402 A is a constant current power supply which furnishes an accurately known do current to the power-sensing thermistor. For full-scale calibration of the power meters, the do current is within $\pm 0.1 \%$ of the value calculated for the nominal operating resistance of the thermistor. Accuracy of the substituted de power is typically $\pm 0.5 \%$. The 8402 A , in conjunction with a precision de voltmeter and a 431 A or B, can measure rf power by the de substitution method. Simple equations permit easy and accurate calculation of the de substitution power, which is within $0.5 \% \pm 0.1 \mu \mathrm{w}$ of the calculated value if the dc voltmeter is accurate within 0.1%.

Specifications, 8402A

Callbration function

Full-scale values: $0.01,0.03,0.1,0.3,1,3$ and 10 mw , correspanding to full-scale range of $431 \mathrm{~A}, \mathrm{~B}$ Power Meters.
Meter tracking: 10, 8, 6, 4 and 2 mw .
Accuracy: $\pm 0.1 \%$ of calculated current; $\pm 0.5 \%$ de substiruted power $\pm 0.3 \mu \mathrm{w}$.
DC substitution range: current variable over zange comparible with measurements from $1 \mu \mathrm{w}$ to 10 mw (precision dc voltmeter required).
Thermistor operating resistance
Range: 100 or 200 ohms, nominal.
Accuracy: $\pm 0.2 \%$ using a de voltmeter with 1% accuracy.
Power: 115 or 230 volts $\pm 10 \%$, 50 to 1000 cps, 2.5 watts.
Dlmensions: 7-25/32" wide, $6.3 / 32^{\prime \prime}$ high, $11^{\prime \prime}$ deep from front panel ($190 \times 155 \times 279 \mathrm{~mm}$).
Welght: net $8 \mathrm{lbs}(3,6 \mathrm{~kg})$; shipping $9 \mathrm{lbs}(4,1 \mathrm{~kg})$.
Price: hp 8402A, \$475.

430C MICROWAVE POWER METER

477B, 487 Thermistor Mounts

The hp 430C reads of power directly in dbm or mw - and completely eliminates tedious computation and troublesome adjustments during operation. The instrument may be used at any frequency for which there are bolometer mounts and measurements are entirely automatic.

In measuring power, hp 430 C uses a bolometer at either 100 - of 200 -ohm levels. Power is read directly in milliwatts, 0.01 to 10 mw , or in dbm from -20 to +10 . Higher powers may be measured by adding attenuators to the system. Directional couplers also may be used to sample energy.

When used in an appropriate bolometer mount, instrument fuses are generally satisfactory for measuring power at frequencies up to 4 gc . Barretters and theronistors can be used for measurements at much higher frequencies, up to 12.4 gc for barretters (in hp mounts) and up to 40 gc for cectain thermistors.

Hewlett-Packard waveguide bolometer mounts for the 430 C are available covering, collectively, the frequency spectrum from 2.6 to 40 gc . In addition, Model 477B Thermistor Mount covers the frequency spectrum from 10 mc to 10 gc .

Specifications, 430C
Power range: 5 ranges, front-panel selector; full-scale readings of $0.1,0.3,1,3$, and 10 mw ; also continuous readings from -20 to +10 dbm .
External bolometer: frequency range depends on bolometer mount; bolometers can operate at resistance levels of 100 or 200 ohms and can have positive or negative temperature coefficients; any dc bias current up to 16 ma is available for biasing bolometers; dc bias current is continuously adjustable and independent of bolometer resistance and power level range.
Accuracy: $\pm 5 \%$ of full scale.
Power: 115 or $235 \mathrm{v} \pm 10 \%$, 50 to $1000 \mathrm{cps}, 90 \mathrm{w}$.
Dimenslons: cabinet: $71 / 2^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high, $141 / 4^{\prime \prime}$ deep ($191 \times 292 \times 362 \mathrm{~mm}$); rack mount: $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $231 / 8^{\prime \prime}$ deep behind panel ($483 \times 178 \times 333 \mathrm{~mm}$).
Welght: net $14 \mathrm{lbs}(6,3 \mathrm{~kg})$, shipping $16 \mathrm{lbs}(7,2 \mathrm{~kg})$ (cabinet); net $18 \mathrm{lbs}(8,1 \mathrm{~kg})$; shipping $27 \mathrm{lbs}(12,2$ kg) (rack mount).
Price: hp 430C, $\$ 275$ (cabinet); hp $430 \mathrm{CR}, \$ 280$ (rack mount).

477B Thermistor Mount

This coaxial thermistor mount, designed for use in 50 ohm systems with the hp 430 C , covers 10 mc to 10 gc with an swr of less than. 1.5. It requires no runing and employs loag.time-constant elements that assure measurement accuracy - even for low duty cycle pulses. In addition, it is not susceptible to burnout even at 1 watt peak.

Specifications, 477B

Frequency range: 10 mc to 10 gc .
SWR: less than 1.5 (less than $1.3,50 \mathrm{mc}$ to 7 gc).
Power range: 0.01 to 10 mw (with hp 430 C).
Element: 200 -ohm, negative temperature coefficient thermistor included; approx. 13 ma bias required.
RF connector: Type N male.
Prlce: hy 477B, $\$ 75$.

487 Waveguide Thermistor Mounts

Hewlett-Packard Secies 487 instruments, for use with hp 430 C Power Meters, collectively cover all frequencies from 2.6 to 40 gc . Each 487 series mount covers the full frequency range of its waveguide band and requires no tuning. The long time constant of the mount makes it ideal for measuring average power of low duty cycle pulses. Burnouts are virtually impossible. All models may be used to measure a maximum average power of 10 mw .

Specifications, 487

$\operatorname{hp}_{\text {Modal }}$	Max\|mum 8wr	Frequenay range Po	Prices
54878	1.35	2.60-3.95	\$105
G4878	1.5	3.95-5.85	\$ 95
1487B	1.5	5.3 - 8.2	\$90
H487B	1.5	7.05 - 10.0	\$80
X4878	1.5	$8.2 \cdot 12.4$	\$ 75
M487B	1.5	10.0 - 15.0	\$110
P4878	1.5	12.4 - 18.0	\$110
K487C*	2.0	18.0-26.5	\$225
R487日*	2.0	26.5-40.0	\$275

[^17] b) $11516 \mathrm{~A}, \$ 40$ each.

8900B PEAK POWER CALIBRATOR

Peak power measurements, 50 to 2000 mc , to $\pm 0.6 \mathrm{db}$

The Boonton 8900B Peak Power Calibrator provides a convenient means for measuring the peak rf power of pulses in the range from 50 to 2000 mc . The power level is read out directly on the panel meter and is completely independent of repetition rate and pulse width (>0.25 $\mu \mathrm{sec}$). The instrument consists basically of a precision terminared input circuit, diode detector, dc reference supply, meter and a chopped video output system.

In operation, the rf signal is applied to the input circuit, which, through a power splitter, feeds the diode detector. The demodulared diode output and the output of the $d c$ reference supply are simultaneously fed to the video output through a mechanical chopper. In making a measurement, a suitable external oscmloscope is connected to the video output, and the do reference voltage is adjusted so that it is exactly equal to the peak value of the demodulated pulse.

Panel meter readout

The level of the required $d c$ reference voltage is then indicated on the panel meter, calibrated to read peak of power. The diode is operated in a biased condition for maximum stability of calibration. Provision is made, however, for readily standardizing the instrument against an external bolometer or calorimeter by simply connecting to a rear-panel output in place of a standard rermination.

Specifications

Radlo frequency measurement characteristics
RF range: 50 to 2000 mc .
RF power range: 200 mw peak full scale (may be readily increased through use of external attenuators or directional couplers).
RF power accuracy: $\pm 1.5 \mathrm{db}$ ($\pm 0.6 \mathrm{db}$ with custom calibration curve).
RF powar precision: 0.1 db .
RF pulse width: $>0.25 \mu \mathrm{sec}$.
RF repetition rate: 1.5 mc maximum.
RF Impedance: 50 ohms.
RF uswr. <1.25.

Monltor output

Level: >0.2 volt for 20 mw input (nominal).
Impedance: 150 ohms nominal.
Bandwidth: $>7 \mathrm{mc}$.
Physical characteristics
Dimensions: $73 / 4^{\prime \prime}$ wide, $618^{\prime \prime}$ high, $11^{\prime \prime}$ deep ($197 \times$ $156 \times 279 \mathrm{~mm}$).
Weight: net $10 \mathrm{lbs}(4,5 \mathrm{~kg})$; shipping $13 \mathrm{lbs}(5,9 \mathrm{~kg})$.
Power: 105 to 125 or 210 to 250 volts, 50 to 60 cps .
Price: Boonton $8900 \mathrm{~B}, \$ 485$; custom calibration curve, $\$ 75$.

434A CALORIMETRIC POWER METER

Just connect, read power 10 mw to 10 watts

With the 4j4A, measurement is literally as simple as connecting to a $s 0.0 \mathrm{hm}$ Type N front-panel terminal and reading power directly. The instrument has only two simple front-panel controls and is ideal for use by non-technical personnel.

Model 434A fills the important range berween bolometertype mictowave power meters such as hp 431 B (pages 220, 221) and conventional calorimeters whose lowet range is approximately 10 watts. But, unlike previous cumbersome and costly equipment suggested for its range, the hp 434 A is completely self.contained and requires no external detectors. In addition, the wider frequency response permits the unit to be conveniently calibrated by the application of a known de power.

Rapid response time

Model 434A employs a self-balanting bridge and a highefficiency heat transfer system to and from an oil stream to provide a full-scale response time of s seconds or less. This fast reaction, a fraction of the response time needed by ordinary calorimeters, means the 434A quickly follows small power changes, such as may be encountered in tuning.

Basically, the Model 434A consists of a self-balancing bridge which has identical temperature-sensitive resistors (gauges) in
two legs, an indicating meter and two load resistors, one for the unknown input power and one for the comparison power. The input load resistor and one gauge are in close thermal proximity so that heat generated in the input load resistor heats the gauge and unbalances the bridge. The unbalance signal is amplified and applied to the comparison load resistor which is in close thermal proximity to the other gauge so that the heat genecated in the comparison load resistor is transferred to its gauge and nearly rebalances the bridge.

The meter measures the power supplied to the comparison load to rebalance the bridge. The characteristics of the gauges are the same, and the heat rransfer characteristics from each load are the same, so the power dissipated in each load is the same, and the meter may be calibrated directly in input power.

The power measurement is accurate because the fow rates through the two heads are the same and the oil enters the heads at nearly the same temperature. To insure constant temperature and to bring the streams to nearly the same temperatuce, they are passed through a parallel fiow heat exchanger just prior to entering the heads. Identical fow tates ate obtained by placing all elements of the oil system in series.

Specifications

Input power range: seven meter ranges; full-scale readings of 0.01 , $0.03,0.1,0.3,1,3$ and 10 watts; meter scale also calibrated from -10 to 0 dbw , providing continuous readings from -30 to +10 dbw ; power range can be extended upward with attenuators or directional couplers.
Maximum input power: 1 kw peak; 10 wans average
Frequency range: dc to 12.4 gc .
Accuracy: within $\pm 5 \%$ of full scale; includes de calibration and of termination efficiency but not mismatch loss; greater accuracy can be achieved through appropriate techniques.

Estimated attalnable accuracy

	Upper ranges	Two lowest ranges
DC	0.5%	2%
0101 gr	1%	3%
1 to 4 gr	2%	1%
4 to 10 gC	3%	5%
$10 t 012.4 \mathrm{gc}$	4%	5%

DC Input resistance: 50 ohms ± 5 ohms at Type N input jack.
Input swr: de to $3 \mathrm{gc},<1.3$; 5 to $11 \mathrm{gc},<1.5$; 11 to 12.4 gc , <1.7.

Meter response time: less than 3 seconds for full-scale deflection.
Internal calibrator: $100 \mathrm{mw} \mathrm{dc} \pm 1 \%$ into 45 to 39 ohms.
Power: 115 or 230 volts $\pm 10 \%$, 30 to 60 cps, approximately 155 wates with no inpuc 175 wates with 10 watts input.

Dimenslons: cabinet: $203 / /^{\circ}$ wide, $123 / 4^{\prime \prime}$ high, $14^{\prime \prime}$ deep ($527 \times$ $324 \times 336 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $10-15 / 32^{\prime \prime}$ high, $131 / 2^{\prime \prime}$ deep betind panel ($483 \times 266 \times 343 \mathrm{~mm}$).

Weight: net $49 \mathrm{lbs}(22,1 \mathrm{~kg})$, shipping $39 \mathrm{lbs}(26,6 \mathrm{~kg}$) (cabinet) net 44 lbs ($19,8 \mathrm{~kg}$), shipping 63 lbs ($29,3 \mathrm{~kg}$) (rack mount).

Accessories avallable: 281A Waveguide-to-Coax Adapters (see page 174); K02-434A DC Test Set (for more accurate power messurements), $\$ 1000$
Price: hp 434A, $\$ 1600$ (cabjinet) : hp 434AR, $\$ 1585$ (rack mount).

382A,B,C PRECISION VARIABLE ATTENUATORS
 Frequency coverage to 40 ge

Operation of these direct-reading, precision attenuators depends on a mathematical law, rather than on the resistivity of the atrenuating material. Accurate attenuation from 0 to 50 db is assured regardless of temperature and
humidity. The instruments can handle considerable power and feacure large, easily read dials. Insertion loss at the zero setting is less than 1 db , and swr is less than 1.15 . Accuracy is $\pm 2 \%$ of reading or 0.1 db , whichever is greater.

hp Model		G382A	J382A	H382A	X382A	M382A	P382A	K382A*	R382A*
Frequency range	(gc):	3.95 - 5.85	5.3-8.2	7.05 -10.0	8.2 -12.4	10.0-15.0	12.4 - 18.0	18.0-26.5	26.5 - 40.0
Waveguide size	$\begin{aligned} & (\mathrm{im}): \\ & (\mathrm{E} \mid \mathrm{A}): \end{aligned}$	$\begin{gathered} 2 \times 1 \\ W R 187 \end{gathered}$	$\begin{aligned} & 11 / 2 \times 3 / 1 / 4 \\ & \text { WR1 } 137 \end{aligned}$	$\begin{aligned} & 11 / 1 \times 5 / 8 \\ & W_{R} 112 \end{aligned}$	$\begin{aligned} & 1 \times 1 / 2 \\ & \text { WR90 } \end{aligned}$	$\begin{gathered} .850 \times .475 \\ \text { WR75 } \end{gathered}$	$\begin{gathered} .702 \times .391 \\ W R 621 \end{gathered}$	$\begin{aligned} & 1 / 2 \times 1 / 4 \\ & W R 42 \end{aligned}$	$\begin{gathered} .360 \times .220 \\ \text { WR28 } \end{gathered}$
Power handing capacity. watts, average continuous duty:		15	10	10	10	10	5	$?$	1
Size**	length: height: depth:	$311 / 2$ (803) $93 / 8$ (245) $73 / 4$ (197) 	$\begin{array}{cc} 251 / 9 & (638) \\ 7.15 / 16 \\ 6 / 202) & (165) \\ \end{array}$	$\begin{array}{\|cc\|} \hline 20 & (508) \\ 7-15 / 16 & (202) \\ 61 / 2 & (165) \end{array}$	$\begin{array}{cc} 159 / 8 & (3978 \\ 75 / 8 & (194) \\ 4.11 / 16 & (119) \end{array}$	$\begin{array}{cc} 13.7 / 32 & (336) \\ 51 / 2 & (140) \\ 51 / 2 & (140) \end{array}$	$\begin{array}{ll} 121 / 21 & (318) \\ 71 / 4 & 1977 \\ 44 / 1 & (121) \end{array}$	$78 / 8$ (194) $51 / 2$ (140) $3 y_{8}$ (92)	$\begin{array}{cc} 6.7 / 164) \\ 53 / 8 & (140) \\ 33 / 8 & (92) \end{array}$
Weight - ${ }^{\text {as }}$	net: shipping:	$\begin{array}{ll} 25 & (11,3) \\ 32 & (14,4) \end{array}$	$\begin{array}{ll} \hline 12 & (5,4) \\ 24 & (10,8) \end{array}$	$\begin{array}{ll} \hline 10 & (4,5) \\ 22 & (9,9) \end{array}$	$\begin{array}{ll} \hline 5 & (2,3) \\ 8 & (3,6) \end{array}$	$\begin{array}{cc} 4 & (1,8) \\ 12 & (5,4) \end{array}$	$\begin{array}{ll} \hline 5 & (2,3) \\ 9 & (4,1) \end{array}$	$\begin{array}{ll} \hline 4 & (1,8) \\ 9 & (4,1) \end{array}$	$\begin{array}{ll\|} \hline \begin{array}{ll} 4 & (1,8) \\ 9 & (4.1) \end{array} \end{array}$
Price:		\$500	$\$ 375$	\$350	$\$ 275$	\$650	\$300	1475	\$500

- Circular flange adapters: K-band (UG-425/U) 1151SA, $\$ 35$ eacmi R-band (UG-381/U) $11516 A, \$ 40$ aach.
\because in inches and (mililmeters). \cdots in pounas and (kliograms).
For all models: Dial calibration range' 0 to 50 db (above insertion loss at zero setting).
Phase shift varlation: less than 3° from 0 to 50 db .
Insertion loss at zero setting: less than 1 ob .
SWr: less than 1.15 over entire eange of attenuation and frequency.
Accuracy: $\pm 2 \%$ of the feading in db , or $0: 1 \mathrm{db}$, whichever is greater; includes calibration efror and frequency error.

The hp S382B,C extend the inherent advantages of the rotary vane attenuation principle into the range from 2.6 to 3.95 gc . To realize the merits of this attenuation principle the center barrel of the attenuator must be several wavelengths long. This length, in addition to that necessary to make sroooth transitions from rectangular to circular guide, would result in 5 -band units of considerable size. The hp S382B,C, nonetheless, achieve both long electrical length and short physical dimensions. Dielectric loading in the attenuator decreases the velocity of the wave, thereby
shortening its wavelength. The result is an S.band attenuator that is only $251 / 4^{\prime \prime}$ long, yet has 1% accuracy and a standing wave ratio less than 1.2.

The $\$ 382$ is calibrated in degrees of rocation, as well as in db (S 382 B in 0.1° increments, 5382 C in 0.01° increments). This provides high resolution, as is desired in a transfer standard. In addition, the instruments provide atrenuation from 0 to 60 db and are capable of handling 10 watts average power.

Specifications, S382B,C

Frequency range: 2.6 to 3.95 gc .
Callbrated attenuation range: 0 to 60 db .
Accuracy: $\pm 1 \%$ of reading or 0.1 db , whichever is greater, from 0 to $50 \mathrm{db}: \pm 2 \%$ of reading above 50 db .
insertion loss: less than $\{\mathrm{db}$.
SWR: less than $1.2,2.6$ to 3 gc ; less than $1.15,3$ to 3.95 gc .
Phase shift variation: less chan 3° from 0 to 60 db .

Power: 10 watts continuous duty.
Degree dial: 0 to 90°; S 382 B calibrated in 0.1° increments, S382C calibrated in 0.01° increments.
Fits wavegulde size: $3^{\prime \prime} \times\left[1 / 2^{\prime \prime}\right.$ (WR284).
Size: $251 / 4^{\prime \prime}$ long, $6^{\prime \prime}$ high, $8^{\prime \prime}$ deep ($641 \times 152 \times 203 \mathrm{~mm}$).
Welght: net $18 \mathrm{lbs}(8.1 \mathrm{~kg})$: shipping $28 \mathrm{lbs}(12,6 \mathrm{~kg})$.
Prlce: hp S382B. 9650: hp 5382C. $\$ 700$.

370, 372, 375A WAVEGUIDE ATTENUATORS

Three series useful to $\mathbf{4 0} \mathbf{~ g c}$

370 Fixed Waveguide Attenuators

These attenuators are waveguide sections providing fixed amounts of attenuation. They are useful in reducing power flowing in a waveguide system, reducing refiection of loads or sources, or isolating parts of a waveguide system. They consist of rectangular waveguide sections conraining a rigidly mounted resistive strip. The resistive strip has been carefully designed to keep 5 wr less than 1.15 and attenuation constant over the full waveguide band. Accuracy over the band is within $\pm 20 \%$ of the nominal attenuation. The 370 is avail. able in attenuations of $3,6,10$ and 20 db . Fither end may be used as the input.

Specifications, 370

$\text { Modol* }^{h_{p}}$	$\begin{gathered} \text { Froquenoy } \\ \text { (ga) } \end{gathered}$	Powar disegpation (watts)	$\begin{aligned} & \text { Length } \\ & (\mathrm{In.}) \quad(\mathrm{mm}) \\ & \hline \end{aligned}$		$\begin{array}{\|c\|c\|} \hline \text { Fita } \\ \text { wavegulde } \\ \text { stre (li.) } \\ \hline \end{array}$	Prlse
S370	$2.6 \cdot 3.95$	1.0	12	305	$3 \times 11 / 2$	\$100
6370	3.95-5.85	1.0	101/1	257	2×1	\$95
3370	5.3-8.2	1.0	81/8	206	$11 / 2 \times 1 / 2$	\$85
H370	$1.05 \cdot 10.0$	1.0	63/8	162	$11 / 1 \times 3 / 8$	\$ 35
$\times 370$	8.2 - 12.4	1.0	54/4	133	$1 \times 1 / 2$	165
P370	12.4-18.0	1.0	41/8	105	. $702 \times .391$	\$80
K370**	18.0-26.5	0.5	$33 / 2$	83	1/2 $\times 1 /$	\$115
R370**	26.5-40.0	0.5	3	78	. $360 \times .220$	\$125

"For 3 db attenuation, add sulfix " A " to model number; for 6 db , add " 8 "; for 10 db . add "C"; 1or 20 db , add "D"

372 Precision Attenuators

Model 372 Precision Attenuarors are rugged, dependable, broadband instruments, remaining precisely calibrated regardless of humidity, temperarure or age. Models with either 10 or 20 db of attenuation are offered. SWR is 1.05 ; mean attenuation is within $\pm 0.4 \mathrm{db}$ (± 0.7 db for K-and R-bands) of nominal; variation across band is less than $\pm 0.5 \mathrm{db}$ ($\pm 0.6 \mathrm{db}$ for R372D) from mean. Calibration within ± 0.1 db may be obrained at 10 points across the band as an extracost option (calibration is normally furnished at 5 points).

Specifications, 372

ho Model ${ }^{4}$	$\begin{gathered} \text { Froquency } \\ (00) \\ \hline \end{gathered}$	Power dixaleation (wats)	$\begin{gathered} \text { Lenedul } \\ (\mathrm{m} .) \quad(\mathrm{mm}) \end{gathered}$		Fits wavequlda sye (ln.)	Prime
5372	2.6-3.95	2.0	86	1168	$3 \times 11 / 2$	\$425
G372	3.95-5.85	2.0	30	762	2×1	\$300
J372	5.85-8.2	1.0	211/2	552	$11 / 2 \times 3 / 4$	\$190
H372	$7.05 \cdot 10.0$	1.0	20\%	530	$14 / 4 \times 5 / 6$	\$135
X372	$8.2 \cdot 12.4$	1.0	191/8	486	$1 \times 1 / 2$	\$110
P372	12.4 - 18.0	1.0	151/2	394	. $702 \times .391$	\$125
K372**	$18.0 \cdot 26.5$	0.5	111/2	292	$1 / 2 \times 1 / 4$	$\$ 240$
R372: ${ }^{\text {\% }}$	$26.5 \cdot 40.0$	0.5	10	254	. $360 \times .220$	\$275
- For 10 db attenuation, add suffix " C ' 10 model number; for 20 db , add " $\mathrm{D}^{\prime \prime}$						

375A Variable Attenuators

Variable flap attenuators provide a simple, convenient means of adjusting waveguide power level or isolating source and load. They consist of a slotted section in which a matched resistive strip is inserted. The degree of strip penetration determines attenuation. A dial shows average reading over the frequency band, and a shielded dust cover reduces external radiation and eliminates hand capacity effects. Attenuation is variable 0 to 20 db . Dial calibration is accurate within $\pm 1 \mathrm{db}$ from 0 to $10 \mathrm{db}, \pm 2 \mathrm{db}$ from 10 to 20 db . Maximum swr is 1.15 .

Specifications, 375A

$\begin{gathered} \mathrm{hp} \\ \text { Model } \end{gathered}$	$\begin{gathered} \text { Frequeney } \\ \text { (ロ0) } \end{gathered}$		$\begin{gathered} \text { Length } \\ (\mathrm{ln} .) \quad(\mathrm{mm}) \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline \text { Fito } \\ \text { waverulde } \\ \text { size (ILL) } \\ \hline \end{array}$	Proos
S375A	2,6-3.95	2.0	141/8	359	$3 \times 11 / 2$	\$165
G375A	3.95-5.85	2.0	13	330	2×1	\$145
J375A	5.3 - 8.2	2.0	13	330	$11 / 2 \times 1 / 4$	\$135
H375A	$7.05 \cdot 10.0$	2.0	81/4	210	$11 / 4 \times 3 / 6$	\$125
X 375 A	8.2 - 12.4	2.0	7.3/16	183	$1 \times 1 / 2$	$\$ 100$
M375A	$10.0 \cdot 15.0$	1.0	61/4	159	. $850 \times .775$	\$190
P375A	12.4 - 18.0	1.0	71/	194	. $702 \times .391$	\$135
K375A"*	18.0 - 26.5	0.5	412	114	$1 / 2 \times 1 / 4$	\$185
R375A**	26.5 - 40.0	0.5	4\%	111	. $360 \times .220$	5200

**Circular flange adapters: X-band (UG-425/U) 11515A, \$35 each; R-band (UG-38I/U) LI.516A, \$40 each.

355C,D, 393A, 394A VARIABLE COAXIAL ATTENUATORS

Versatile application, dc to 2 gc

355C, D VHF Attenuators

Unique design provides accurate attenuation from de to 1 ge with the hp 355C (0 to 12 db in 1 db steps) and hp 355 D (0 to 120 db in 10 db steps). Attenuator sections are inserted and removed by cam-driven microswitches. These sections are adjusted by a time-domain reflectometry system to minimize reflections and assure high accuracy, Insertion loss is low, and using both instruments provides attenuation in 1 db steps to 132 db . The units can be connected with either terminal as input or output, and their small size and mounting versatility permit several installation schemeseven within other equipment.

393A, 394A Coaxial Attenuators

Each of these coaxial variable attenuators uses the principle of a directional coupler (see Figure 1) to achieve a wide range of attenuation over a full octave. The hp 393A covers 5 to 120 db from 500 to 1000 mc ; hp 394A covers 6 to 120 db from 1 to 2 gc . With special high-power termi. nations, they will handle up to 200 watts average

Since these instruments are variable directional couplers, they are particularly useful for mixing signals while maintaining isolation.

Flgure 1. With loads A and B in place the Instrument is an attenuator. With load A only, the Instrument is a variable directional coupler.

Speotiloations	365C	355D
Attenuation:	12 db in 1 db steps	120 db in 10 db sleps
Frequency range:	de to I ge	
Overall accuracy:	$\begin{aligned} & =0.1 \mathrm{db} \text { at } 1000 \mathrm{cps}: \\ & =0.25 \mathrm{db} \mathrm{dc} \text { to } 500 \mathrm{mc} ; \\ & =0.35 \mathrm{db} \text { oc } 10 \mathrm{lgc} \end{aligned}$	$\pm 0.3 \mathrm{db}$ to 120 db at $1000 \mathrm{cps}, \pm 1.5 \mathrm{db}$ to 90 db below $1 \mathrm{gc} ; \pm 3 \mathrm{db}$ to 120 db below 1 gc
Impedance:	50 ohms nominal	
Power dissipation:	0.5 watt average, 350 volts peak	
Maximum swr (input and output):	1.2 below 250 mc ; 1.3 below $500 \mathrm{mc} ; 1.5$ below 1 gc	
Maximuminsertion loss:	$0.2 \mathrm{db} \mathrm{at} 100 \mathrm{mc} ; 0.75 \mathrm{db} 10500 \mathrm{mc} ; 1.5 \mathrm{db} \mathrm{to1} \mathrm{gc}$	
Dimensions:		
Weight	net $11 / 2 \mathrm{lbs}(0.7 \mathrm{~kg})$; shipping $3 \mathrm{lbs}(1,4 \mathrm{~kg})$	
Price:	hp 355C. \$140	hp 355D, \$140

Speciricallors	393 A	3944
Fraquency range:	500 mc to 1 gc	1102 gc
Attenuation or coupling	510120 db. variable	610120 db variable
Directivity iwith loads less thân 1.05 swr):	as least $10 \mathrm{db}, 10$ to 80 db attenuation	
Absolute accuracy ! between matched generator and load;	$\pm 1 \mathrm{db}$ or $=1 \%$ of dial reading, whichever is greater	$\pm 1.25 \mathrm{db} \text { or } \pm 2.5 \% \mathrm{of}$ dial reading, which. ever is greater
SWR input.	$\begin{gathered} <2.5,5 \text { to } 15 \mathrm{db} \\ \text { attenuation } \\ <1.5,15 \text { to } 30 \mathrm{db} \\ \text { attenuation } \\ <1.2,30 \text { to } 120 \mathrm{dt} \\ \text { attenuation } \end{gathered}$	$<2.5 .6$ to 10 db attenuation $<1.8,10$ to 15 db attenuation $<1.6,15$ to 120 db attenuation
SWR output	$\begin{aligned} & <2.5,5 \text { to } 15 \mathrm{db} \\ & \text { attenuation } \\ & <1.5,15 \text { to } 30 \mathrm{db} \\ & \text { altenuation } \\ & <1.4,30 \text { vo } 120 \mathrm{db} \\ & \text { attenuation } \end{aligned}$	$\begin{gathered} <2,5,6 \text { to } 10 \mathrm{db} \\ \text { attenuation } \\ <1.8,10 \text { to } 15 \mathrm{db} \\ \text { 3ttenuation } \\ <1,6,15 \text { to } 120 \mathrm{db} \\ \text { 3tlenuation } \end{gathered}$
Impedances:	50 ohms nominal	
Maximuin voltage:	500 volts peak	
Average power:	approx. 200 walts maximum; power rating of terminations must be observed (908A, 0.5 wati terminations furnished)	
Dimensions:	$51 / 2{ }^{\text {" }}$ wide, $12^{\prime \prime}$ long, $23 / 2^{\prime \prime}$ deep ($140 \times 305 \times 70 \mathrm{~mm}$)	
Weigh:	nel 6 lbs (2,7 kg); shipping $13 \mathrm{lbs}(5,8 \mathrm{~kg})$	
Price:	hp 393A, \$525	hp 394A, \$550
Option 01.	supplied without 908 a coaxial terminations.less $\$ 70$	

355C.D

NOISE FIGURE MEASUREMENTS

In microwave communications, radar, etc., the weakest signal that can be detected is usually determined by the amount of noise added by the receiving system. Thus, any decrease in the amount of noise generated in the receiving system will produce an increase in the output signal-to-noise ratio equivalent to a corresponding increase in received signal. From a performance standpoint, an increase in the signal-to-noise ratio by reducing the amount of noise in the receiver is more economical than in. creasing the power of the transmitter.

The quality of a receiver or amplifier is expressed in a figure of merit, or noise figure. Noise figure is the ratio, expressed in db . of the actual output noise power of the device to the noise power which would be available if the device were perfect and merely amplified the thermal noise of the input termination rather than contributing any noise of its own.

The Hewlett-Packard system of automatic noise figure measurement depends
upon the periodic insertion of a known excess noise power at the input of the device under test. Subsequent detection of noise power results in a pulse train of two power levels. The power ratio of these two levels contains the desired noise figure information. Hewlett-Packard noise figure meters automatically measure and present this ratio directly in db of noise figure.
Noise fgure is discussed in detait in Hewlett-Packard Application Notes 43

Figure 1. Automatic noise figure measure ment system.
and 57, bath of which are available from your local Hewlett-Packard field office upon request. Application Note 57 , "Noise Figure primer," derives noise fig. ure formulas, describes general noise fig. ure measurements and discusses accuracy considerations. One of the measurement systems discussed in Application Note 57 is shown in Figure 1. The portion of the diagram within the dashed box is a simplified block diagram of the hp 340 B and 342A Noise Figure Meters, and the excess noise source could be any of the noise sources described on these pages. Appli. cation Note 43, "Continuous Monitoring of Radar Noise Figures," reviews automatic noise measuring theory, examines radar system requirements for integral noise figure meters and describes the hp 344A Noise Figure Meter. This noise figure meter has been designed specifically for radar system applications in which time-shared noise figure measurements play an important role in maintaining radar sets at the peak of their performance.

340B, 342A Noise Figure Meters; 343A, 345B, 347A, 349A Noise Sources

Advantages:

Reads noise figure directly in db Completely automatic measurement Easily used by non-technical personnel No periodic recalibration needed Fast response; ideal for recorder operation

Uses:

Measure noise figure in microwave or radar receivers, if and IF amplifiers
Compare unknown noise sources against known noise levels
Adjust parametric amplifiers for optimum noise figure

Receiver and component alignment jobs which once took skilled engineers a full hour are now done in 5 minutes by a semi-skilled worker. Receiver noise figure often can be improved over the best adjustment previously possible. For instance, a 3 db improvement in receiver noise figure is equivalent to doubling transmitter output. Since accurate alignment is easy, equipment is better maintained and peak performance enjoyed regularly.

These are some of the time-saving, cost-cutting advantages of Hewlett-Packard noise figure measuring equipment, Models 340 B and 342 A , when used with coaxial and waveguide noise sources.

Model 3408 Noise Figute Meter, when used with an hp noise source, automatically roeasures and continuously dis-

plays the noise figure of IF or rf amplifiers twned to 30 or 60 mc and of radar or microwave receivers with intermediate frequencies of 30 and 60 mc . Collectively, hp noise sources cover frequencies from 10 mc to 18 gc .

Five-frequency operation

Model 342A Noise Figure Meter is similar to hp 340B, except that it operates on five frequencies between 30 and 200 mc . Four of these frequencies are normally $60,70,105$ and 200 mc ; the fifth is the basic 342A tuned amplifier frequency of 30 mc .

In operation, a noise source, either a gas discharge tube or a diode, is connected to the input of a device under test. The IF amplifier output of the device is connected to the 340 B or 342 A . The noise figure meter gates the noise source on and off. When the source is on, the noise level is that of the device, plus the noise source. When the source is off, the noise level is that of the device and its termination. The noise figure meter automatically compares these two conditions and presents noise figure directly on a front-panel meter. Rate of response is such that changes in noise figure are constantly indicated on the meter.

Noise sources

Hewlett-Packard 343A VHF Noise Source: Specifically for IF and of amplifier noise measurement, a temperaturelimited diode source with broadband noise output from to to 600 mc with 50 ohm source impedance and low swe.

Hewlett-Packard 3458 IF Noise Source: Operates at either 30 or 60 mc , as selected by a switch; another selector permits matching $50-100-200$ - and 400 -ohm impedances.

Hewlett-Packard 347A Waveguide Noise Sources: Argon gas discharge tubes mounted in waveguide sections; for waveguide bands 2.6 through 18 gc , they provide uniform noise throughout the range; maximum swr is 1.2 .

Hewlett-Packard 349A UHF Noise Source: Argon gas discharge tubes in Type N coaxial configuration for automatic noise figure readings, 400 to 4000 mc ; also available with neon gas tubes.

Specifications, 340B and 342A

Noise figure range: 5.2 db noise source, 0 to 15 db , indication to infinity; 15.2 db noise source, 3 to 30 db , indication to infinity.
Accuracy (excluding source accurary): noise diode scale: $\pm 0.5 \mathrm{db}, 0$ to 15 db ; gas tube scale: $\pm 0.5 \mathrm{db} .10$ to 25 $\mathrm{db} ; \pm 1 \mathrm{db}, 3$ to 10 db and 25 to 30 db ; (for stated accuracy with S., H., X. and P347A and 349A Noise Sources, correction factor equal to the difference between specified excess noise and 15.2 db must be applied to meter reading).
Input frequency: 340B: 30 or 60 mc , selected by switch; 342A: $30,60,70,105$, and 200 mc , selected by switch; other frequencies available.
Bandwidth: 1 me minimum.
Input requirements: -60 to -10 dbm (noise source on); corresponds to gain between noise source and input of approximately 50 to 100 db for 5.2 db noise source and 40 to 90 db for 15.2 db noise source.
ingut impedance: 50 ohms nominal.
AGC output: nominally 0 to -6 v from rear binding posts. Recorder output: 1 ma maximum into 2000 ohms maximum.
Power input: 115 or 230 volts $\pm 10 \%$, 50 to $60 \mathrm{cps}, 185$ to

435 watts, depending on noise source and line voltage.
Power output: sufficient to operate 343A, 345B, 347A or 349A Noise Sources.
Dimensions: cabinet: $203 / 4^{\prime \prime}$ wide, $123 / 4^{\prime \prime}$ high, $141 / 2^{\prime \prime}$ deep ($527 \times 324 \times 368 \mathrm{~mm}$); rack mount: $19^{\prime \prime}$ wide, 10.15/32" high, $137 / 8^{\prime \prime}$ deep behind panel ($483 \times 266 \times$ 353 mm).
Weight: net $43 \mathrm{lbs}(19,4 \mathrm{~kg})$, shipping $54 \mathrm{lbs}(24,3 \mathrm{~kg})$ (cabinet); net $40 \mathrm{lbs}(18 \mathrm{~kg})$, shipping $51 \mathrm{lbs}(23 \mathrm{~kg})$ (cack mount).
Accessories furnished: one 340A-16A Cable Assembly, connects noise figure meter to 347A or 349A Noise Source.
Price: hp 340B, $\$ 715$ (cabinet); hp 340BR, $\$ 700$ (rack mount); hp 342A, $\$ 815$ (cabinet); hp 342AR, $\$ 800$ (rack mount); not available in Western Europe.

Specifications, 343A
Frequency range: 10 to 600 mc .
Excess nolse: $5.2 \mathrm{db} \pm 0.1 \mathrm{db}, 10$ to $200 \mathrm{mc} ; 5.2 \mathrm{db} \pm 0.25$ $\mathrm{db}, 200$ to $400 \mathrm{mc} ; 5.2 \mathrm{db} \pm 0.35 \mathrm{db}, 400$ to 600 mc .
Source impedance: 50 ohms; swr less than 1.2, 10 to 400 mc , and less than $1.3,400$ to 600 mc .
Dimensions: $23 / 4^{\prime \prime}$ wide, $21 / 2^{\prime \prime}$ high, $5^{\prime \prime}$ deep ($70 \times 63 \times 127$ mm).
Weight: net $3 / 4 \mathrm{lb}(0,34 \mathrm{~kg})$; shipping $2 \mathrm{lbs}(0,9 \mathrm{~kg})$.
Price: hp 343A, \$100.
Option 01.: spare noise diode (s) calibrated and supplied with instrument, add $\$ 40$ each.

Specifications, 345B

(same weight and dimensions as 343A)
Spectrum center. 30 or 60 mc , selected by. switch.
Excess nolse: 5.2 db into conjugate load.
Source impedance: $50,100,200$ or 400 ohms, $\pm 4 \%$, as selected by switch; less than 1 pf shunt capacitance.
Price: $\mathrm{hp} 345 \mathrm{~B}, \mathbf{8 1 2 5 \text { (for operation at any two frequencies }}$ between 10 and 60 mc in lieu of 30 and 60 mc , add $\$ 25$).

Specifications, 347A

$\operatorname{hop}_{\text {Model }}$	Range (go)	Exoess nolse (db)	Approx length		Prloe
			(Im.)	(mm)	
S347A	2.60-3.95	15.1 ± 0.5	221/2	572	\$390
G347A	3.95-5.85	15.2 ± 0.5	19	483	\$310
J347A	$5.30-8.20$	15.2 ± 0.5	19	483	\$300
H347A	7.05-10.0	15.7 ± 0.5	16	406	\$275
X347A	$8.20-12.4$	$15.9=0.5$	143/4	375	\$225
P347A	12.4-18.0	$16.0=0.5$	14/4	375	\$275

SWR Ior all models, fired or untired, 1.2 maximum,

Specifications, 349A

Frequency range: 400 to 4000 mc , usable to 200 mc , with correction supplied.
Excess noise: $15.6 \mathrm{db} \pm 0.6 \mathrm{db}, 400$ to $1000 \mathrm{mc} ; 15.7 \mathrm{db}$ $\pm 0.5 \mathrm{db}, 1000$ to 4000 mc .
SWR: <1.35 (fired), <1.5 (unfired) up to 2600 mc ; <1.5 (fired or unfired), 2600 to 3000 mc ; <2.0 (fired), <3.0 (unfired) 3000 to 4000 mc .
Dimensions: $3^{\prime \prime}$ wide, $2^{\prime \prime}$ high, $15^{\prime \prime}$ long ($76 \times 51 \times 381$ mm).
Waight: net $31 / 4 \mathrm{lbs}(1,4 \mathrm{~kg})$; shipping $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Price: hp 349A, $\$ 325$.

IMPEDANCE, SWR, REFLECTION COEFFICIENT MEASUREMENT

Impedance-matching a load to its source is one of the most important considerations in microwave transmission systems. If the load and source are mismatched, part of the power is reflected back along the transmission line toward the source. This reflection not only prevents maximum power transfer, but also can be responsible for erroneous meas. urements of other parameters, or even cause circuic damage in high-power ap. plications.

The power reflected from the load interferes with the incident (forward) power, causing standing waves of voltage and current to exist along the line. The catio of standing-wave maxima to minima is directly related to the imped: ance mismatch of the load. The stand-ing-wave ratio (swr), therefore, provides a valuable means of determining impedance and mismatch.

Slotted line measurements

Standing.wave ratio can be measured directly at discrete frequencies using a slotted line. The slotted line is placed immediately ahead of the load in test as shown in Figure 1, and the source ad-

Figura 1. Typical set-up for swr and imped. ance measurements in coax using hp 805C Slotted Line.
justed for 1 ke amplitude modulation at the desired microwave frequency. The slotted line probe is loosely coupled to the of field in the line, thus sensing relative amplitudes of the standing-wave pattern as the probe is moved along the line. The ratio of maxima to minima ($5 w r$) is then read directly on the stand-ing-wave indicator. Additional measurements of the standing-wave null position will yield phase information which may be entered onto a Smith Chart for determination of actual load impedance.
Because the probe must not be allowed to extract any appreciable power from the line, high sensitivity and low noise are required in the detector and indicator. To this end, the indicator is sharply tuned to the 1 kc modulation frequency of the source, thereby reducing noise and allowing the use of a high-gain audio amplifier and voltmeter circuit.

Other considerations selative to accurate slotted line measurements include
elimination of barmonics from the source prior to entering the slotted line, low FM in the source and low residual swr in the slotted line itself. Sources of error in slotted line measurement are discussed in detail in Application Nore 65, "Micro. wave Impedance Measurement," available on request through hp sales offices.

Reflectometer techniques

The reflection coefficient (ρ) of a device or system is another useful term in establishing the impedance match of microwave devices. The following relationships of p and swr are frequently used in impedance work:

$$
p=\frac{E_{\text {reflocted }}}{E_{\text {Incident }}}=\frac{s W_{I}-1}{5 W^{\prime} r+1} .
$$

The amplitude of reflected voltage with respect to the incident voltage is given in terms of db return loss by the expression: $\mathrm{db}=-20 \quad \log _{10} p$. For example, if the reflected signal from a test device is 26 db below the incident signal level, the reflection coefficient of the device is calculated as 0.05 . In a like manner, any reflection coefficient from zero to one can be determined by a measure of the return loss.
The reflection coefficient of a load can be measured by separating the incident and reflected waves propagated in the transmission line connecting the source and load. The reflectometer uses direcrional couplers to accomplish this separation in both waveguide and coaxial systems. Improved reflectometers, such as described on pages 160 and 161 of this catalog, permit continuous oscilloscope displays or permanent $x-y$ secordings of reflection coefficient across complete operating bands. Oscilloscope displays, such as shown in Figure 2, allow rapid go no-

Figure 2. Oscilloscope displays of low-pass filtar reflectlons.
go tests or monitoring of broadband cizcuit performance during critical adjustments.

Incident power in the improved refiectometer is held constant by the level. ing action of the sweep oscillator and crystal detector sampling the incident wave from the forward couples. With
incident power held constant, only the relative amplitude of the refiected wave need be measured to determine reflection coefficient. This technique permits better accuracy than older systems, and fast sweep speeds enabling the use of oscilloscope displays.

Reflectometer calibration

To calibrate the reflectometer, a short circuit is placed at the output port, thus reflecting all of the incident power. The detector in the reverse-arm coupler samples the reflected power and provides a proportional de voltage for readout. By placing a calibrated attenuator ahead of the detector, specific amounts of return loss may be pre-inserted for calibra. tion of the oscilloscope or recorder gain. The attenuator is then returned to zero, the shorr removed and the test device connected and measured on the pre-calibrated display.
Calibration also is possible without the pre-insertion attenuator if the detector law is known and the vertical response of the readout device constant. Calibration levels with this rechnique are established with the rf turned of (corresponding to no reflection), then with all of the power refected by a sliding short. Reflections falling between these limits are then read from the oscilloscope graticule or directly from calibrated transparent overlays such as furnished with hp Application Note 61. Calibration procedures and instructions for use of these overlays are included in the note, which is avail. able from Hewlett-Packard.

Reflectometer calculator

Time-consuming calculations of return loss and conversion of ρ to swr may be eliminated by using an hp Reflectometer Calculator. This slide-rule-rype aid provides continuous scales of p. swr and return loss, which may be positioned under a cursor for instant conversion of terms. Other useful information such as am. biguity in reffectomerer measurements, mismarch loss and waveguide specificarions are included on the calculator, which may be obcained from your hp field engineer upon request.

Reflectometer errors

The overall measurement accuracy of leveled reflecrometer systems such as described here may be closely approximated by considering the various sources of error separately, then taking the rms average. These errors may be classified as being due to imperfect components comprising the refectometer as follows:

1) directional couplers
2) detectors
3) attenuator used in calibration
4) display or readout instrument One of the primary errors introduced by directional couplers is the directivity signal. Directivity of a coupler refers to its ability to distinguish between forward and reverse power flowing in the main arm. Since reflectomerry is based on the separation of incident and reflecked power by use of the directional couplers. high directivity is essential to accurate measurements. Any incident power passing to the reverse coupler auxiliary output (because of imperfect directivity) will add in unknown phase with the actual reflected signal from the load in test. The result is an ambiguity in the voltage level at the reverse coupler out. put. The ambiguity caused by reverse coupler directivity can be determined in terms of reflection coefficient by substituting the directivity (in db) into the return loss equation given earlier. Thus, for a reverse coupler directivity of 40 db , the ambiguity in ρ is ± 0.01. For 20 db directivity, ambiguity is ± 0.1, etc. The ambiguity caused by the formard coupler directivity also must be considered. particularly when measuring large reflections. If directivity is not infinite, part of the signal refected from the test load will appear at the auxiliary arm output of the forward coupler. This directivity sig. nal adds vectorially with the incident signal, producing an ambiguity in the incident porver level. The ambiguity is proportional to the magnirude of load reflection and forward couples directivity and may be calculared as follows:

$$
\begin{aligned}
& \Delta \rho= \pm \rho\left(\text { log }^{-}, \frac{D B}{20}\right) \\
& \text { where } D B= \text { coupler directivity } \\
& \rho=\text { retlection coefficient } \\
& \text { of test load. }
\end{aligned}
$$

Primary factors to be considered in the detectors are frequency response, deviation from square law and mismatch. Using hp 423A or 424 A Crystal Detec. tors, frequency response is typically fat to within $\pm 0.2 \mathrm{db}$ per ocrave and devia. tion from square law less than $\pm 0.2 \mathrm{db}$ over a 20 db dynamic range. These two errors can be evaluated in terms of reAecrion coefficient ambiguity by alternately adding and subtracting the db values to the return loss actually measured. The errors caused by these two factors can be eliminated by using the pre-insertion attenuator for initial system calibration. Error due to mismatch between hp 752 Waveguide Couplers and 42 -1A Detectors is typically less than $\pm 3 \%$ of the ρ measured. This includes the rotal effects of detector mismatch in the incident coupler used for ieveling feedback and the reverse arm measuring reflected voltage from the load.

The use of a pre-insertion attenuator
for calibration eliminates some detector errors but introduces error of its own. The dial accuracy of the attenuator and mismarch considerations lead to the following expression for the error introduced in the measured reflection coeff. cient:

$$
\Delta \rho=\rho(1-\rho=0.02 \pm 0.015)
$$

Where $p=$ reflection coefficient of the rest load.
When the attenuator is not used for calibration, the readout or display device causes error in the measured ρ. The effects of non-linearity, instability and resolution are factors which must be considered. When using hp 130 C or 140 A Oscilloscopes for measuring small catios (≈ 1). accuracies of 2% are reasonable. Ratios of $30 \mathrm{db}(\rho \approx 0.03)$ can be determined with about 4% accuracy.

The total effects of these ercors can be conservatively estimated as follows for leveled refiectometers using the hp equipment mentioned:

1. Using the 382A atrenuator pre-insertion technique. $\Delta_{\rho}= \pm(0.01+$ 0.05ρ).
2. Using the straightforward oscilloscope rechnique, $\Delta \rho= \pm(0.011+$ 0.04ρ).
A more complete discussion and error analysis of reffectometer systems is included in hp Application Nore 65 on microwave impedance measurements.

Coaxial swept-frequency measurements

Coaxial devices may be swept-frequency tested with good accuracy up to about 4 gc in coaxial reflectometers. At frequencies much above 4 gc , the low directivity of coaxial directional couplers limits the usefulness of reflectometers considerably. While directivities of better than 30 to 40 db are available from 1 to 4 ge (hp 776D, 777D), coax couplers designed for operation around 10 gc ex. hibit directivities of only is db . This results in ambiguities of ± 0.18 in the measured ρ or an equivalent swr of about 1.44:1. If one simply uses waveguide couplers (for their high directivity) and a waveguide-co-coax adapeer, the system would still have an ambiguity of about
0.11 ($\mathrm{swr}=1.25$) due to the refection of the adapter.

The new hp X8440A Reflection Coef. ficient Bridge allows swept-frequency testing of coax devices from 8.2 to 12.4 gc with high accuracy. The bridge retains the high directivity of waveguide couplers while cancelling the residual effects of waveguide-to-coax adapiers through unique design and careful selection of components. Figure 3 shows the bridge configuration with a leveled sweep oscillator connected. The two signal paths from the source to the detector are shown by the dashed and dotted lines. The E field in one path is rotared by 180° in the lower waveguide twists, whereas the E field in the other path remains in the same phase (note the upper twist rotares 90° then back 90°). Coupling characteristics of the directional couplers and the impedance of the adapters are carefully matched over the 8.2 to 12.4 gc band in production. The path lengths of the two signals are made equal by placing shims between certain of the waveguide flanges. As a net result, the two signals at the detector are equal in amplitude and 180° out of phase, producing a null in the detector reading and effectively cancelling adapter reflections. The output of the detector then is directly proportional to the reflection coefficient of any test device connected at the bridge's measuring arm. Matched coax adapters are provided at each arm of the bridge so either male or female Type N connectors may be tested. Accuracy of the system is better than $\Delta \rho= \pm\left(0.03+0.16 \rho^{2}\right)$, where p is the reflection coefficient of the load in test. This represents a major improvement in accuracy for swept-frequency resting in coax where conventional refiectometers are seriously limited. Equipment using Type N coax connectors (male or female) with a swr of 1.5 can be tested with the X8440A with an swr ambiguiry of 1.08 or less. Electrical tests of newly manufactured Type N connec. rors can be made with berter accuracy, in most cases, than if slorted line techniques were used. Request Application Note 66 from your hp sales office for complete information on coax testing in X-band with the X8440A.

Figure 3. Measurement of reflection coefficient in coax 8.2 to 12.4 gc , with the hp X8440A.

Useful for swr, reflection coefficient, attenuation, AF null measurements

Advantages:

Increased resolution with expand, offset provisions giving full-scale expansion for any 2.5 db increment - no "blind" spots
Tunable amplifier to match source modulator
Variable bandwidth for optimum swept-frequency or high-sensitivity testing
Built-in bolometer protection
Solid state, compact, low power consumption; portable operation optional

The hp 415D consists of a high-gain, low-noise solid-state amplifier operating at a tuned audio frequency and a voitmeter calibrated for square-law detectors to read directly in swr. The normal db scale covers 0 to 10 db , with a range attenuator covering 60 db in 10 db steps. The "expandoffset" feature activates the proper offset curcent and gain change to normalize the meter reading automatically. Four separate expand ranges cover the complete 10 db scale in 2.5 db sections. Concentric controls present direct readout on expanded, as well as unexpanded scales.

A front-panel screwdriver adjustment permits tuning the amplifier over a 50 cps range for ease in matching the signal source. Normal tuned frequency is 1000 cps , but fre. quencies between 400 and 2500 cps are available on special order. (Tuning frequency, however, should not be harmonically related to power line frequency.)

Another front-panel screwdriver control permits contincous adjustment of instrument bandwidth from 13 to 130 cps to increase sensitivity with narrow bandwidths or increase bandwidth for swept-frequency testing. The 415D is designed to operate with bolometers or crystals. The 200. ohm bolometer input provides bias of 8.7 or 4.3 ma for barretters or instrument fuses. A rear-panel control adjusts the bias $\pm 10 \%$ of nominal value, the bias readable on the meter face. A 200.0 hm crystal rectifier input is provided, as well as a high-impedance input (200 K) for crystal rectifiers when operating the instrument as a null detector. The bolometer bias is peak-jimired.

Both ac and dc outputs are provided for use of the 415D as a high gain tuned amplifer and with recorders. The solidstate 415D may be operated with an internally mounted battery pack (optional extra) for completely portable use or to eliminate ground loops.

Specifications

Input: crystal: 200 ohms and 200 K input impedance; bolometer: 200 ohms input impedance; bias, variable $\pm 10 \%$ provided for 8.7 and 4.3 ma bolometers, positive bolometer protection; BNC input connector.
Sensitlvity: $0.04 \mu \mathrm{v} \mathrm{rms}$ at minimum bandwidth, $0.1 \mu \mathrm{v} \mathrm{rms}$ at 30 cps bandwidth. 25° to $59^{\circ} \mathrm{C}$ (decreases to approx. 0.2 p v rms ar 30 cps bandwidth at $0^{\circ} \mathrm{C}$).

Nolse: at least 7.5 db below full scale with $0.1 \mu^{\mathrm{v}}$ rms sensitivity and min. bandwidth, at least 5 ab below full scale with $0.1 \mu \mathrm{v}$ rms sensitivity and 30 cps bandwidth.

Frequency: 1000 cps , adjustable 5%; other frequencies beteween 400 and 2500 cps available on special order.
Bandwidth: variable, nominally 13 to 130 cps .
Range: 70 db in 10 and 2.5 db steps.
Accuracy: $\pm 0.1 \mathrm{db} / 10 \mathrm{db}$ step, maximum cumulative ± 0.2 db ; $\pm 0.1 \mathrm{db}$ when switching from any 10 db step (Norm) to any 2.5 db step (Expand), except $\pm 0.05 \mathrm{db}$ when switching to 0.0 (Expand); $\pm 0.02 \mathrm{~d} b$ linearity on Expand scales.
Output: dc: 0 to 1 ma into 1500 ohms maximum at the re. corder jack (one side grounded); ac: 0 to approx. 0.5 v rms (Norm), 1 v rms (Expand) across 10 K min. at the amplifier output terminals (one side grounded).
Meter scales: calibrated for square-law detectors; swr: 1 to 4. 3.2 to 10,1 to 1.3 (Expand): $\mathrm{db}: 0$ to 10,0 to 2.5 (Expand); Bolo Bias.
Meter movenent: taut-band suspension, mirror-backed scale, with expanded db and swr scales greater than $41 / 4^{\prime \prime}$ (108 mm) long; tracking linearity 0.25% of full scale.
Power: 115 or 230 volts $\pm 10 \%, 50$ to $1000 \mathrm{cps}, 2$ watts; power line frequency or multiples thereof must not be at the tuned amplifier frequency; optional rechargeable battery piovides up to 36 hours' continuous operation.
Dimensions: $7.25 / 32^{\prime \prime}$ wide, $6.3 / 32^{\prime \prime}$ high, $11^{\prime \prime}$ deep from front panel ($190 \times 155 \times 279 \mathrm{~mm}$).
Weight: net $8 \mathrm{lbs}(3,5 \mathrm{~kg}), 11 \mathrm{lbs}(5 \mathrm{~kg})$ with batteries; shipping $11 \mathrm{lbs}(5 \mathrm{~kg}), 15 \mathrm{lbs}(6,8 \mathrm{~kg})$ with batteries.
Accessories available: 415C-95A Rechargeable Battery and installation kit, $\$ 100$; 10501A Cable Assembly, \$3.50; 10503A Cable Assembiy, $\$ 6.50$.
Prlee: hp 415D, 8350.
Options

1. Rechargeable battery installed, add $\$ 100$.
2. Rear input connector wired in parallel with frontpanel input connector, add $\$ 1 s$.

415B STANDING WAVE INDICATOR, 476A, 485B MOUNTS

For convenient swr measurements

415B Standing Wave Indicator

Similar to the hp 415D, this meter is a tuned voltmeter for swr measurements with hp slotted lines and derector mounts. It also is useful as a null indicator for bridge measurements, with a 200 K input circuit for this use.

A 60 db attenuator adjustable in 10 db range steps provides a calibrated range of 70 db . An output is provided for use with a recording milliammeter, and a special $s \mathrm{db}$ attenuator is incorporated to increase resolution through use of the upper portion of the logarithmic meter scale.

Inputs include a 200 -ohm termination with bias of 4.3 or 8.7 ma for bolometers, unbiased for crystals, or a 200 K load for null measurements. A jack and monitor cable are provided for connecting an external milliammeter to measure bolometer current.

Specificatlons, 415B

input: "Bolo" (200 ohms), bias provided for 8.7 or 4.3 ma bolom. eter or $1 / 100 \mathrm{amp}$ fuse; "Crystal" (200 ohms) for crystal rectifier; "Crystal" (200 K) high impedance for crystal rectifier as null detector; BNC connector.
Sensifluity: 0.1μ volt at 200 ohms for full-scale delection,
Noise: at least S db below full scalc when operated from 200 -ohm resistor at room temperature.
Frequency: $1000 \mathrm{cps} \pm 2 \%$; other frequencies, 315 to 2020 cps , available on special order; should not be harmonically related to power line frequency.
Bandwidth: 30 cps (nominal).

Range: 70 db ; input attenuator provides 60 db in 10 db steps, accuracy $\pm 0.1 \mathrm{db}$ per 10 db step; maximun accumulative error, $\pm 0,2 \mathrm{db}$.
Scale selector "Norma!", "Expand" and " $-S$ db"
Output: jack provided for recording milliammeter having 1 ma fullscale deflection and internal resistance of 1500 ohms or less,
Meter scales: swe 1 to 4 , sner 3 to 10 , expanded swe 1 to 1.3 : db 0 to 10 , expanded db 0 to 2.
Power: 115 or 230 volts $\pm 10 \%$, 50 to 60 cps , 55 watts.
Dimensions: cabiner: $71 / 2^{\prime \prime}$ wide, $113 / /^{\prime \prime}$ high, $121 / 2^{\prime \prime}$ deep (191 x $299 \times 318 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $6.31 / 32^{\prime \prime}$ high, $107 / 8^{\prime \prime}$ deep behind front panel ($483 \times 177 \times 276 \mathrm{~mm}$).
Welght: net $13 \mathrm{lbs}(5,9 \mathrm{~kg}$), shipping $16 \mathrm{lbs}(7,2 \mathrm{~kg}$) (cabinet); net 17 lbs ($7,7 \mathrm{~kg}$), shipping $27 \mathrm{lbs}(12,2 \mathrm{~kg}$) (rack mount).
Accessories avallable: plug-in filters (specify frequency) : 41 sB . 42 B (315 to 699 cps), $\$ 60$, and $415 \mathrm{~B}-42 \mathrm{C}$ (700 to 2020 cps), \$50; 10501A Cable Assembly, $33.50 ; 10503$ A Cable Assembiy, \$6.90.
Price: hp 415B, 5250 (cabinet) : hp 4158R, s25s (rack mount).

476A Bolometer Mount

Model 476A Bolometer Mount covers the 10 mc to 1 gc frequency range with very low standing wave ratio. The inherently good square law characteristics of the bolometers used make the 476A especially useful for calibrating attenuators when used with an hp 415 Series Meter.

Specifications, 476A

Nominal impedance: 50 ohms.
Maximum swr: <1.15, 20 to 500 mc ; < $1.25,10 \mathrm{mc}$ to 1 gc .
Maximum power level: 10 mw .
Bolometer element: four 8.25 ma instrument fuses (supplied with mount) ; operating level is approximately 200 ohms, positive tem. perature coefficient.
Replacement elements: Pant \#2110-0024, \$1 each.
Weight: net $1 \mathrm{lb}(0,9 \mathrm{~kg})$; shipping $2 \mathrm{lbs}(0,9 \mathrm{~kg})$.
Price: hp 476A, 585.

485B Detector Mounts

The hp 485B Derector Mounts (3.95 to 12.4 gc) permit the accurate marching of waveguide sections to a bolometer element. The mounts are cuned by a variable short, and they can be used with a barretter or, where swr is not critical, with a silicon crystal.

Specifications, 485B

$\begin{gathered} h_{p o l} \\ \text { Model } \end{gathered}$	Frequanoy range (go)	Maxlmum sw ${ }^{1}$	$\begin{array}{\|c} \hline \text { Fits wavegulde } \\ \text { slze } \end{array}$		Lenglh		Prioe
			(in.)	(EIA)	(in.)	(mm)	
G485B2	$3.95 \cdot 5.85$	1.25	2×1	WR187	9.5/16	237	5120
1485B2	$\begin{aligned} & 5.85 \cdot 8.8 \\ & 5.50-5.85 \\ & 5.30-5.50 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.35 \\ & 1.50 \end{aligned}$	$11 / 2 \times 3 / 4$	WR137	81/4	210	\$105
H48582	7.05-10	1.25	$11 / 4 \times 1 / 8$	WRII?	65/8	168	\$85
X485B2	8.2 -12.4	1.25	$1 \times 1 / 2$	Wa90	6-7/16	163	\$ 75

With Narda N821 bapretter
2May use IN21 or IN23 for :naxienum detection sensitivity where swr is not critical
Detector elements are not suppileo

416B RATIO METER

Ease, accuracy for reflection coefficient measurements

Advantages:

Eliminates amplitude-variation error
Operates accurately over $20 / 1$ incident power range Use:

Reflection coefficient measurements over broad frequency range, independent of if power level
The hp 416B is designed for use with unleveled sweep oscillators and signal sources in the measurement of reflection coefficient. The ratio meter provides valid results inde-
pendent of incident power variations as high as $20: 1$. Either swept- or fixed-frequency measurements can be made using the Model 416 B , and a high-impedance output on the rear of the instrument permits swept-frequency measurements to be presented on an oscilloscope or preserved on a graphic recorder. The panel meter is calibrated in percent reflection and equivalent swr.

The 416 B operates with either crystals or bolometers, and a panel switch permits selection of 4.3 or 8.7 ma bias for bolometers. Positive bolometer protection is provided.

Specifications

Meter presentation

Reflection coefficlent (\%): four ranges, $100 \%, 30 \%$, 10% and 3% reflection, equivalent to reflection coeff. cients of $1,0.3,0.1$ and 0.03 .
Equivalent swr: two ranges, 1.06 to 1.22 and 1.2 to 1.9 . DB: for use with both reflection coefficient and equivalent swr scales; scale calibrated 0 to -10 db ; with ranging, spans 0 to -40 db in four $10-\mathrm{db}$ steps.
Accuracy: crystal, $\pm 3 \%$ of full scale; bolometer, same as crystal except $\pm 5 \%$ for incident input voltage below 1 mv .
Callbration: square law for use with crystal detectors or barretters.
Frequency: $1000 \mathrm{cps} \pm 40 \mathrm{cps}$ ($\pm 20 \mathrm{cps}$ for bolometer de. tectors when incident input voltage is $<1 \mathrm{mv} \mathrm{rms}$).
input valtage (for full-scale deflection):

	Cryatal	Bolomater
Incident chennel	3 to 100 mv rms	0.3 to 10 mv rms
Reflectad channel	$3 \mu v$ to 100 mv rms	$0.3 \mu \mathrm{v}$ to 10 mv ms

Input impedance (both chamnels): crystal, approximately 75 K; bolometer, approximately 500 ohms (High Bolo) of 1000 ohms (Low Bolo).

Excess Incident attenuatlon: provision for 10 db increase of incident channel sensitivity for reflectometers using couplers with different coefficients; under certain circumstances, accuracies can be improved by this procedure.
Output Open clrcult voltage: approx. 10 v de at full scale. Source impedance: 100 K ; BNC type connector.
Bolo blas: high range, 8.7 ma ; low range, 4.3 ma ; bias variable approximately 10% by means of rear-panel control; positive bolometer protection.
RF power monitor level indicator monitors input amplitude (and frequency, indirectly) to assure proper operating range for the instrument and for crystal detectors.
Power: 115 or 230 volts $\pm 10 \%, 50$ to $60 \mathrm{cps}, 115$ watts.
Dimenslons: cabinet: $203 / 4^{\prime \prime}$ wide, $123 / 4^{\prime \prime}$ high, $147 / 8^{\prime \prime}$ deep ($527 \times 324 \times 378 \mathrm{~mm}$); rack mount: $19^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $14^{\prime \prime}$ deep behind panel ($483 \times 267 \times 356 \mathrm{~mm}$).
Weight: net $36 \mathrm{lbs}(16,2 \mathrm{~kg})$, shipping $45 \mathrm{lbs}(20,3 \mathrm{~kg})$ (cabinet); net $28 \mathrm{lbs}(12,6 \mathrm{~kg})$, shipping $41 \mathrm{lbs}(18,5$ kg) (rack mount).
Accessorías avallable: 10503 A Cable Assembly, $\$ 6.50$; 11001 A Cable Assembly, $\$ 5.50$.
Price: hp 4168, $\$ 590$ (cabinet); hp 416BR, $\$ 575$ (rack mount).

423A, 424A, 420A,B, 422A, CRYSTAL DETECTORS

Flat response, high sensitivity, low swr

The hp 423A and 424A Crysral Detectors advance the state of the art in crystal video detectors by combining extremrely flat frequency response with high sensitivity and very low swr. Such performance is due to a new crystal diode package developed by Healett-Packard, in which a supecior diode is incorporated in a unique sealed capsule to provide best microwave sharacteristics. This approach also facilitates diode replacement, which can be made easily in the field. The flat frequency response and low sar of these derectors make them extremely useful as the derecting element in closed-loop leveling systems.

Matched pairs

For reflectometer applications in which both trequency response and square law characteristics are important, matched pairs of 423 A and 424 A detectors can be supplied with video toads for optimum square-law conformance. The low outpuc apacitance of these detectors makes them ideal for derecting fast rf pulses; wrorking into a low-capacitance $50-0 h m$ load, their rise time is in the nanosecond region. Good pulse response permits their use in peak power measurement where the de. tected pulse is compared against a known cow level on a sensitive de-coupled oscilloscope (such as hp 140A, page 277, or 175A, page 283).
The 422A Crystal Detectors are convenient waveguide derectors which cover K - and R -bands. They have a dynamic range of 40 db or more, making them suitable for reflectometer as well as general.purpose applications.
The $420 \AA$ is a low-cost crystal detector which covers the coaxial range from 10 mc to 12.4 gc , making it ideal for general. purpose video detection. The 420 B is essentially the same unit as the 420 A with the addition of a selected video load for optimum square law characteristics in the 1 to 4 gc range. Price: $h_{p} 420 \mathrm{~A}, \$ 50$; hp 420B, $\$ 75$.

hp Model	Frequenoy range (${ }^{(0)}$	Frequenay resp. ${ }^{1}$ (db)	Low-lovel sensiffility (mv/ $\mu \mathrm{w}$)	$\underset{\text { swr }}{\substack{\text { Maximum }}}$	$\begin{gathered} \text { RF } \\ \text { Input } \end{gathered}$	Matohed palr avallable	Square law load available	Lenuth		Shipging walght		Prlee
								(in)	(mm)	(tbs)	(kg)	
423A	0.01-12.4		>0.4	$\left\{\begin{array}{l} 1.2,0.01-4.5 \mathrm{gc} ; \\ 1.35,4.5-7 \mathrm{gc} \\ 1.5,7-12.4 \mathrm{gc} \end{array}\right.$	$\begin{gathered} \hline \text { Type } \\ \text { N } \\ \text { male } \end{gathered}$	yes ${ }^{2}$	yes 3	2-15/32	63	1	0.5	np 423A, \$125
5424A	2.60-3.95	± 0.2	>0.4	1.35	Wave- guide cover flange	yes yes 4 yes 4 yes ${ }^{4}$ yes4 yes ${ }^{4}$ yes 4 yes 5 yes 5		2.7/16	62	2	0,9	hp S424A. \$175
G424A	3.95-5.85	± 0.2	>0.4	1.35				2-1/16	52	?	0,9	hp C424A, \$165
J424A	5.30-8.20	± 0.2	>0.4	1.35				1.7/8	48	1	0,5	hp 1424A, \$165
H424A	7.05-10.0	± 0.2	>0.4	1.35				1.9/16	40	1	0,5	hp R424A, \$155
X424A	8.20-12.4	$=0.3$	>0.4	1.35				1-3/8	35	1	0.5	hp $\times 424 \mathrm{~A}, \$ 135$
M424A	10.0-15.0	± 0.5	>0.3	1.5				1	25	1	0.5	hip M424A, \$250
P424A	12.4-18.0	± 0.5	>0.3	1.5				15/16	24	1	0,5	hp P424A, $\$ 175$
K422A ${ }^{\text {a }}$	18.0-26.5	$=2$	≈ 0.1	2.5				2	51	1	0,5	hp K422A, \$250
R422A 7	26.5-40.0	± 2	≈ 0.1	3				2	51	1	0,5	hp $8422 \mathrm{~A}, \$ 250$

[^18]IAs read on a 416 Ratio Meter (page 234) or 415 SWR Meter (page 233) calibrated (or square law detectors.
?Frequency response characteristics (excluding basic senstivity) track within $=0.2 \mathrm{gb}$ per octaye from 10 mc to 8 gc , $=0.3 \mathrm{db}$ from E to 12.4 ge ; specify 0 option $01 . \mathrm{i}$ add $\$ 40$ per Dalr.
${ }^{3}<=0.5 \mathrm{db}$ varlation from square law up 1050 mv deak outpul into $>75 \mathrm{~K}$; sensltivily fypically $>0.1 \mathrm{mv} / \mu \mathrm{w}$; speclfy ogtion $02 . ;$ add $\$ 20$.
${ }^{4}$ Frequency response characteristics (excluding basic sensitivity) track within $=0.2 \mathrm{db}$ for S ., G -, J - and H -band unfts, $=0.3 \mathrm{db}$ for X -band units, and $=0.5 \mathrm{ab}$ for M and P-band units; specily Option 01.; add $\$ 40$ der pair.
${ }^{5}$ Frequency response characteristics (excluding basic sensitivity) track withln $=1$ do for powef levels less than aporox. 0.05 mw; specify Option $01 . ;$ add $\$ 40$ per palt.
© <0.5 ob variation from square lawi up to 50 mv pead oulput into $>75 \mathrm{~K}$,
Circular flange adapters: $11515 A$ (UG-425,U) for K-band, $\$ 35$ each; $11516 A$ (UG-3B1/U) for R-band, $\$ 40$ each.

750, 752 DIRECTIONAL COUPLERS; X8440A REFLECTION COEFFICIENT BRIDGE

Easy-to-use, precision instruments simplify microwave measurements

X8440A Reflection Coefficient Bridge

Full-range swept-frequency testing of coaxial devices in X-band (8.2 to 12.4 gc) can now be done with equal or greater accuracy than with the previously standard fixedfrequency slotted-line technique! This breakthrough came about with the advent of the hp X8440A Reflection Coefficient Bridge. Maximum measurement error using the bridge is $\pm\left(0.03+0.16 p^{2}\right)$, which, for low values of reflection coefficient (p), corresponds to a residual swr of 1.06 . Coaxial slotted lines, on the other hand, typically exhibit a residual swr of 1.1 between 10 and 12.4 gc (corresponding to a maximum error of ± 0.05 in the measurement of refiection coefficient) and 1.06 between 8 and 10 gc .

The X8440A consists of four waveguide directional couplers in a bridge configuration (waveguide couplers are used for their high directivity) with waveguide-to-coax adapters on opposite sides of the bridge. A 180° phase shift in one side of the bridge cancels the swr of the adapters. The bridge is easily and quickly calibraced; its output is then a direct indication of the reffection coefficient
of the coaxial component under test, which is connected to one of the adapters. The results can be viewed on an oscilloscope (hp 140A with 1416 A plug-in; see page 277) or recorded permanendy with an $x \cdot y$ recorder. Application Note 66, available from your hp feld engineer, describes the theory and operation of the bridge.

752 Directíonal Couplers

High directivity makes the 752 Directional Couplers particularly well suited for measuring small seflections, for rapidly adjusting transmission line Batness over the entire frequency range of the guide, or for broadband reflectometer applications. Signal or power monitoring and signal mixing are additional uses for these precision devices.

Used together and connected back to back, two couplers are most useful with the hp 690 Sweep Oscillators (pages 199-201) in broadband rebection and swe measurements. One directional coupler samples power traveling toward the load, and the detected sample can be used to maintain a constant forsward power. The output of the auxiliary arm

of the second coupler, which samples power reflected from the load, is then a direct indication of reflection coefficient and swir. After detection, this signal can be viewed on an oscilloscope* or permanently recorded on an $x \cdot y$ recorder. The hp 424A Series Crystal Detectors are ideal for use with the 752 couplers.

Each coupler has an overall directivity of better than 40 db (including reflection from built-in termination and flange) over its entire range. Performance characteristics are unaffected by humidity, temperature or time, thus mak. ing these units especially useful in microwave "standards" measurements. Coupling factors are 3, 10 and 20 db ; mean coupling accuracy is $\pm 0.4 \mathrm{db}(\pm 0.7 \mathrm{db}$ for K - and R . bands); and coupling variation vs frequency is $\pm 0.5 \mathrm{db}$ ($\pm 0.6 \mathrm{db}$ for R752D).

750 Cross-Guide Directional Couplers

For many applications an inexpensive yet high quality, compact directional coupler is valuable; this is true for laboratory tests, as well as factory tests, or in permanent system installations. The hp 750 Cross-Guide Directional

Couplers are ideal for such purposes. They consist of two waveguide sections joined at right angles across their broad faces. Coupling factors of 20 or 30 db are available, and connections may be made to both ends of the main and auxiliary guides. This provides a "four-port" network of maximum usefulness and versatility. The units are well suited for power monitoring, for isolation and for mixing powers.

Specifications, X8440A

Frequency range: 8.2 to 12.4 gc .
Max. error in measurement of refiection coefficlent (p): $\pm\left(0.03+0.16 \rho^{2}\right)$.
Accessories furnished: four 24 Waveguide Stands; four X25 Waveguide Clamps; 11511A Type N Female Shorting Jack; 11512A Type N Male Shorting Plug; matched pair of precision Type N male-to-male adapters; matched pair of precision Type N male-to-female adapters.
Price: hp X8440A, \$1200.

* See Application Note 61, "Leveled Swept-frequency Measure. ments with Oscilloscope Display," available upon request from your Hewletr-Packard field engineer.

Specifications, 750 Series

hp Model	Coupllag (db)	Frequency range (go)	fits waverulide size		Dimenstons		Shippilng weloght		Prioe
			(1 m.$)$	(E1A)	(18)	(mm)	(lbs)	(kg)	
\$7500	20	2.6-3 95	$3 \times 1 / 2$	WR284	9×9	229×229	14	6,3	\$150
S750E	30	26-395	$3 \times 11 / 2$	WR284	9×9	229×229	14	6,3	\$150
G7500	20	3 95-5.85	2×1	WR187	6×6	152×152	6	2,7	8120
G750E	30	3.95-5 85	2×1	WR187	6×6	152×152	6	2,7	\$120
J7500	20	*5.85-8.2	$11 / 2 \times 3 / 4$	WR137	5×5	127×127	4	1,8	\$100
J750E	30	*5.85-8.2	$11 / 2 \times 3 / 4$	WR137	5×5	127×127	4	1,8	\$100
H750D	20	7.05-10	$13 / 4 \times 5$	WR112	4×4	102×102	2	0,9	\$ 75
H750E	30	7.05-10	$11 / 4 \times 3 / 1$	WR112	4×4	102×102	2	0,9	\$75
X7500	20	8.2-12.4	$1 \times 1 / 2$	WR90	3×3	76×76	1	0,45	\$ 60
X750E	30	8.2-12.4	$1 \times 1 / 2$	WR90	3×3	76×76	1	0.45	\$ 60

Diractlulty; approximately 20 do or more with good terminations such as hip 914A.
Coupling aocuracy: lass than $=1.7$ do varlation fom noralnsl value over entire frequency range of gulde.

- 3750 coudlers usable to E .3 gc ; directivity same as above: coualing with $=3 \mathrm{db}$ of nominal value.

Specifications, 752 Series

Band 1,2 (preflx)	Frequaray (90)	F\|ts wavegulde size (III)	Mean couplling somuraty (db) 3,4	SWR 3.8 main gulde		Average power aux. gulde load (w)	Lengith (ln)			Shipplig woight		Prioe
				752A	752C,D		A	C	0	(lbs)	(kg)	
S	2.6-3.95	$3 \times 1 / 2$	± 0.4	1.1	1.05	2	501/4	48	48	38	17.1	\$450
G	3.95-5.85	2×1	± 0.4	11	1.05	2	341/2	33	33	16	7,4	\$300
J*	5.85-8.2	$11 / 2 \times 3 / 4$	± 0.4	1.1	1.05	1	$261 / 2$	25-9/16	25-9/16	13	5,8	\$220
H	$705-10$	$11 / 4 \times 1 / 8$	± 0.4	1.1	1.05	1	18\%/4	$179 / 2$	$171 / 2$	4	1,8	\$150
X	8.2-12.4	$1 \times 1 / 2$	± 04	1.1	1.05	1	16-11/16	15-11/16	15-11/16	3	1,4	\$125
M	10-15	$850 \times .475$	± 0.4	1.1	1.05	1	16-5/16	15-11/16	15-11/16	3	1,4	\$225
p	12.4-18	702×391	± 0.4	1.1	1.05	1	13\%	121/4	12\%/4	2	0,9	\$150
K \dagger	18-26.5	$1 / 2 \times 1 / 4$	± 07	1.1	1.05	$1 / 2$	105/8	9-15/16	9-15/16	1	0,45	\$200
R \dagger	26.5-40	360×220	± 0.7	1.1	1.05	1/2	113/8	83/	8-23/32	1	0,45	\$250

When ordering, specify suffx letter to indicate nominal coupling: A for 3 dD . C for $10 \mathrm{db}, \mathrm{D}$ for 20 db (example: S -band, 3 db coupling. Model $\$ 752 \mathrm{a}$).
2Oirectivity is at least 40 db ; swept-frequency tested.
Mean coupling is the average of the maximum and minimum coupling valuas in the rated irsquency range.
'Coupling variation over rated frequency range is not more than $\pm 0.5 \mathrm{db}$ about mean coupling ($\pm 0.6 \mathrm{do}$ far R7520).
thuxiliary arm swf is 1.15 (1.2 for P., K- and R-bend unlis).
-Swept-frequency tested.

- J752 Couplers oderate to 5.3 ge with reduced performance.
felrcular liange adgpters: K-band (UG425/U), hp L1515A, $\$ 35$ each; R-band (UG-381/U), hp 11516A, $\$ 40$ each.

770 DUAL-DIRECTIONAL COUPLERS, 780 DIRECTIONAL DETECTORS, 790 DIRECTIONAL COUPLERS

Increase coax reflectometer accuracy

770 Dual-Directional Couplers

The high directivity of the hp 770 Series Dual-Directional Couplers leads to more accurate results using refectometers in coaxial systems. Reflectometers can save appreciable engineering and production test time in the design and manufaccure of broadband apparatus (such as antennas, transceivers, etc.), while insuring that all portions of the frequency range of interest are examined. The couplers also are capable of materially improving the speed and accuracy of power measurements on coaxial vhf/uhf systems because of theic accurate coupling attenuation characteristic and low swr over relatively wide frequency ranges.

The couplers are specifically designed to furnish maximum versatility and ease in use. Each covers a frequency spread of more than two-tovone, and its coverage is centered on one of the important vhf/uhf bands. The units are capable of handling fairly bigh amounts of power and have a low insertion loss, so that they can be permanently installed in coaxial lines for power monitoring. Since they are dual devices, a power meter or detector can be connected alternately to the "incident" and "reflected" auxiliary terminals to aid in system adjustment for maximizing forward power.

780 Directional Detectors

The hp 780 Directional Detectors are directional couplers with built-in crystal detectors. In each case the coupler itself has extremely flat frequency response and good directivity. while the detector also has very good frequency response plus high sensitivity. The configuration of the directional detector reduces the number of ambiguities over the standard system of separate directional coupler and detector and
makes possible tighter correlation between main-arm power and derected signal.

The directional detector is well suited for closed-loop Ieveling applications, particularly with sweep oscillators such as the hp 690 Series (pages 199-201), for it permits the establishment of a leveled-power point anywhere in a system. Thus, leveled power can be applied to a load regardless of the characteristics of cables, connectors, etc., between the if source and directional detector. The 786D through 789C are coaxial devices; X781A has a coaxial input and X.band waveguide output for working into WR90 waveguide systems. All have good equivalent source match. The detector element is a newly developed hp diode which embodies advanced microwave and solid-stace techniques in a small, sealed capsule.

790 Directional Couplers

The 790 Directional Couplers are ultra-flat couplers which nevertheless have high directivity, making them ideal for power-monitoring applications in coaxial systems. For these couplers, output coupling (ratio of output power from main and auxiliary arms) is specified, rather than coupling factor. Thus, no correction factor is required to account for insertion and coupling losses in the main arm. With a power meter such as the hp 4318 (page 220, 221) connected to the auxiliary arm, a calibrated, absolute power level can be conveniently established at any point in a system. The output of the 431 B Power Meter can be used as a leveling signal for sweep oscillators. Thus, the 790 Directional Couplers, which have good equivalent source match, permit the easy assembly of a swept-frequency of source which is both leveled and calibrated.

Specifications, 774D - 777D

hp Madel	774D	7750	7760	7770
Frequency range	21510450 mc	45010940 mc	940101900 mc	1900104000 mc
Minimum directivity	40 db	40 db	40 db	30 db
Coupline attenuation reach auxiliary arm)	20 db	20 db	20 db	20 db
Accuracy of coupling (each auxiliary arm)	mean coupling level within 0.5 db of specified values			
Max, coupling variation (50-ohm terminations)	$=160$	$=1 \mathrm{db}$	$\pm 1 \mathrm{db}$	± 0.4 db
Auxiliary arm tracking ${ }^{2}$	-	-	$\leq 0.3 \mathrm{db}$	≤ 0.5 d5
Max. primary line swr ${ }^{1}$ (50 -ohm terminations)	1.15	1.15	1.15	1.2
Msx. auxiliary arm swr (50.ohm terminations)	1.2	1.2	1.2	1.25
Powerhandling capacity	50 watts avg. 10 kw peak			
Primery line insertion ioss	approx. 0.15 db	approx. 0.2 db	approx. 0.25 db	approx. 0.6 db
Primery line connectors	precision Type N, one male, one female			
Auxiliary arm connectors	precision Type $\mathrm{N},^{\text {f emale }}$			
Accessories available	L1511A Type N Female Shorting Jack, \$4; 11512A Type N Male Shorting Plug, \$4.50			
Length	$9.1 / 16^{\prime \prime}(230 \mathrm{~mm})$	$9-1 / 16^{\prime \prime}$ (230 mm)	$6.5 / 16^{\prime \prime}$ (161 mm)	$8.7 / 8^{\prime \prime}(225 \mathrm{~mm})$
Shipping weight	$4 \mathrm{lbs}(1,8 \mathrm{~kg})$	$41 \mathrm{bs}(1,8 \mathrm{~kg})$	$3105(1.4 \mathrm{~kg})$	$3 \mathrm{los}(1,4 \mathrm{~kg})$
Pfice	hp 774D, \$200	hp 775D, \$200	hp 7760, \$200	ho 7770. \$250

Measurâ with hp 905A Sidlag Terminatlan or K01-7700 Line Length Set.
2wiaximum change in the coupling curve of one auxlliary arm relative to the other.
Specifications, 780 Series

hg Model	Fraquanay range (go)	Freq resp. (db) 1,2	Low. leval sans. $(\mu v / \mu w)$	Dlreofivity (db) 1	Equlv, source matoh T^{3}	Max. 3wr	$\begin{gathered} \text { Max. } \\ \text { mput } \\ \left\langle w_{1}\right. \text { peak } \\ \text { of avp. }\rangle \end{gathered}$	Inser- flon loss (db)4	Length		Shipping welght		Prioe
									(m)	(mm)	(bbs)	(kg)	
7860	0.96 to 2.11	± 0.2	>4	30	1.13	1.151	10	0.25	6	152	2	0,9	$\$ 300$
7870	1.9104 .1	± 0.2	>4	26	1.16	1.151	10	0.35	4/8/	124	2	0,9	\$300
788 C	3.7108 .3	± 0.3	>40	20	1.25	1.20	1	0.6	4/6	124	2	0,8	\$325
789C	8.01012 .4	± 0.5	>20	17	1.25	1.40	1	0.7	115/8	295	2	0,9	\$350
X781A	8.0 to 12.4	± 0.5	>20	17	1.07	1.251	I	0.7	15\%/	400	2	0.9	\$350

iswept-freauency tested.
${ }^{2}$ As read on a 416 Ratio Meter or 015 SWh Meter callbrated lor square-law detectors.
The adparent swr at the outout of an ri generating system, such as the output of a directional detector when it is used inf a closed-loop leveling system.
lacluces loss due to couding.

For all models

Detector output impedance: 15 K max, shunted by approx. 10 pf .
Detector element: supplied.
Nolse: $<200 \mu^{v}$ peak to peak with cw power applied to produce 100 mv output.
Detector output polarity: negative.
Detector output connector: BNC female.
RF connectors: precision Type N , one male (input), one female (789C: both female; X781A: input, precision

Type N female; output, precision cover fiange, fits $l^{\prime \prime} \times 1 / 2^{\prime \prime}$ waveguide, EIA WR90).

Options

2. Furnished with load resistor for optimum square law characteristics at $24^{\circ} \mathrm{C}\left(75^{\circ} \mathrm{F}\right),< \pm 0.5 \mathrm{db}$ variation from square law from low level up to 50 mv peak output (working into external load >75 K) ; sensitivity typically one-fourth of unloaded sensitivity; add $\$ 20$.
3. Positive polarity detector output; no additional charge.

Specifications, 790 Series

$h \beta$ Model	Frequenoy range (ge)	Mean outpul coupling (db) ${ }^{1}$	Output coupling varlation (db)	Dires. tivity (db) ${ }^{2}$	Equiv. solspe matoh 2, ${ }^{2}$	Max. primary \|阝пи swr	Max. aux. ârm swr	Max. Inourt (w)	Inserthan loss (db) ${ }^{4}$	Longth		Shipgling walsht		Price
										(in)	(mm)	(1b)	(kg)	
796D	0.96 to 2.11	20 ± 0.5	± 0.2	30	1.13	1.152	1.202	50	0.25	6	152	2	0.9	\$200
7970	1.9104 .1	20 ± 0.5	± 0.2	26	1.16	1.152	1.252	50	0.35	4/88	124	2	0,9	\$200
798 C	3.7108 .3	$10=0.3$	± 0.3	20	1.25	1.20	1.20	10	0.6	41/8	124	2	0,9	\$225

[^19]
INSTRUMENTS WITH GPC-7 PRECISION COAX CONNECTORS

Increased accuracy for coax measurements to 18 gc

Precision measurements in coaxial systems have historically been restricted to the lower portions of the microwave spectrum primarily due to the measurement ambiguities and lack of repeatability that resulted from the coaxial connectors themselves. The practical extension of coaxial techniques to 18 gc is now possible with the introduction of the Amphenol* GPC-7 Precision 7 mm Coaxial Connectors.

These connectors, originally conceived by Hewlett-Pack. ard with futher development carried on jointly by HewlettPackard and Amphenol, offer the following outstanding characteristics: extreme broadband useability (to 18 gc), low swr, quick-connect coupling with positive and precise alignment, clearly defined reference plane, low rf leakage and low contact resistance. In addition, the connectors are sexless, and all categories, i.e., GPC.7, LPC.7 and FPC.7 series of the Amphenol 7 mm connector class will mate.

Hewlett-Packard has embarked on an extensive program to apply these new precision connectors to all types of coaxial test instruments, particularly where overall performance can be materially enhanced, either by improving measurement accuracy or extending the frequency range of measurement. Shown on these pages are some of the new coaxial test instruments that are equipped with the GPC-7 connector, along with brief descriptions of the major performance characteristics.

281B Series Waveguide-to-Coaxial (GPC-7) Adapters

Transformation from waveguide systems into precision 7 mm coax is achieved with the 281 B Series Waveguide-to. Coaxial Adapters. Similar to the 281A Series (page 174),

hp Modal	Frequency pange	Wavegulde gort ElA dasinnatlon
S 281B	$2.60-3.95 \mathrm{gc}$	WR 284
C 2818	$3.95-5.85 \mathrm{gc}$	WR 187
J281B	$530-8.20 \mathrm{gc}$	WR 137
H 281B	$7.05-10.0 \mathrm{gc}$	WR 112
X 2818	$8.20-12.4 \mathrm{gc}$	WR 90
H 2818	$10.0-15.08 \mathrm{c}$	WR 75
P 281B	$12.4-18.0 \mathrm{gc}$	WR 62

adapters covering all standard waveguide sizes from 2.60 to 18.0 gc are offered. Especially noteworthy are the M281B and P281B, which permit adaptation to 7 mm coax of higher frequency instruments with waveguide outputs such as hp 626A Signal Generator (pages 196, 197) and hp 695A Sweep Oscillator (pages 199-201).

Loads and terminations

Important constituents in measurement systerns are low. reflection terminations, and hp has developed a coaxial sliding load, Model 907A, for use with GPC. 7 precision coaxial systems. The 907A Sliding Load operates to 18 gc with less than 1.05 load swr; this reflection can be shifted in phase to permit its separation from other reflections in the system under test.

The $h_{p} 909 \mathrm{~A}$ is a fixed coaxial termination for GPC.7 coax systems with less than 1.04 swe over its full de to 18 gc range.

Crystal detectors and thermistor mounts

The superior performance of the hp 423A Crystal Detector (page 235) has been incorporated in the new hp 8470A Crystal Detector for GPC-7 coaxial systems. Low vswr, high sensitivity and flat response as high as 18 gc are among the major features.

The hp 8480A Coaxial Thermistor Mount is the GPC-7 connector version of the familiar hp 478A Thermistor Mount (page 220) for use with the hp 4318 Power Meter. This temperature-compensated thermistor mount provides a good impedance match and high efficiency, resulting in accurate of power measurements in the 100 mc to 12.4 gc frequency range.

Slotted lines, 500 mc to 18 gc

Hewlett-Packard offers two new slotted lines which provide accurate vswr measurements in 7 mm coaxial systems equipped with GPC. 7 connectors. The Model 805E covers the frequency range from 500 mc to above 4 gc with less

[^20]than 1.02 residual vswr. The 805 E , derived from the familiar Type N hp 805C Slotted Line (page 244), features a GPC-7 connector on one end for connection to the 7 mm device under test. The other end of the 805ε is equipped with a Type N connector for simple connection to the sig. nal source.

To cover the important frequency range from 3.5 to 18 gc , the new hp Model 816A has been developed. This integral carriage and slotted line, with GPC-7 connectors on both ends, exhibits less than 1.02 residual swr over its entire frequency range. The Model 447A Untuned Probe, featuring low noise and high sensitivity, has been specifically designed for use with the 816A Slotted Line to provide greatest overall measurement capability.

Other instruments

To extend measurement capabilities within the 3.5 to 18 gc frequency range, the hp 873A Slide Screw Tuner can be employed to tune out other system discontinuities.

Coaxial dual-directional couplers, directional detectors and flat directional couplers, derived from their Type N counterparts, hp 770, 780 and 790 Series (page 238), are instruments that contribute additional measurement flexibility in 7 mm coaxial systems. While the input and auxiliary ports are Type N , the output port is a GPC-7 connector, thereby facilitating use of levelled sweep oscillators (hp 690 Series, pages 199-201) and coaxial refiectometer techniques.

Dual-directional couplers

hp Model	Froquenoy
87740	21510450 mc
87750	450 to 940 mc
8776 D	940 to 1900 mc
87770	191040 gc
Directional detectors	
hp Madal	Frequenay
87860	0.96 to 2.11 gc
87870	1.9104 .1 gc
8788C	3.71083 gc
8789C	8.010124 gc

Flat directional couplers

hp Madel	Frequenay
8796 D	096 to 2.11 gc
8797D	1.9 to 4.1 gc
8798C	3.7108 .3 gc

K07-999 Connector Evaluation Set

The Hewlett-Packard K07-999 Connector Evaluation Set has been developed to peranit equipment designers to evaluate the performance of the new Amphenol 7 mm precision connector series.

The set consists of the 816A Precision Coaxial Slotted Line with integral carriage and 447A Broadband Probe Assembly. 873A Slide Screw Tuner and 907A Low Reflection Coaxial Sliding Load, all equipped with GPC. 7 coax connectors and precision-manufactured to ensure exact measurements. Frequency range of the set is 3.5 to 18 gc , and the minimum measurable swr, using the half-wavelength substitution technique, is 1.003 .

Other equlpment

For the convenience of equipment designers and measurement laboratories, Hewrlett-Packard can supply the Amphenol 7 mm components that might be needed for system tests, measurement and evaluation applications. Of course, these items also are available through the Amphenol RF Division organization.

hp Part No.	Desoription	Amphenol No.
1250-0745	GPC. 7 General Precision Commecior	131-1100
1250-0746	7 mm Arline Assembly-5.900" (fitted with one GPC-7 each end)	131-5001
1250-0747	7 mm Airline Assembly-4.215" (fitted with one GPC. 7 each ond)	13i-5000
1250-0748	```7mm Airline Assembly - 3.278" (fitted with one GPC-7 each end)```	131-5002
1250-0749	Adapter; GPC-7 to N male	
1250-0750	Adspter; GPC-7 to N female	
1250-0751	Adapler; GPC-7 10 TNC male	
1250-0752	Adapter; GPC-7 io TNC female	
8710-0037	GPC. 7 assembly tool kil	131-2025

PROBE CARRIAGES, SLOTTED LINES, PROBES, DETECTORS

Low-cost precision tools for microwave measurements to 40 gc

809B, 814 Carriages

Model 809 B Carriage is a precision mechanical assembly which operates with six hp 810 B Waveguide Slotred Sections (3.95 to 18 gc) and with hp 806 B Coaxial Slotted Section (3 to 12 gc). The carriage eliminates the cost of a probe carriage for each frequency band. Sections can be interchanged in seconds. The 809 B is designed for use with either the hp 444 A Untuned Probe or the hp 442 B Broadband Probe. The carriage has a centimeter scale with a vernier reading to 0.1 mm , and provision also is made for mounting a dial gauge if more accurate probe position readings are required.
The hp $814 B$ Carriage, also a precision assembly, is designed for use with the hp K and R81SB Waveguide Slotred Sections (18 to 40 gc) and hp 446B Untuned Probe. The carriage is equipped with a dial indicator for accurate readings. Slotted secrions are easily interchanged.

Specifications, 809B

Carriage: mounts all 8108 Waveguide Slotted Sections and 806 B Coxial Slotted Section.
Probe required: 444A Untuned Probe or 442B Broadband Probe. Probe travel: 10 cm.
Calibration: metric; vernier permits readings to 0.1 mon; provision for dial fauge.
Dimensions: $87 / 9^{\prime \prime}$ long. $63 / 4^{\prime \prime}$ wide, $53 / 4 "$ high ($226 \times 172 \times 146$ mul).
Price: hp $809 \mathrm{~B}, 5175$.

Speciffications, 814B

Carrlage: mounts 815B Waveguide Slotted Sections.
Probe required: 446B Untuned Probe.
Callbration: metric; dial gauge with 0.01 mm division.
Size: $61 / 4^{\prime \prime}$ long, $61 / 4^{\prime \prime}$ wide, $61 / 2^{\prime \prime}$ high ($159 \times 159 \times 165 \mathrm{~mm}$).
Price: hp $814 \mathrm{~B}, \$ 225$.

806B, 810B, 815B Slotted Sections

Designed for use with the 809B Carriage, the 806B Coaxial Slotred Section provides continuous coverage from 3 to 12 gc . Inpedance is 50 olims, and the Type N connectors are a pre. cision type for minimum swr when mated with standard Type N connectors.

The 810B Waveguide Slotted Sections also are designed for use with the 809 B Carriage. Each is a precision-manufactured section of waveguide in which a small longitudinal slot is cut. A traveling probe on the 809 B Carriage samples the waveguide's electric field along the slot and permits precise plotring of variations along the entire length of probe travel. Ends of the slots are sapered to reduce sovr to less than 1,01. The naveguide sections are broached and checked with precision gauges for careful control of guide wavelength. Broaching is essentially a linear cutting stroke which eliminates even the minor surface irregularities inherent with milling cutters. Six waveguide sizes are available.

The 815B Waveguide Slorted Sections are designed to fit the 814B Carriage. Like the lower-frequency slotted sections, each 815B is precision-manufactured, broached and checked with precision gauges for careful control of guide wavelength. The slot is tapered to insure a low swr.

Specifications, 806B

Carriage: fits 809 B Carriage.
Frequency range: 3 to 12 gc .
Residual swr: less than $1.04,3$ to 8 gc ; approximately $1.06,8$ to 10 gc a approximately $1.1,10$ to 12 gc .

Impedance: 50 ohms

Connectors: Type N, one male, one fenale; special futings provide minimum swr; either end may be connected to load; includes shorring connectors, male and female, for phase measurements.
Pick-up error: probe pick-up variation along line is less than 0.1 db except si extreme ends, where it is less than 0.4 db .
Length: $10^{\prime \prime}$ (254 mm).
Price: $h_{p} 806 \mathrm{~B}, \mathrm{~S} 200$.
Specifications, 8108

$\begin{gathered} \text { hp } \\ \text { Model } \end{gathered}$	Frequency range (00)	Fits wavegulde size nom. OD (in.) EIA		Equivalent Hange	Price
68108	3.95-5.85	2×1	WR187	UG407/U	\$140
J8108	5.30-8.20	$11 / 2 \times 1 / 4$	WR137	UG441/U	\$125
H810B	7.05-10.0	11/4 \times 3/8	WR1I?	UG138/U	5110
X810B	8,20-12.4	$1 \times 1 / 2$	WR90	UG135/U	\$90
M8108	10.0-15.0	0.850×0.475	WR75	-	\$175
P810B	12.4-18.0	0.702×0.391	WR62	UG419/U	$\$ 110$

Carriage: firs 809 B Carriage.
Length of all sections: $101 / 4^{\prime \prime}$ (260 mm)
Slope and irregularities: slot discontinuity resulis in swr <1.01.
Specifications, 815B

		hip A8158
Frequency range (ge):	181026.5	26.51040
Residual swr:	1.01	1.01
Equivalent llange:*	UG595/U	UG599/U
Fits wavaguide siza:	(in) (ELA) $1 / 2 \times 1 / 4$ WR42	$\begin{gathered} 0.360 \times 0.220 \\ \text { WR28 } \\ \hline \end{gathered}$
Overall length:	7.9/16" ${ }^{\prime \prime}$ (192 mm)	7-9/16 ${ }^{5}$ (192 mm)
Prlea:	\$265	\$265

-Circular flange adapters: K -band (UG425/U) 11515A, 535 eachi R-band (UG381/ U) $11516 \mathrm{~A}, \$ 40$ each.

S810A Waveguide Slotted Section

This instrument is a conventional slotted waveguide complete with probe carriage mounted directly on the section. It is available only in the $3^{\prime \prime} \times 11 / 2^{\prime \prime}$ (WR284) size covering 2.6 to 3.95 gc . The carriage accepts the hp 444A Untuned Probe or hp 428 Broadband Probe.

Specifications, S810A

Conventional waveguide slotted section wuth probe carriage mounted directly on waveguide; will accepr 444A or 442B Probes.
Frequency range: 2.6 to 3.95 gc .
Residual swr: less than 1.01 .
Fits waveguide size: nominal OD, $3^{\prime \prime} \times \mathrm{i}^{1 / 2 "}$; EIA, WR284.
Length: $123 / 4^{11}(324 \mathrm{~mm})$.
Price: hp S810A, \$450.

440A Detector Mount

The hp 440 A is a runable, easy-to-use instrument for detecting of energy in coaxial systems (2.4 to 12.4 gc) or, in conjunetion with the hp 442B, in waveguide or coaxial slotted sections. Just one adjustment is required for tuning. Crystals or bolometers may be used interchangeably in the same holder. A built-in If bypass is provided.

Specifications, 440A

Frequency range: 2.4 to 12.4 gc .
Detector: $\operatorname{IN} 21$ or $1 \mathbb{N} 23$ silicon crystals or 821 series barretter (not supplied)
Tuning: single sub.
Connectors: UG2IB/U (rf input) : BNC female (delector uutpur). Price: hp 440A, 583.

442B, 444A, 446B Probes

Model $4 \sqrt{2} 2 \mathrm{~B}$ is a probe whose depth of penetration into a slorred section is variable. Held in position by fricrion, it may be fixed in place by a locking ing. Sampled of appears at a Type N jack, permitting direct connection to a receiver, spectrum analyzer or other instrument. It can be connecred to a 4HOA Detector Mount to form a sensitive and convenient tuned rf detector for slotted waveguide sections. The 4428 fits the 809B Carriage. Price: hp 442B, $\$ 50$.

The 444 A Untuned Probe consists of a crystal. plus a small antenna in a convenient housing. The probe is held in position by friction or may be fixed by a locking ring. No tuning is re-
quired. and sensitivity equals or exceeds many elaborate singleand douhle-runed probes The 4 f(A fis the 809B Carriage or other earriages with a 枂" $^{\prime \prime}(19 \mathrm{~mm}$) mounting hole.
The hp 446 B is a broadhand detector and probe which consists of a modified iNS3 silicon diode in a carefully designed shielded housing. No tuning is required, and probe penetravion may be varied quickly and easily.

Specifications, 444A

Frequency range: 2.6 to 18 gc .
Output connector: BNC iemalc.
Detector: supplied
Price: hp 444A, $\$ 55$.
Specifications, 446B
Carrlage: mounts in 8148 .
Frequency range: 18 to 40 g .
Detector: modifed insz sllicon diode, insialled.
Price: hp 446B, $\$ 14 \mathrm{~s}$.

805C,D SLOTTED LINES; 870A, 872A, 880A,B TUNERS Match microwave impedances

805C,D Slotted Lines

The Hewlett Packard 80SC,D Slotted Lines employ two parallel planes and a sigid center conductor, offering important advantages over the conventional coaxial slotted section. Besides providing greater structural stability, this configuration results in improved electrical characteristics, such as negligible slot radiation and less effect from variations in probe depth or centering. The probe circuit is tunable 500 to 4000 mc , and depth of probe penetration can be adjusted quickly and easily. Two versions of the 80s are offered: the 805C for Type N systems, and the 805D for use with RG-44/ U stub-supported rigid coaxial lines ($7 / 8^{\prime \prime} \mathrm{OD}$).

Specifications, 805C, D

Frequency range: 500 to 4000 mc ; minimum frequency determined by usable length of $141 / 2^{\prime \prime}(368 \mathrm{~mm})$.
Characterlstic impedance: 805C: 30 ohms (for use with any 50.0 hm cable using Type N connector); 805D: 46.3 ohms (for use with rigid coaxial lines, $7 / \mathrm{B}^{\prime \prime}$ outside diameter).
Connectors: 805C: Type N (one male, one female; special fittings designed to mate with Type \mathbf{N} connectors, provide a minimum swr; either end may be connected to the load); 805D: one male, one female.
Residual swr: 1,04 .
Callbration: metric, calibrated in cm and mm; vernier permits reading to 0.1 mm .
Detector probe: tunable probe provided for entire frequency range; detector element may be 1 N 21 B crysta) (supplied with instrument) or 821 series bacretter or selected $1 / 100-\mathrm{amp}$ instrument fuse.
Waight: net $18 \mathrm{fbs}(8,1 \mathrm{~kg})$; shipping $28 \mathrm{lbs}(12,6 \mathrm{~kg})$.
Accessorles furnished: 805C: 11511 A Shorting Jack; 11512A Shorting Plug; 805D: 11513A Shorting Plug; 11514A Shoriing Jack.
Accessorles avallable: 805C: 11501A Cable Assembly, $\$ 15$; 12500A RF Cable Assembly, \$15; both models: 10503A Cable Assembly, 86.50; 11510A Carrying Case, $29^{\prime \prime}$ long, $91 / 2^{\prime \prime}$ high, $91 / 2^{\prime \prime}$ wide ($737 \times 241 \times 241 \mathrm{~mm}$) , 565 ; 475B-34V Barcetter Adapter, $\$ 3$.
Price: hp 805C, 8325; hp 805D. \$600.

870A Slide-Screw Tuners

Slide-screw tuners are used to match loads, terminations, etc., to the characteristic impedance of the transmission system. The Hewlett-Packard 870A tuners consist of a waveguide slotted section with a precision carriage that supports an adjustable probe. The position and penetration of the probe is adjusted to set up a reflection which cancels an existing reflection in the system. An swr of 20 can be corrected to 1.02 , and small swer's may be corrected exactly. Nine models cover the 2.6 to 40 gc range. Price: $\mathrm{hp} 870 \mathrm{~A}, \$ 130$ to $\$ 300$.

872A Coaxial Slide-Screw Tuner

This tuner consists of a parallel plane line and a precision probe carriage and exhibits exceedingly low insertion loss. Car. riage travel is at least one-half wavelength at 500 mc , so any phase of reflection can be cancelled. Phase can be adjusted independent of magnitude, making the 872 A much more convenient than double-stub tuners. Both probe penetration and position can be logged, so that settings may be repeated easily.

Specifications, 872A

Frequency renge: 500 to 4000 mc .

Corractable swr: S.

Insertion loss at maximum correctable swr: 0.5 db or less.
Impedance: 50 ohms (Type N connectors, one male, one female).
Welght: net $17 \mathrm{lbs}(7,7 \mathrm{~kg})$; shipping $27 \mathrm{lbs}(12,2 \mathrm{~kg})$.
Accessories available: 11511A Shorting Jack, \$4; 11512A
Shorting Plug, \$4.50.
Price: hp 872A, \$325.

880 E-H Tuners

The $880 \mathrm{~A}, \mathrm{~B}$ tuners (8.2 to 18 gc) consist of a straight section of paveguide to which series and shunt tuning arms are attached. Each afm has a movable short circuit. Tuners of the E.H configuration are particularly useful where rf leakage is undesirable or where high power precludes the use of a slidescrew runer. Standing wave ratios as high as 20 can be reduced to less than 1.02. Price: hp X880A, \$130; hp P880B, $\$ 150$.

WAVEGUIDE, COAXIAL TERMINATIONS, LOADS, WAVEGUIDE SHORTS

Versatile, convenient microwave instruments

906A, 914 Loads, 916 Standard Reflections

The hp 906A Coaxial Sliding Load is a movable, low. reffection termination for Type N 50 -ohm systems. It covers the frequency range of 1 to 12.4 gc and can be moved at least one-half wavelength at 1 gc . Load swr is less than 1.05 from 1.5 to 12.4 gc , less than 1.1 from 1 to 1.5 gc . Price hp 906A, $\$ 325$.

Model 914 Moving Load consists of a section of waveguide in which is mounted a sliding, rapered low-reflection load. A plunger controls the position of the load, moving it at least one-half wavelengh at the lowest waveguide frequency. Thus, the phase of the residual load reflection can be reversed, so that this reflection can be separated from the other small reflections in the system.

The waveguide sections of the moving loads are manufactured to very close tolerances to minimize the waveguide swr. All but S-band units are broached, for broaching is a linear culting stroke which does not have the irregularities of milling cutters, etc. In addition, the guide dimensions are checked with precision gauges - air gauges from X. through R-bands. Nine models cover from 2.6 to 40 gc ; each has a locking mechanism which prevents accidental movement of the load. Hewlet-Packard 914 prices range from $\$ 60$ to $\$ 250$.
Model X916 Standard Refiections, available in 4 models, are precision loads used to set up exact refections for
standardizing 5 wr measuring systems. Nominal refiection coefficients for the four noodels (X916B through X916E) are $0.05,0.1,0.15$ and 0.2 . Price hp X916, $\$ 125$ each.

908A, 910 Terminations

The Model 908A is a low.reflection load for terminat. ing 50 -ohm coaxial systems in thenr characteristic impedance. Frequency range is $\delta \mathrm{cc}$ to 4 gc , and swr of the coaxial termination is iess than 1.05 over the entire range. Power rating is 0.5 watt average. Price $\mathrm{hp} 908 \mathrm{~A}, \mathrm{~S} 35$.

The 910 Series is designed for terminating waveguide systems operating at average powers up to about 1 watt (1 kw peak). They may be used wherever a matched load is required, as in the measurement of refection, discontinuities or obstacles in waveguide systems. Featuring low swr, the 910 Series covers the frequency range of 2.6 to 18 gc in six models. Price hp 910 Series, $\$ 35$ to $\$ 75$.

920A, B Waveguide Shorts

Model $920 \mathrm{~A}, \mathrm{~B}$ Waveguide Shorts, available in 9 bands covering 2.6 to 40 gc , are convenient instruments for introducing a variable element in waveguide systems. They can be used to provide a variable short-circuit reference point. The waveguide sections are broached and checked to close tolerances to insure uniform reflection as the reference point is shifted. Price hp 920A, B, 875 to $\$ 155$

532 SERIES, 536A FREQUENCY METERS, 885A PHASE SHIFTERS
 Precision instruments for general-purpose or lab use

532, 536A Frequency Meters

The hp 532 Series and 536A Frequency Meters are wideband, direct-reading instruments offering ease of operation, plus high resolution. Frequency is read directly in gc with extremely high accuracy, which means that no interpolation or charts are required.

The instruments comprise a special transmission section with a high Q resonant cavity that is tuned by a choke plunger. No sliding contacts are used, and the section transmits virtually full power off resonance. A 1 db or greater dip in output indicates resonance. There are no spurious responses. Tuning is by a precision lead screw, spring-loaded to eliminate backlash. Resolution is enhanced by a long, spical scale calibrated in small frequency increments. For example, Model X 5328 has an effective scale length of $77^{\prime \prime}$ (1956 mm) and is calibrated in 5 mc in. crements. Resettability is extremely good. All frequency calibrations are visible, so you can tell at a glance the specific portion of the band you are measuring.

The 532 Series are waveguide instruments which cover the frequency range from 3.95 to 40 gigacycles. The 536A, a frequency meter for coaxial systems, covers the frequency range from 0.96 to 4.2 gigacycles.

Specifications, 532A,B and 536A

hp Madel	Frequency rango (g0)	$\begin{gathered} \text { D\|II } \\ \text { soouraoy } \\ (\%) \end{gathered}$	Overall sommay's (\%)	Calbration inaromeni (m)	Prow
536A	0.96-4.20	0.102	0.173	2	\$500
G532A	3.95-5.85	0.033	0.065	1	\$375
J532A	5.30-8.20 4	0.033	0.065	2	\$350
H532A	7.05-10.0	0.040	0.075	2	\$300
X5328	8.20-12.4	0.050	0.08	5	\$200
M532A	10.0-15.0	0.053	0.085	5	\$300
P532A	12.4-18.0	0.068	0.10	5	\$275
K532A 5	18.0-26.5	0.077	0.11	10	\$350
R532A 5	26.5-40.0	0.083	0.12	10	\$400

1 Includes allowance for 0 to 100% relative humidity, temperatusa variation from $13^{\circ} \mathrm{C}$ to $33^{\circ} \mathrm{C}$ and bachiash.
$20.15,0.96$ to 1 gc.
$30.22,0.96$ to 1 gc .
4 Becsuse of the wide frequency range of the J532A, irequencles from 7.6 to 8.2 ge can excite the $T E_{112}$ mods when the dial is set between 5.3 and 5.5 gc .
s Circular llange adapters: K-band (UG-425/U) 11515A, \$35 each. R-band (UG-381/U) 11516A, \$40 each.

885A Waveguide Phase Shitters

Hewlett-Packard 885A Phase Shifters provide accurate, controllable phase variation in the $\}$-, X. and P.band frequency ranges. They are particularly useful in microwave bridge circuits, where phase and amplitude mast be adjusted independently. They also are used in the study of phased arrays.

The instruments have high accuracy over their entite phase range, -360 to +360 electrical degrees, have low power absorption, are simple to operate and require no charts or interpolation. They are sturdily built, comprising two rectangular-to-circular waveguide transitions with 2 dial-driven circular waveguide mid•section. These waveguide
phase shifters are housed in cast aluminum containers for extreme rigidity and durability.

Specifications, 885A

hp Model	Froquenay frande (9)	Acouracy	Maxtmum Insertery lass	Power (rathing wath)	Prioe
3885A	$5.30-8.20$	3°	2 db	10	$\$ 550$
X885A	8.20-12.4	$\begin{gathered} 2^{\circ} \cdot 8.2-10 \mathrm{gc} \\ 3^{\circ} \cdot 10-12.4 \mathrm{gc} \end{gathered}$	$\begin{aligned} & 1 \mathrm{db}, 8.2-10 \mathrm{gc} \\ & 2 \mathrm{db}, 10-12.9 \mathrm{gc} \end{aligned}$	10	\$425
P885A	12.4-18.0	4°	3 db	5	\$600

All Models: maximum swr, 1.35 ; for small phase differences, accuracy is as tabulated or 10%, whichever is less.

Oscillators

OSCILLATORS AND AUDIO SIGNAL GENERATORS

Oscillators generate sine-wave signals of known frequency and amplirude for rest and performance measurements on electronic circuits. These tests include gain, frequency response, attenuation, impedance and distortion. Signal gener. ators fundamentally are oscillators, roo, but they are distinguished from oscilla. tors by having wide-range, precision output attenuators and output meters for accurately measuring the voltage supplied to the load.

General-purpose oscillators generate a broad range of frequencies at a variety of power levels for many differenc load impedances. Table 1 illustrates the frequency range and power outpui of Hew. Jett-Packard oscillators. The hp 200 CD , for instance, covers a frequency range from s cps to 600 kc for a variety of test purposes.

Basic oscillator requirements

In selecting a test oscillator or signal generator, the user will be most interested in its frequency coverage. The question to be answered here is: will the instrument supply both the lowest and highest frequencies of interest in anticipated tests? As shown on the chart, Hewlett-Packard manufactures a broad range of oscillators and audio irequency generators covering the frequency spectrum from 0.00005 cps to 10 mc .

The user's next concern will be with the available output power or voltage. Some tests require large amounts of
power, while others merely require suffi. cient voltage output. For almost any application, there is an hp oscillator capable of delivering several volts' outpur into a high-impedance load or supplying several wates of power into lower-impedance loads.

Available output power also is related to the oscillator's output impedance. Most Hewlett-Packard oscillators have low internal impedances, which means that they are capable of supplying power into a wide variety of loads. In most cases, transformer coupling is used for a low-impedance output. Some instru. ments have transformer taps for supplying the wide variety of impedances encountered in normal rest work. Since many audio range oscillators are used with $600 \cdot \mathrm{ohm}$ systerns, several include a 600 -ohm variable T.pad on the ourput side of the transformer. Some low-power oscillators, intended for tests requiring extremely low distortion and exceptionally flat frequency response, have RC ourput coupling.

Besides frequency range and power output, the user will be interested in the oscillator's stability, its dial resolution and the amount of distortion (hum and noise) in the output signal.

Dial resolution

In the ideal case, the user should be able to set the tuning dial of his oscillator to a particular frequency with assurance that the oscillator will deliver that
frequency at all times.
Most Hewlett-Packard oscillators have precision 6 inch dials calibrated over 300 degrees with 15 or more inches of calibration marks for each sange of the in. strument. Most dial accuracies of Hew. lett-Packard oscillators are within $\pm 2 \%$. One instrument, the 200J Interpolation Oscillator, has band switching on a 3.3. to. 1 , rather than a $10 . t 0.1$, basis to spread the zuning scale 3 times farther for more precise settings.

The accuracy with which the frequency tracks the tuning dial also enters into the overall accuracy figure.

Frequency stability

The frequency stability of the oscilla. tor determines the ability of the inserument to maintain a selecred frequency over a period of time. Component aging, power supply variations and tempera. ture changes all affect stability. The hp. designed RC oscillator circuirs, described later, assere stability by using large amounts of negative feedback. Carefully chosen components, such as HewletePackard precision resistors and variable capacitors in the frequency-determining networks, contribute to long-term stability. Oscillator stability is included in the overall 2% accuracy figure.

Amplitude stability

Amplitude stability is important in certain oscillator applications, such as

Table 1. Frequency range and power output of hp oscillators. Line segments show span of each range.
the driving source in bridge measurements or in magnetic amplifer circuics. Amplitude stability is inherent in the hp RC oscillator circuit because of the large negative feedback factor and the amplitude stabilizing technique. Amplitude stability of the hp 651A Test Oscilhator is typically $\pm 0.01 \%$ per day.

The "frequency response" or empli. tude variation as the frequenty is changed is of special interest when the oscillator is used for response measurements throughout 2 wide range of irequencies. Frequency response of HewlettPackard oscillators varies less than 1 db throughour the mid-frequency range, though this may increase slightly at the exrreme ends of the oscillator's range. Frequency stability at fixed frequencies of hp oscillators $(204 \mathrm{~B}, 208 \mathrm{~A}$ and 651 A) is typically $\pm 0.02 \%$ per day.

Distortion

Distorion in the oscillator's output signal is an inverse measure of the purity of the oscillator's waveform. Distorrion is undesirable. in that a harmonic of the test signal may feed through the circuits under test. generating a false indication at the output. Besides, if the oscillator is used for distortion measurements, the amount of distortion that it contributes to the measurements should be far less than that contributed by the circuits undes test.
The Hewlett-Packatd Wien bridge RC oscillator is inherenrly a low-distortion sine-wave generator; all Hewletr-Packard Wien bridge oscillators have less than 1% distortion, typically 0.25%. Os-cillator-amplifier operating levels are set so that the second harmonic, introduced by small non-linearities in the transfer characteristic of one stage, is cancelled by the following stage (second harmonic distortion of a sine wrave in an amplifier usually results in flattening of one peak and stretching of the other). Where 0.25% distortion may be too large. a se. lecrive amplifier following the oscillator will reduce this to less than 0.1%. A runed. selective amplifier is used in the hp 206A Low. Distortion Audio Signal Generator for this purpose.

Hum and noise

Hum and noise are introduced at a variety of points in oscillator circuits; but when the circuit operates at a relatively high level, generally 20 to 25 volts in Hewlett-Packard RC oscillators, the amount of hum and noise introduced into the oscillator circuits is usually neg. ligible. However, hum and noise, introduced by a power amplifier following the amplitude control, semain constant as the outpur signal amplitude is dimin-
ished. Hence, even though the hum and noise power is quite small compared to rated output, these spurious signals may become a significant portion of low level output signals. To overcome such a limitation, many Hewlett-Packard oseiliators have their amplitude control on the output side of the power amplifier, so that hum and noise are reduced proportionately with the signal when low-level signals are desired for test purposes.

Theory of operation

The Hewlett-Packard-pioneered Wien bridge RC oscillator has become the standard oscillator circuit for variable frequency test signals. These oscillators are far less cumbersome than the LC rypes and far more stable than the beatfrequency types formerly used for the belor'rf range.

The basic oscillator circuit, shown in Figure 1, is a noo-stage amplifier with both negative and positive fecdback losps. Positive leedback for sustaining

Flgure 1. Basie hp wien hridge RC oscilla. tor circult.
oscillations is applied through the frequency selective nerwork, $R_{1} C_{1} \cdot R_{2}-C_{2}$, of the Wien bridge. The amplitude and phase shift responses of the netrork, with respect to its driving voltage, are shown in Figuce 2. These show that the amplitude response is maximum at the same irequency at which the phase shift through the network is zero. Oscillations are therefore sustained at this frequency, The resonane frequency, \mathscr{f}_{b}, is expressed by the equation: $f_{0}=\frac{1}{2 \pi R C_{1}}$ when $R_{1}=R_{2}$ and $C_{2}=C_{2}$.

Unlike LC circuits, where the fre. quency varies inversely as the square root of C. the frequency of the Wien bridge oscillator varies inversely as C . Thus, frequency variation greater than $10-$ to-1 is possible with a single sweep of an air-dielectric tuning capacitor. Range switching usually is accomplished by swirching the resistors.
The negative feedback loop involves

Figure 2. Characterlstics of frequency.de termining network.
the other pair of bridge arms, R_{n} and $R_{k} . R_{k}$ is a temperature-sensitive resistor with a positive temperature coefficient. It is an incandescent lamp operated at a temperature level lower than its illumination level. This lamp, being sensitive to the amplitude of the driving signals, adjusts the voltage division ratio of the branch accordingly. Thus, as the amplirude of oscillations increases, the resistance of R_{4} increases. The negarice feed. back also increases, reducing the gain of the amplifier and restoring the amplitude to normal.
The amplirude of oscillations in any oscillator increases because of the positive feedback until some form of limiting occurs. In crystal and LC oscillators, amplifier saturation usually causes limiting, so that any further increase in the oscillator-amplifier inpur results in no further increase in the output signal, Amplifier waveforms in these circuits are highly distorted, and the output signal is usually taken from the resonant circuit to minimize output distortion. The hp Wien bridge RC oscillator, however, depends on the remperature-sensitive resistor for amplitude control. This means that the amplifier may be operated entirely within the linear portion of its transfer characteristic, resulting in purer sine-rave ourput.
The Wien bridge RC oscillator is capable of stable oscillations with low distortion output. With the addition of a power amplifer to isolate the oscillator from the load, this circuit is capable of providing useful rest signals for a broad variety of purposes. The low cost hp Model 200AB Oscillator uses just such an alrangement.
A different type of amplitude stabilization is used in the solid.state hp 204 B and 208A Oscillators because the cursent draw'n by a lamp would be incompatible with long-term battery operation. These instruments use a voltage comparison system which continuously compares the output voltage to a reference fixed by a zener diode and adjusts the amount of negative feedback accordingly.

Pushbutton tuning

Pushbutron oscillator tuning is possible with a modified Wien bridge as shown in Figure 3. Here, the resistive

Fgure 3. Frequency.salective network for pusibutton oscillator.
branches of the frequency-selective network are made up of parallel combinations of resistors. Through algebraic reduction substitution of the parallel combination of R_{1}, R_{10} and $R_{s o s}$ for R in the basic frequency determining equation, $\mathrm{f}=\frac{1}{2 \pi \mathrm{RC}}$, results in:
$t=\frac{1}{2 \pi R_{1} C}+\frac{1}{2 \pi R_{{ }_{20} C} C}+\frac{1}{2 \pi R_{100} C}$ or, $f_{\text {toent }}=f_{\text {enles }}+f_{\text {tins }}+f_{\text {nundrax }}$

Thus, frequency increments chosen by any pair of resistors are not affected by settings of the other two pairs.

The 241A Pushbutton Osciliatoc has three pushbutton decade switch selectors for changing the resistors in the frequency selective network. Each decade selects resistive value for one pair of re. sistors in the frequency-determining network.

Ranges are switched by changing ca. pacitors with a five-position pushbutton switch. Toral frequency range of the 241 A Oscillator is from 10 cps to 1 mc in 4500 discrete steps. An overlapping
vernier control permits setcing to intermediate frequencies.

Pushbutton tuning enables the fre. quency to be changed by precise incre. ments. Frequency selection to three-digit resolution with 1% accuracy and resettability to within 0.02% are possible.

Push-pull RC oscillator

A more refined circuit, the pusth-pull Wien bridge RC oscillator, is shown in Figure 4. Although increasing the cost and complexity of the instrument, this circuit provides severa! advantages over the basic single-ended oscillator circuit. For one, the circuit is operating in a push-pull mode, which means that pushpull ourpur may be obrained directly from the oscillator-cathode followers without use of a transformer.

The circuit has zero output impedance because of positive feedback added from each output tube plate to the control and screen grids of the opposite outpur

Figure 4. Push-pull RC oscillator.
tube. Zero output impedance means that the circuit is insensitive to load changes. Positive feedback effectively increases the amplifier gain, A, to infinity. From the

High-frequency oscillator

The high-frequency limits of the RC oscillator usually are imposed by the amplitude and phase characteristics of the oscillator-2mplifier, which calls for compensating RC networks if oscillations are to be sustained. An amplifier phase shift of just a fraction of a degree causes 1% error in calibration. The hp Model 651A Test Oscillator, described on page 261, overcomes the difficulty of phase shift at high frequencies. A modified Wien bridge oscillator is used on all the ranges of the hp $6 \$ 1 A$, instead of phase shift oscillators which are commonly used above 100 kc . The Wien bridge in the hp 651 A differs from the conventional Wien bridge circuit in the design of the resistive vollage divider network. Oscillation at the selected frequency is made possible by the use of both regenerative and degenerative feedback. An impe. dance converter provides a high impedance in series with the input impedance of a differential amplifier on the first four frequency ranges (X10 to X10 K). The high impedance added prevents the RC bridge circuit from being loaded by the low inpur impedance of the differential amplifier on lower frequency ranges. The impedance converter is bypassed on the X 100 K and X 1 M range due to lower resistance values in the RC bridge. A complementary symmetry circuit is used to provide power gain and to increase the dynamic voltage range of the oscillator. The basic circuit of the hp solid-stare 10 cps to 10 mc oscillator is shown in Figures.

Low-frequency oscillator

Low-frequency limit of an $R C$ oscillator cireuit is usually set by the thermal characteristics of the temperature-sensitive resistance. At very low frequencies, the incandescent lamp has time to heat and cool during each cycie. This change of resistance during each cycle introduces serious amounts of distortion in the output.

Figure 6. Low-fraquency oseillator.

For very low frequencies, an entirely different approach is used in the 3300A Function Generator. (This instrument is called a function generator because it delivers sine, triangular and square waves.) The circuit of this instrument, outlined in Figure 6, uses a dc-coupled flip-flop circuit to generate a square wave. The output of the fip flop is passed through the upper current source to a Miller integrator, whose triangular wave output is coupled back to the voltage comparitor.
Circuit operation of the 3300 A is as follows: The integrator converts the flipflop step voltage to a ramp. When the ramp reaches a preset amplitude level, it triggers the flip-fop into its other stable state. The ramp then reverses slope and continues until the other trigger level is reached. Adjustment of the current driving the integrator controls the ramp slope. which, in turn, controls the multivibrator frequency.

The circuit produces low-frequency square and triangular waves. The triangular wave is synthesized into a sine

Figure 7. Non-linear shaping network
wave by a diode.resistance network. The synthesizing circuitry of Figure 7 shows how the slope of the triangular wave is altered as its amplitude changes, resulting in a remarkably pure sine wave. In practice, twelve diodes are used for shaping.
The entire oscillator circuitry is floaring. The ground may be establishied at any desired voltage level. A special feature of this oscillator is that waveform amplitude is controlled by the reference voltages, rather than by a long time-con. stant AGC circuit. As a result, there are no transients when switching between ranges or runing to other frequencies. Another feature of the hp 3300A (see page 256) is two output amplifiers that provide simultaneous outputs of any of the three waveform functions-sine, triangular or square.
Another hp low frequency oscillator is the Model 203A Variable. Phase Func. tion Generator (this instrument is called a variable-phase function generator because it offers a referenced sine- and square-wave and a variable phase sine and square wave; the two sine and square-wave outputs are electrically identical except that one sine- and square wave output contain a 0 -to.360degree phase shifter). The circuit of this instrument is a beat-frequency oscillator which, by mixing two high-frequency signals, generates signals in the frequency range of 0.0000 s cps to 60 kc . One of the high-frequency signals is a Gxed frequency; the other is variable. The fixed-frequency signal is generated by a crystal oscillator which is applied to both channels and routed to a modulator through an RF amplifier within each channel. The variable-frequency signal is applied directly to the modulator of each channel. These two signals are mixed in the modulator, and the difference in frequency berween the two signals is the output frequency of the hp Model 203A (see page 258).

The RC Oscillator circuits described here are used in Hewlett-Packard's broad line of oscillators and audio signal generators. These span a frequency range of 0.00005 cps to 10 mc , covering the subsonic, audio, ultrasonic, video and low of ranges. All of the hp oscillators and audio signal generators described in this catalog have been designed with the requirements of a maximum number of applicarions in mind. The various techniques were chosen in order to maximize the performance offered while minimizing the cost so that an hp oscillator and signal generator are available to meet your application. If special needs arise. modification of standard hp instruments to meet a specific application may be practical. Contact your lacal hp sales office for additional information.

200 SERIES AUDIO OSCILLATORS

Exceptional value, highest quality

Advantages:
No zero setting, high stability
Constant output
Wide frequency cange
Logarithmic scale
Low distortion
Compact, lightweight
No frequency change with load variation

Hewlett-Packard RC oscillators have long been basic tools for making electrical and electronic measurements of precise accuracy. These world-famous test instruments give you the most compact, dependable, accurate and easy-to-use commercial oscillators available.

The hp 200 Series Oscillators have high stability and accurate, easily resettable tuning circuits. Low-impedance operating levels, logether with superior insulation, guarantee peak performance throughout years of trouble-free service. The instruments have wide frequency range and long dial lengths and feamure an improved vernier frequency control. Operation is simplified - just three controls are required. Instruments are compact, light in weight and enclosed in a convenjent, aluminum case with carcying handle. They occupy minimum bench space and are easily portable. Rack mounting is available on order.

200AB Audio Oscillator, low cost, 20 cps to 40 kc

This basic oscillator is a compact, convenient source of precision audio test voltages, which is offered at an extremely low price. Frequency coverage is 20 cps to 40 kc in four over. lapping bands. The $63^{\prime \prime}$ effective scale length and 72 dial divisions insure accurate, direct frequency setting. Output is balanced for dependable driving of transmission systems. The 200AB is ideal for amplifier testing, as a bridge voltage source, for testing transmitter modulator response, modulating signal generators and making loudspeaker resonance tests. hp $200 \mathrm{AB}, \$ 165$ (cabinet); hp 200ABR, $\$ 170$ (rack mount).

200CD Wide-Range Oscillator, multi-purpose, 5 cps to 600 kc

One of the most popular of all hp oscillators, Model 200 CD covers the range 5 cps to 600 kc and is pacticularly useful for testing servo and vibration systems, medical and geophysical equipment, audio amplifiers, sonar and ultrasonic apparatus, carrier telephone systems, video frequency circuits, etc. Waveform purity is maintained with extremely low loads. Frequency is covered in 5 decade ranges, and accuracy is $\pm 2 \%$ including warm-up, aging, tube changes, etc. Frequency response is $\pm 1 \mathrm{db}$ full range hp 200CD, $\$ 195$ (cabinet); hp 200CDR, $\$ 200$ (rack mount).

200J Interpolation Oscillator, maximum band spread, 6 cps to 6 kc

This ultra-precision instrument is engineered for interpolation and frequency measurements where frequencies
must be known with extreme accuracy. Covering the range 6 cps to 6 kc , Model 200 J offers an output of 160 mw or 10 volts into 600 ohms, or 20 volts open circuit, balanced to ground. Distortion is less than 0.5%, and frequency stability is $\pm 2 \%$ or 0.2 cps . The instrument has 6 spread scale frequency ranges, and an effective scale length of $80^{\prime \prime}$ for maximum resettability. Calibration accuracy is $\pm 1 \%$, and frequency response is $\pm 1 \mathrm{db}$ full cange. Hum voltage is less than 0.1% of output. hp 200J, $\$ 350$ (cabinet); hp 200 JR, $\$ 355$ (rack mount).

200 T Telemetry Oscillator, high stability, resolution; 250 cps to 100 kc

Model 200T provides the highest possible frequency sta. bility in a wide-range, convenient commercial audio oscillator. It is particularly useful for precise, high-resolution frequency-checking applications such as the evaluating of telemetering circuit, determination of carrier current equip. ment operation and measurement of characteristics of sharply tuned Gilters. Model 200 T covers frequencies 250 cps to 100 kc in 5 ranges, with good overlap between bands; output is 160 mw or 10 volts into 600 ohms, or 20 volts open circuit. Calibration accuracy $\pm 1 \%$ long term, frequency response $\pm 1 \mathrm{db}$ full range. High stability, distortion less than 0.5% full range. Hum and noise less than 0.03% of rated output. The instrument is compact, versatile, simple to operate. It covers IRIG (RDB) channels 1 through 18, and no channel is split by band switchirg. hp 200T, $\$ 500$ (cabinet); hp 200TR, $\$ 505$ (rack mount).

201C Audio Oscillator, high power, 20 cps to 20 kc

Particularly designed for amplifier testing, transmission line measurements, loudspeaker testing, frequency compari$50 n$ and other high fidelity tests, this audio oscillator meets every requirement for speed, simplicity and pure waveform. The frequency range, 20 cps to 20 kc , is covered in 3 bands; response is $\pm 1 \mathrm{db}$ full range. Output is 3 watts or 42.5 volts into 600 ohros; an attenuator adjusts output 0 to 40 db in 10 db steps and provides either low impedance or constant 600 -ohm impedance. Distortion at 1 watt output and above 50 cps is less than 0.5%. hp 201C, $\$ 250$ (cabinet) ; hp 201CR, $\$ 255$ (rack mount).

202C Low-Frequency Oscillator, excellent waveform 1 cps to 100 kc

Model 202C brings to the low-frequency spectrum the accuracy and stability you associate with audio measure. ments. It provides excellent waveform throughout its broad frequency range of 1 cps to 100 kc and has unique useful. ness in industrial, feld or laboratory work. Model 202C is extremely convenient for vibration, stability, electro-cardiograph, electro-encephalograph and other measurements in the subsonic, audio and ultrasonic helds. Distortion is less than 0.5%; hum voltage is less than 0.1%, and recovery time is extremely short-s seconds at 1 cps . hp 202C, $\$ 325$ (cabinet); hp 202CR, \$330 (rack mount).

Specifications

ho Model	Frequenay range	Callbraton 8004Fa9y	Oubuit to GDO ohms	Ontput tompedance	Maximum distortion	Maximum hum and notses	$\begin{aligned} & \hline \begin{array}{l} \text { Input } \\ \text { power } \\ \text { (wattr) } \end{array} \end{aligned}$	Weloht $-\mathrm{lb}(\mathrm{kg}$)		stue-inches (mm)	Price
								net	ship	W H 0	
200 AB	$\begin{aligned} & 20 \text { cos } 1040 \mathrm{kc} \\ & (4 \text { bands }) \end{aligned}$	$\pm 2 \%$	$\underset{(24.5 v)}{J w}$	$\begin{gathered} 75 \\ \text { ohms } \end{gathered}$	$1 \% 20 \mathrm{cps} 1020 \mathrm{kc}$ $2 \% 20 \mathrm{kc} 1040 \mathrm{kc}$	0.05\%	70	$\begin{gathered} 15 \\ \langle 5,3\rangle \end{gathered}$	$\begin{aligned} & \hline 20 \\ & \text { (9) } \end{aligned}$	$\begin{aligned} & 71 / 2 \times 111 / 1 \times 12 \\ & (191 \times 292 \times 305) \end{aligned}$	\$185
$200 C D$	$\begin{aligned} & 5 \mathrm{cps} \text { to } 600 \mathrm{kc} \\ & (5 \text { bands) } \end{aligned}$	= 2%	$\begin{gathered} 160 \mathrm{mw} \\ (10 \mathrm{v}) \end{gathered}$	$\begin{gathered} 600 \\ \text { ohms } \end{gathered}$	0.5% below 500 kc $1 \% 500 \mathrm{kc}$ and above	0.1\%	75	$\begin{gathered} 22 \\ \langle 9,9) \end{gathered}$	$\begin{gathered} 27 \\ (12,2) \end{gathered}$	$\begin{aligned} & 73 / 6 \times 111 / 2 \times 143 / 8 \\ & (187 \times 292 \times 365) \end{aligned}$	\$195
200」	$\begin{aligned} & 5 \cos \text { to } 5 \mathrm{kc} \\ & (6 \text { bands }) \end{aligned}$	$\pm 1 \%$	$\begin{gathered} 150 \mathrm{mw} \\ (10 \mathrm{v}) \end{gathered}$	$\begin{gathered} 600 \\ \text { ohms } \end{gathered}$	0.5\%	0.1\%	110	$\begin{gathered} 22 \\ (9,9) \end{gathered}$	$\begin{gathered} 27 \\ (12,2) \end{gathered}$	$\begin{aligned} & 77 / 8 \times 111 / 8 \times 143 / 8 \\ & (187 \times 292 \times 365) \end{aligned}$	\$350
2007	250 cps to 100 kc (5 bands)	$\pm 1 \%$	$\begin{gathered} 150 \mathrm{mw} \\ (10 \mathrm{v}) \end{gathered}$	$\begin{gathered} \text { 600 } \\ \text { ohms } \end{gathered}$	0.5\%	0.03\%	160	$\begin{gathered} 27 \\ (12,2) \end{gathered}$	$\begin{gathered} 36 \\ (16,2) \end{gathered}$	$\begin{gathered} 188 / 4 \times 9 \cdot 3 / 16 \times 111 / 4 \\ (476 \times 233 \times 299) \end{gathered}$	\$500
201 C	20 cps to 20 kc (3 bands)	$\pm 1 \% \dagger$	$\begin{gathered} 3 w \\ (42.5 \mathrm{v}) \end{gathered}$	$\begin{gathered} 6600^{*} \\ \text { ohms } \end{gathered}$	0.5\% \ddagger	0.03\%	75	$\begin{gathered} 16 \\ (7,2) \end{gathered}$	$\begin{gathered} 23 \\ (10,4) \end{gathered}$	$\begin{aligned} & 71 / 2 \times 111 / 2 \times 121 / 2 \\ & (191 \times 292 \times 318) \end{aligned}$	$\$ 250$
202 C		$\pm 2 \%$	$\begin{gathered} 160 \mathrm{mw} \\ (10 \mathrm{v}) \end{gathered}$	600 ohms	0.5\% 8	0.1\%	75	$\begin{gathered} 27 \\ (12,2) \end{gathered}$	$\begin{gathered} 34 \\ (15,3) \end{gathered}$	$\begin{aligned} & 71 / 2 \times 111 / 2 \times 141 / 2 \\ & (191 \times 292 \times 368) \end{aligned}$	\$ 325

*Internal impedance approx. 600 ohms with output attenuator at 10 ab or more, soprox. 75 ohms balow 5000 cos with aftenuator at zero. flaternal non-operating controls permit precise calibration of each band. $\ddagger 0.5 \% \mathrm{cps}, 50 \mathrm{cps}$ to 20 kc at watt ouldut; 1% over full range at 3 watts output. \&Above 5 cos.
MMeasured with respect to foll rated output.

General:

Frequency response: lat $\pm 1 \mathrm{db}$ over instrument range; reference level at $1 \mathrm{k} c$.
Slze and welght: maximum overall size and weights are given for cabinet models; 19" rack models also available.

Power. 115 or 230 volts $\pm 10 \%$ at 50 to 1000 cps .
Accessorles available: 11000 A Cable Assembly, $\$ 4.50 ; 11001 \mathrm{~A}$ Cable Assembly, $\$ 5.50$: 11004A, 11005 A Linc Matching Transfommers, see pages 263, 264.

204B PORTABLE OSCILLATOR，208A TEST OSCILLATORS

Solid－state，battery－operated， 5 cps to 560 kc ，floating output

Fully solid－state and battery－operated hp 204B and 208A．Oscil－ lators are extremely useful for both field and laboratory work．Internal heat production is small，resulting in unusually fow warm－up drift． Stable，accurate signals are instantly available over a frequency range from 5 cps to 560 kc ．
Balanced and unbaianced loads，plus loads referenced either above or below ground，can be driven by these versatile oscillarors；their ourput is fully floating and isolated from power line ground when battery operated．Completely balanced output is easily obtained with a simple external matching network．There is excellent frequency sta－ bility．even orith rapidly changing loads；low－impedance circuits drive the 600 ohm output，effectively isolating the oscillator stage．

Figures 1 and 2 show the excellent frequency and amplitude sta－ bility characteristics of these oscillators．Typical frequency stability is better than 5 parts in 10^{*} ，even at the least stable frequency （ 560 kc ）．Output amplitude stabilty is held extremely constant by

Figure 1．Yypica！frequency stability characteristics at 500 kc ．
a thermally self－compensating peak derector control circuit，which is virlually insensitive to mechanical shock or temperature changes． Flat frequency response provides further convenience of operation． At all dial and range switch settings the output is fat within $\pm 3 \%$ ．

Figure 2．Typical amplitude stability
The solid－state design．light weight，modular construction，and battery operation of these oscillators contribute to their portability． Rapid attenuation selection and monitored oscillator levels ideally suit the 208A Oscillator to transmission line work，production line tests and similar situations，where output levels must be known．
Model 208A is calibrated in volts and has a 6 －position attenuator （Merer Scale Value switch）with $10: 1$ steps from 0.01 mv to 1 v ． Another attenuator（Multiplier switch）changes the outpur by a factor of 2.5 ．increasing maximum output to 2.5 v mms ．The 208A （Option 01．）is calibrated in dbm and has a 110 db attenuator ad． justable in 1 db steps．

Specifications，204B

Frequency range：a cps to 560 kc ．in s rankes； 3% overlap betureen ranges， rernier cantral．
Dial zecuracy：-3 笕
Frequency response：$=3 \%$ with rated load．
Output Impedance： 600 uhms．
Output：ie）mu（2．5vems）insin bio ohms： 5 v ras open circuit：completely foatink．
Output contral：continuously varisble bridged＂T＂atkenuator with at least 40 db rande．
Distortioni less than 15
Nolse：less than 0.05 原 at maximum output．
Power： 4 batteries at 6.75 vesch． 7 ma drann．life ar least 300 hours． Dimensions：6．3／32＂high， $31,8{ }^{\prime \prime}$ wide， $8^{\prime \prime}$ depp（ $155 \times 130 \times 203 \mathrm{~mm}$ ）．
Welght：net $7 \mathrm{lbs}(3 \mathrm{~kg}$ ）；shipping 11 lbs （s kg ）
Price：hp 2048 （with mécury batteries）．\＄315．

Optlons

01．AC power supply installed in lied of batteries，sdd $\$ 35$.
02．Up ro 40 hours＇operation per recharge with furnished rechargeable batceries（self．contained recharging circuit funcrions automatically when instrument is connected to ac line： 113 or $230 \mathrm{v}=10$ 分，yo to 1000 eps． approx． 3 w ）；oscillator may be used during recharge from ac line；ex－ pected battery $l_{1} f e 20,000$ hours，add $\$ 75$.

Specifications，208A

（Ssme as 20fB，except：）
Output attenuator：meter scale value， 0.01 mv to $1 \vee$ full srale in 6 steps： X2．5 mulriplier．concentric with Meter Scale Value 5 wich，to obesin 0.025 mv to 2.5 v ．
Output attenuator accuracy： 5 gps to 100 kc ；etior is less than $=3 \%$ at any step；from 100 kc to $\$ 60 \mathrm{kc}$ ．error is less than 35 s at any step：specifications include multiplier accuracy．
Output monitor：solid－state voltmeter monitors level at input to sttenuator and after set level：accurscs $=2$ of full scale into 600 ohms．
Set level：continuously variable bridged＂T＇airenuator with $10: 1$ voltage range．
Operating temperature range： $0^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ ．
Power：up to 30 hours＇operation per recharge with lurnished rechargeable batteries iself－coneained rerharging circuit functions auromatically when ia－ strument is connected to ac line； 115 or $230 \mathrm{v}=10 \%$ ， 50 to 1000 cps ，approx． 3 wh：oscillaror may be used during recharge from ac ling；expected batery life，20，000 houes．
Dimensions：wieh fees $61 / 2^{m}$ high． $7.29 / 32^{\prime \prime}$ wide． $8^{\prime \prime}$ deep（ $165 \times 198 \times$ 203 MาT）．
Wefght：net $84 / \mathrm{lbs}(3,5 \mathrm{~kg})$ ；shipping，approximately $10 \mathrm{lbs}(4,5 \mathrm{~kg})$ ．
Price：hp 208A， 5325.

Specifications，208A（Option 01．）

（Same as 20BA．exceptil
Output attenuator： 0 to 110 db in 1 db steps．
Accuracy， 10 db section：from s eps to 100 kc ，error is iess than $=0.125 \mathrm{db}$ at any step；from 100 kc to 560 kc ，efror is less than $=0.25 \mathrm{db}$ at ang step． Accuracy， 100 db section：from 9 cps to 100 kc ，errot is less than $=0.25 \mathrm{db}$ at any step；from 100 kc to 560 ke ，crior is less than $=0.5 \mathrm{db}$ at any step．
Output monitor：solid－stare voimmeter monitors level at input to attenuator， and after set level；scale calibrated -10 dbm to +1 d din；aecuracy $=0.25$ db at $\cdot 10 \mathrm{dbm}$ into 600 ohos．
Set tevel：continuously sariable brigged＇T＇atenuatn wath 20 db mini－ mum range
Prica：hp 208A（Option 01．）．\＄535．

241A PUSHBUTTON OSCILLATOR

Three-digit frequency resolution, 10 cps to 1 mc

Advantages:

Three-digit frequency resolution Simple, rapid, accurate frequency selection Compact, lightweight, portable Flat frequency response, 10 cps to 1 mc Accurate repeatability

Uses:

Production line and repetitive resting Standard source for calibrazing ac-to-dc converters Response testing at audio and communication frequencies; narrow. or wideband devices
Low distortion source in the presence of shock, vibration or hf radiation.

Pushbutton convenience and repeatability for selecting Frequencies from 10 cps to 999 kc make the hp 241 A Oscillator idea! for supplying stable test signals for labora. tory or production work. Simple depression of three frequency buttons and one of five decade multipliers selects any of 4500 discrete frequencies. Accuracy is $\pm 1 \%$, and repeatability is typically better than $0.02 \% \%$.

Three digit frequency resolution is provided, with inter. polation possible with a vernier control that extends the
upper frequency to 1 mc . A front.panel control adjusts the bridged tee attenuator for output levels of -30 dbm to +10 dbm presenting a constant outpul impedance of 600 ohms. Frequency response is flat $\pm 2 \%$ over the entire range at any attenuator setting. Hum and noise are reduced below 0.05% of the output.

Adaptations available

Several adaptions for communications work are featured in the hp Models H30- and H48-241A. The ourput circuit includes a combined L and T pad rhich has two outputs to match éther 600 - or 900 -ohm loads and to provide equal power to each. Both outputs are balanced to ground. Outpur power may be adjusted over a 40 db range (+10 to -30 dbm) in 1 db steps with an accuracy of 0.1 db . Frequency range is 100 cps to $10 \mathrm{kc}, 2$ ranges, 1800 frequency increments with vemier overlap. Erequency accuracy is $\pm 0.2 \%$, and frequency response is within 0.2 db over the entire range.

These special 241A oscillators are arranged to operate from the standard 48 volt (H48-241A) of 30 volt ($\mathrm{H} 30-$ 241A) (positive ground) telephone equipment bartery supply. Contact your local hp sales office for additional information.

Specifications

Frequency range: 10 cps to $1 \mathrm{mc}, 5$ ranges, 4500 frequency increments per range, with vernier overlap.
Callbration accuracy: $\pm 1 \%$.
Frequency response: $\pm 2 \%$ into rated load.
Output impedance: 600 ohms.
Distortion: 1% maximum.
Hum and noise: 0.05% of output.

Output: +10 to -30 dbm into 600 ohms (2.5 volts maximum).
Power: 115 or 230 volts. 50 to 1000 cps, 1 watt.
Dirsensions: $6.18 / 32^{\prime \prime}$ high, $7.25 / 32^{\prime \prime}$ wide, $81 / 8^{\prime \prime}$ deep $(167 \times 197 \times 206 \mathrm{~mm})$.
Weight: net $8 \mathrm{lbs}(3,6 \mathrm{~kg})$; shipping $13 \mathrm{lbs}(5,85 \mathrm{~kg})$
Price: hp 241A, $\$ 490$.

3300A FUNCTION GENERATOR, 3301A AUXILIARY PLUG-IN, 3302A TRIGGER/PHASE LOCK PLUG-IN, 3303A DIVIDER PLUG-IN

Plug-ins, multiple outputs achieve maximum versatility

Maximum versatility and usefulness with plug-ins and multiple outputs set the hp 3300A Function Generator apart from other function generators. Any two of three waveforms - sine, square or triangular - may be selected by a front-panel switch, covering all frequencics from 0.01 cps to 100 kc , continuously variable in seven decade ranges. This solid-state, multi-purpose source provides simultaneous signals of any two waveforms, with constant amplitude over the entire frequency range.

Plug-ins, which insert directly into the front panel, include the hp 3301A Auxiliary Plug-in, hp 3302A Trigger Plug-in and hp 3303A Divider Plug-in. The 3302A provides single-and multiple-cycle operation with variable start/stop phase. A phase lock loop in the 3302A permits synchronizing the 3300A with an external signal and provides variable phase control. The 3303A divides the 3300A frequency by 100 , offering waveform frequencies of 0.0001 cps to 1 kc . The 3300A Function Generator with plug.in versatility provides a compact, convenient multi-purpose source of test waveforms useful for testing servo, geophysical and medical equipmenr, and for the electrical simulation of mechanical phenomena.

Electronic frequency control

The frequency of the hp 3300 A can be controlled by either the front-panel frequency dial or an external voltage applied to a rear-terminal connector. This feature is useful for sweeping filters, amplifiers and other frequency-dependent devices and for externally programming frequencies for production testing. An input voltage of -0.5 to -10 volts will linearly control the frequency over any one range.

Output system

The output system of the 3300 A is dc coupled and fully floating with respect to power line ground. An internal shield reduces radiated interference and provides common mode rejection with floating output. Separate connectors on the rear panel provide terminals for circuit ground, shield ground and power line ground. The operator may connect a de supply to the rear terminals and obtain any $\mathrm{d} c$ offset voltage on the output up to ± 250 volts with respect to power line ground,

The 3300 A may be used to supply a balanced output, using both output amplifiers. Each output amplifier will deliver 35 volts $\mathrm{p}-\mathrm{p}$ into an open circuit.

This instrument is rugged and is constructed with quality components. It is simple to operate, and it is adaptable to a wide variety of low-frequency field or laboratory work.

3301A Auxiliary Plug-in

The hp 3301A Auxiliary Plug-in provides internal connections for basic unit operation.

3302A Trigger/Phase Lock Plug-in

The 3302A is designed to provide single-cycle, multiplecycle and phase-lock operation. The instrument can be
triggered over the entire frequency range, either manually or by applying an external voltage.

Single-cycle operation

In single-cycle operation, one cycle of any function can be obtained by pushing the manual trigger or applying a voltage to the external trigger input. The output statts and stops at the same phase, which is adjustable from -90 degrees to +90 degrees with the front-panel start/stop phase control. The input trigger circuit is de coupled and may be actuated with either polarity of applied voltage.

In the single-cycle mode, a variable phase output can be obtained by triggering with an external sine wave tuned to the same frequency as the 3300A, using the input phase switch and the start/stop phase control. This is particularly useful at frequencies below 10 cps where a phase lock system is not practical.

In addition, when an external trigger is applied, the instrument can be used as a low-frequency pulse generator using the square wave output. The pulse repetition rate is determined by the repetition rate of the applied trigger voltage; the pulse width is controlled by the 3300 A frequency control, and the pulse delay is adjustable using the start/stop phase control. Pulses can also be obtained by using the manual trigges.

Multiple-cycle operakion

In the multiple-cycle mode of operation, any number of complete cycles of any function can be obtained by pushing the manual trigger to start and stop or by applying an external gate voltage. The output signal will start and stop at the same phase, adjustable from -90 degrees to +90 degrees with the start/stop phase control. The 3302A is useful for generating waveform bursts or pulse trains for transient response and coding system measurements.

Phase-lock operation

The 3300A may be phase-locked to any periodic signal with a frequency from 10 cps to 100 kc . A meter, located on the plug-in front panel, indicates when phase lock is achieved. The phase shift between the input signal and the 3300 A can be adjusted over a 360 degree range using the phase control and the input phase switch. This feature is particularly usefol for generating a variable phase output at frequencies greater than 10 cps .

The instmment also may be phase-locked to a harmonic of an externally applied signal, making it useful for synthesis of complex waveforms. In addition, the 3300A may be phase-locked to an external source to obtain sine, triangle and square wave outputs with frequency characteristics of the externally applied signal.

3303A Divider Plug-inn

Available soon for use with the 3300A Function Generator, the hp $3300 \mathrm{~A} / 3303 \mathrm{~A}$ combination is suited for very

available LATE 1965

3302 A Trigger/Phase Lock Plugin
low-frequency applications. This divider unit is used to divide the main-frame frequency of the 3300A by 100 , offering accurate quadrature signals at frequencies from 0.0001 cps to 1 kc . Triangle, sine of square waves at $1 / 100$ of the 3300 A frequency are available at Channel A and Channel B. In addition, all of the Channel A wave. forms may be shifted 90° in phase with respect to Channel B. Multiple combinations of waveforms are available from the divider plug-in such as sine-cosine, sine-sine, sine-triangle, sinetriangle shifted 90° and many others.

Tentative specifications, 3300A
(basic unit)

*Avallable plug-in unlts
 3301A Auxiliary Plug-in
 3302A Trigger Plug-in
 3303A Low-Frequency Plug-in

Output waveforms: sinusoidal, square and triangular selected by panel switch (any two outputs available simul. taneously).
Frequency range: 0.01 cps 10100 kc in seven decade ranges.
Frequency response: $\pm 1 \%, 0.01 \mathrm{cps}$ to $10 \mathrm{kc} ; \pm 3 \%, 10$ kc to 100 kc .
Dial accuracy: $\pm 1 \%$ of maximum dial setting, 0.01 cps to $10 \mathrm{kc} ; \pm 2 \%, 10 \mathrm{kc}$ to 100 kc.
Maximum output per channel: >35 volts peak to peak open circuit: 15 volts peak to peak into 600 ohms; 2 volts peak to peak into 50 ohms.
Output attenuator: continuously variable, $>40 \mathrm{db}$ range.
Output Impedance: 600 ohms, nominal.
Sine wave distortion: $<1 \%, 0.01 \mathrm{cps}$ to $10 \mathrm{kc} ;<3 \%, 10 \mathrm{kc}$ to 100 kc .
Square wave response: <250 nsec rise and fall time on all

[^21]ranges; <1\% sag, < 5% overshoor.
Triangle linearty: $<1 \%, 0.01 \mathrm{cps}$ to $50 \mathrm{kc} ;<2 \%$, 50 kc to 100 kc ; <1 \% symmetry error.
Sync pulse output: $>+10$ volts peak, open circuit: <5 μ sec duration; sync pulse occurs at crest of sine and triangular wave output.
DC stablity: drift $< \pm 0.5 \%$ of peak-to-peak amplitude.
Remote frequency control: -0.5 to -10 volis will linearly change frequency over 1 decade within a single range: frequency linearity with respect to voltage $\pm 1 \%$ of maximum frequency on range selected.
Power: 115 or 230 voles, $\pm 10 \%, 50$ to 1000 cps , approximarely 50 watts.
Dimensions: standard full module; $5^{\prime \prime}$ high, $16^{\prime \prime}$ wide, $11^{\prime \prime}$ deep ($127 \times 406 \times 279 \mathrm{~mm}$).
Weight: net $20 \mathrm{lbs}(9 \mathrm{~kg})$; shipping $24 \mathrm{lbs}(10.8 \mathrm{~kg})$.
Price: on request.

Specifications, 3302A

Modes of operation: single cycle, mulkiple cycle, phase lack, free run.
Trigger requirements
Single cycle: manual or extemal; dc coupled; requires at least 1 volt to trigger externally; may be triggered with positive or negative input voltage.
Multiple cycle: manual or external start/stop; de coupled; requires ar least a volt to start, 0 voles to stop; may be triggered with either postive or negative input voltage.
Phase lock: dc coupled; requires ar least 1 volt peak to peak to lock, 10 volts peak to peak for specified as. curacy with sine wave input.
Phase accuracy: $\pm 10^{\circ}$ from 100 cps to $100 \mathrm{kc} ; \pm 20^{\circ}$ from 10 cps to 100 cps .
Price: on request.

203A VARIABLE-PHASE FUNCTION GENERATOR

Variable-phase sine- and square-wave test signals, 0.00005 cps to 60 kc

The solid-state hp Model 203A Low-Frequency Function Generator provides two transient-free low-distortion square and sinusoidal test signals particularly useful for a wide variety of low-frequency applications. Field and laboratory testing of servo, geophysical, medical and high-quality audio equipment become practical when using the 203A.

The 203 A frequency range of 0.005 cps to 60 kc is covered in 7 overlapping bands (2 additional ranges available on special order, offering frequency range to 0.00005 cps). Accurate $\pm 1 \%$ frequency setting is provided by 180 dial divisions. A vernier drive allows precise adjustment.

30 volt output

The 203A provides a maximum output voltage of 30 volts peak-to-peak for all waveforms. The sinusoidal signals have a distortion that is less than 0.06% and provide virtually transient-free outputs when frequency and operating conditions are varied rapidly. The four output circuits of the 203A have individual 40 db continuously variable attenuators.

Outputs consist of a reference sine and square wave, and a variable-phase sine and square wave. The two sine- and square-wave outputs are electrically identical except that one sine and square-wave output contains a 0 -to 360 degree phase-shifter. These four signals (two reference phase and two variable phase) are available simultaneously from the 203A. The ourput system is floating with respect to ground and may be used to supply an output volrage with either terminal grounded, or may be floated up to 500 volts dc above chassis ground. The output impedance is 600 ohms for all outputs.

Special features

A front-panel calibration provision permits the user to easily calibrate the oscillator frequency to the environment in which the instrument is used. The hp 203A features a unique method of mixing, filtering and dividing the frequency to maintain an exact decade relationship. Interchangeable decade modules provide greater reliability and ease of servicing.

Specifications

Frequency range: 0.005 cps to 60 kc in seven decade ranges.*
Dial accuracy: $\pm 1 \%$ of reading.
Frequency stablity: within $\pm 1 \%$, including warmup drift and line volrage variations of $\pm 10 \%$ (typical short rerm 1 part in 10°).
Output waveforms: avaidable simultaneously; all outputs have common chassis terminal.
Reference phase: sine wave, 0 to 30 v peak-to-peak; square wave, 0 to 30 v peak to-peak.
Variable phase: sine wave, 0 to 30 v peak-to-peak; square wave, 0 to 30 v peak-to-peak; continuously variable, 0 to 360°; plase dial accuracy, $\pm 5^{\circ}$ sine wave, $\pm 10^{\circ}$ square wave.
Maximum output voltaga: at least 30 volrs peak to peak open circuit for sinusoidal and square waveforms.
Output power: 5 volts into 600 ohms (40 mw); ar least 40 db continuously variable attenuation on all outpurs.
Distortion: total harmonic distortion hum and noise $>64 \mathrm{db}$ below fundamental ($<0.06 \%$).

Output system: direct-coupled output is isolated from ground and may be operated floating or with either side grounded (sine wave only).
Amplltude stabllity: (with respect to frequency) $\pm 1 \%$ referenced to 1 kc .
Square wave response: rise and fall time, < 200 nsec; Alatness, Hat to within $\pm 0.5 \%$ from 10% to 90% of half period.
Power: 115 or 230 volts $\pm 10 \%, 50$ to 1000 cps , approximately 25 watts.
Dlmensions: cabinet: $51 / 4^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $111 / 4^{\prime \prime}$ deep ($133 \times 425 \times 286 \mathrm{~mm}$) ; rack mount kir (203A-00203) furnished with instrumen:.
Weight: net $19 \mathrm{lbs}(8,7 \mathrm{~kg})$; shipping approximateiy 25 lbs ($11,3 \mathrm{~kg}$).
Price: hp 203A، \$1200; Option 01., add \$40; Option 02., add $\$ 80$.
*Two lower ranges of 0.0005 (Option 01.) and 0.00005 cps (Option 02.) are available on special order.

202A LOW-FREQUENCY FUNCTION GENERATOR

Transient-free voltage, 0.008 cps to 1200 cps ; sine-square-triangular waveforms

The hp 202A Low. Frequency Function Generator is a compact, convenieat, multi-purpose source of transient-free test voltages. It is particularly useful for testing servo, geophysical and medical equipmeat and for the electrical simulation of mechanical phenomena.

Output frequency is continuously variable from 0.008 cps to 1200 cps in 5 bands. Model 202A offers exceptional stability and distortion of less than 1% over most of the band. Any of three desired waveforms - sine, square or triangular - may be selected by a froat-panel switch. Output is high - 30 volts peak to peak - for all three waveforms and is essentially constant over the entire frequency range.

The hp 202A differs from conventional low-frequency oscillators in that the sine wave is electronically synthesized. A controlled bi-stable circuit generates a rectangular wave. This wave is passed through a special integrator, providing a true triangular wave.

The triangulat wave then enters a shaping circuit designed exclusively for this equipment. In this circuit, 12 crystal diodes modify or "shape" the wave and provide a sine wave. This sine wave has a distortion of less than 1%, and the synthesizing circuit provides virtually transient-free output even when frequency and operating conditions are sapidly varied. It is not necessary to wait long periods for the circuits to stabilize, as is the case with conventional low-feequency oscillators. The circuit inherently maintains constant amplitude over the entire frequency range.

The output system of the 202A is fully floating with respect to ground and may be used to supply a balanced voltage or an output voltage with either output terminal grounded. The equipment will deliver 10 volts cms into a load of 4000 ohms or greater. Internal impedance is only 40 ohms. There are no coupling capacitors in the output system, and a high degree of dc balance is achieved.

Specifications

Frequency range: 0.008 to 1200 cps in five decade ranges.
Dial accuracy: 2% from 1.2 to $12 ; 3 \%$ from 0.8 to 1.2 .
Frequency stablilty; within 1%, with line voltage variations of $\pm 10 \%$.
Output waveforms: sinusoidal, square and triangular.
Maximum output voltage; at least 30 volts peak to peak across rated load (4000 ohms) for all three waveforms (10.6 volts mms for sine wave).
Internal impedance: approx. 40 ohms over entire sange.
Sine wave distortion: less than 1% or X0.01, X0.1, X1, and X10 ranges; less than 2% on X100 range.
Outpul system: output is isolated from ground and may be operated balanced or with either side grounded; output system is direct-coupled; de level of output remains stable over long periods of time and can be adjusted to zero by a front-panel control.
Frequency responser, constant within 0.2 db .

Hum level: less than 0.05% of maximum output.
Sync pulse: 10 volts peak negative, less than $5 \mu s e c$ duration; sync pulse occurs at crest of sime and triangulas wave output.
Power: 115 or 230 volts $\pm 10 \%, 50$ to 1000 cps , approximately 150 watts.

Dimenslons: cabinet: $203 / 4^{\prime \prime}$ wide, $123 / 4^{\prime \prime}$ high, $145 / 8^{\prime \prime}$ deep ($528 \times 324 \times 372 \mathrm{~mm}$); rack mount: $19^{\prime \prime}$ wide, 10 $15 / 32^{\prime \prime}$ high, $13^{\prime \prime}$ deep ($483 \times 266 \times 330 \mathrm{~mm}$).

Welght: net $42 \mathrm{lbs}(18,9 \mathrm{~kg})$, shipping $52 \mathrm{lbs}(23,4 \mathrm{~kg})$ (cabinet); net $37 \mathrm{lbs}(16,6 \mathrm{~kg})$, shipping $46 \mathrm{lbs}(20,7$ kg) (rack mount).
Accessories avallabie: 11000A Cable Assembly, \$4.50; 11001A Cable Assembly, \$5.50.
Price: hp 202A, $\$ 550$ (cabinet); hp 202AR, $\$ 335$ (rack mount).

205AG, 206A AUDIO SIGNAL GENERATORS

Versatile instruments; 20 cps to 20 kc

The 205AG Audio Signal Generator marerially speeds and simplifies a variety of audio terting jobs where sizable amounts of power are required
Two voltmeters measure input and output of the device under test. The ourput level is adjusred by means of the step attenuators, and output impedance can be instantly changed by means of a selector switch to commonly used impedances.

Specifications, 205AG

Frequency range: 20 cps to 20 kc in three decade ranges.
Calibratlon accuracy: $\pm 2 \%$ under normal temperature conditions.
Output: five watts maximum into resssuve loads of $50,200,600$ and 5000 ohms; output circuit is balanced and center-upped; any terminal may be grounded.
Frequency response: $\pm t \mathrm{db}, 20 \mathrm{cps}$ to 20 kc at output levels up so +30 dbm wixh output meter reading held constant at +37 db ; $\pm 1.5 \mathrm{db}, 20 \mathrm{cps}$ to 20 ke at output levels above +30 dbm with outpur meter reading held constant at +37 db (feference 1000 (ps)

Internal impedances: approximately $1 / 6$ of the load impedsnce with zero attenuator setting; approaches the load impedance with attenuator settings of 20 db or more.
Distortion: Jess than 1% at frequencies above 30 cps
Hum level: more than 60 db below the output valtage or 90 db below 0 dbm . whethever is the larger.
Output meter: calibrated dreecty; in volts at 600 ohms and dbm
 $+2010+37 \mathrm{dbra}$.
Input meter: calibrated in dbm from - 3 to t 8 dbm and in volls from 0 to 2 v ms ; voltage accuracy is $\pm 5 \%$ of full scale.
input attenuator: extends meter range to +48 dbm and to 200 \because rms in s db steps, accuracy $\pm 0.1 \mathrm{db}$.
Output attenuator: 110 db in 1 db steps.
Power: 115 or 230 voles $\pm 10 \%$, 30 to $1000 \mathrm{cps}, 150$ watts.
Dimensions: cabinet: $203 / 4^{\prime \prime}$ wide. $123 / /^{\prime \prime}$ high, $151 / 2^{\prime \prime}$ deep ($527 \times$ $324 \times 394 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $14^{\prime \prime}$ deep behind pancl ($483 \times 267 \times 356 \mathrm{~mm}$).
Weight: net $96 \mathrm{lbs}(29.2 \mathrm{~kg})$, shipping $67 \mathrm{lbs}(30.2 \mathrm{~kg})$ (cabinct). net $49 \mathrm{lbs}(22,1 \mathrm{~kg})$, shipping $63 \mathrm{lbs}(28,3 \mathrm{~kg})$ (rack mount).
Price: hp 205AG, 5600 (cabinet); hp $205 A G R$, $\$ 585$ (rack mount)

The hp 206A Audio Signal Generator provides a source of continuously variable audio-frequency voltage at a toral distortion level of less than 0.1%. This unusually low distortion, coupled with simple, straightformard circuitry. rugged construction and rypical hp ease of operation, makes this signal generator ideal for use in the maintenance of FM broadcasting units and high fidelity audio systems.

Specifications, 206A

Frequency range: 20 cps to 20 ke in three decade ranges. Callbration accuracy: $\pm 2 \%$ including varm-up drife.
Output: +15 dbm into impedances of 50,150 and 600 ohms; approximately 10 volts are available into an open circuit.
Output limpedances: the generetor has a matched internal impedance, and the selection of output impedances includes 30 , 150 and 600 ohms center-tapped and balanced, and 600 ohms single-cnded.

Frequency response: better than $\pm 0.2 \mathrm{db}$ at all levels, 30 cps to is kc , when the output meter reading is held constant.
Distortion: less than 0.1% at frequencies above 50 cps and less than 0.25% from 20 cps to 50 cps .
Hum level: at least 75 db below the outpur signal or more than 100 db below zera level, whichever is larger.
Output meter: calibrated in dbm and also in voles; readability ac least 0.2 db at all points above a 50% sale reading (0 dbm equals 1 mm in 600 ohms).
Output attenuators: 111 db in 0.1 db steps.
Power: 115 or 230 volts $\pm 10 \%$, 50 to 1000 cps, 140 watts.
Dlmenstons: cabinet: $203 / 4^{\prime \prime}$ wide, $123 / 4^{\prime \prime}$ high, $15^{\prime \prime}$ deep ($527 x$ $324 \times 381 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $14^{\prime \prime}$ deep behind pancl ($483 \times 267 \times 356 \mathrm{~mm}$).
Weight: net 37 lbs ($23,6 \mathrm{~kg}$), shipping $67 \mathrm{lbs}(30.2 \mathrm{~kg}$) (cabinet) : net 30 lbs ($22,5 \mathrm{~kg}$), shipping $63 \mathrm{lbs}(28,3 \mathrm{~kg}$) (rack mount).
Price: hp 206A, $\$ 900$ (cabinet); hp 206AR, $\$ 885$ (rack mount).

651A TEST OSCILLATOR

Solid-state, 10 cps to $10 \mathrm{mc}, 50$ - and 600 -ohm oscillator

The solid-state hp Model 651A Test Oscillator provides accurate, stable test signals for laboratory or production measurements. This instrument covers a wide frequency range from 10 cps to 10 mc , continuously variable across six bands.
Two output impedances are available from the front panel, providing 200 mw into 50 ohms or 16 ms into 600 ohms. This capacitance-tuned oscillator delivers a fat outpur throughout the entire frequency range. Once rarmed up, and in a normal lab environment, where ambient temperature does not change more than 3 or $4^{\circ} \mathrm{C}$ over 24 hours, frequency stability at 5 mc is typically $\pm 10 \mathrm{PPm}$.

Figure 1. Typical irequency stability characteristics at 5 mc for 15 minutes.

An indication of the overall irequency stability under the above conditions is shown in Figure 1, which illustrates the behavior over a 15 -minute period. The typical frequency stability for a 24 -hour period at 5 mc is $\pm 0.02 \%$. The frequency stability at lower frequencies is typically better than those shown in the rop frequency band.
Typical amplitude stability over a 17 hour period is $\pm 0.1 \%$, as shown in Figure 2.

Figure 2. Typical amplitude stability at mid-band frequencies for 17 hours.

A high-impedance voltmeter measures the output of the poner amplifier. The meter is calibrated to read volts or dbm into a 50 -ohm load. For any attenuator setting, true outpue is obtained by subtracting the attenuator reading from the output voltmeter reading. The output atrenuator has a 90 db range, adjustable in 10 db steps with a 20 db vernier. Two outpurs, 50 . and 600 -ohm, are available on the front panel. The standard 651 A output monitor is calibrated ro read dbm for 50 ohms ($0 \mathrm{dbnt}=1 \mathrm{mu}$ into 50 ohms). The Model 651 A (Option 01.) is calibrared to read dbm for 600 ohms ($0 \mathrm{dbm}=$ 1 mow into 600 ohms). The 651 A (Option 02.) has a 75 -ohm and 600 ohm output. The output monitor is calibrated to read dbm for 75 ohms ($0 \mathrm{dbm}=1 \mathrm{mw}$ into 75 ohms). Outpur impedances not listed are available to meet your requirenents. Discuss your application with your hp sales engineer.

Specifications

Frequency range: 10 cps to 10 mc .6 bands ; dial calibration, 1 to 10 .
Dial accuracy: $\pm 2 \%, 100 \mathrm{cps}$ to $\mathrm{t} \mathrm{mc} ; \pm 3 \% .10 \mathrm{cps}$ to 10 mc (including warm-up drift and $\pm 10 \%$ line variation).
Frequency stability: typicaliy $10 \mathrm{ppm} /$ minute.
Output: 200 mw (3.16 vinto 50 ohms) ; 16 mr (3.16 v into 600 ohms) : 6.32 vopen circuit.
Distortion; $<1 \% .10 \mathrm{cps}$ to 5 mc : approximately 2% at 10 mc .
Hum and nolse: less than 0.05% of maximum rated output.
Output monitor: volmeter monitors level at input of attenuator in volts or db : top scale calibrated in volts; bottom scale cali. beated in db ; accuracy $\pm 2 \%$ at full scale; flatness: $\pm 1 \%$ at full scale, 20 cps to $4 \mathrm{mc} ; \pm 2 \%$ at full scale. 10 cps to 10 ms .
Frequency response: Gat within $\pm 2 \%, 100 \mathrm{\kappa ps}$ to $1 \mathrm{mc}: \pm 3 \%$. 10 cps to $100 \mathrm{cps}: \pm 4 \%, 4 \mathrm{mc}$ to 10 mc .
Amplitude control: 20 db range (nominal).

Attenuator: sange 90 db in 10 db steps; overall accuracy, $=0.1 \mathrm{db}$: $Z_{r}=50$ ohms and 600 ohms ($Z_{0}=75$ ohms and 600 ohms, Option: 02.).
Temperature range: $0^{\prime} \mathrm{C}$ to $\div 50^{\circ} \mathrm{C}$.
Dimensions: $5.7 / 32^{\prime \prime}$ high, $163 / 4^{\prime \prime}$ wide, $131 / 4^{\prime \prime}$ deep ($135 \times 425 x$
367 mm) : rack mount kit ($5060 \cdot 0075$) furnished with instrument.
Weight: net $17 \mathrm{lbs}(7.7 \mathrm{~kg})$; shipping $22 \mathrm{lbs}(9.9 \mathrm{~kg})$.
Power: 115 vor $230 \mathrm{v} \pm 10 \%$, 50 to 1000 cps .20 w .
Price: hp 651A, $\$ 590$.

Optlons

1. 651A ourpur monitor top scale calibrated in dbm/600 ohms: bottom scale calibrated in volis: 5615.
2. 651A outpur, 75-ohn and 600 -ohm: output monitor top scale calibrated in $\mathrm{dbm} / 75$ ohms; bottom scale calibrated in volts; \$615.

* Orher oulput impedances above so ohms are arailable on special ordep.

650A TEST OSCILLATOR

Fast, accurate tests 10 cps to 10 mc

The $h_{p} 650 \mathrm{~A}$ Oscillator brings audio-frequency speed, accuracy and ease of operation to higher frequency fields. Its wide frequency range, 10 cps to 10 mc , makes it ideal for a wide variety of measurements in audio, ultrasonic, video and rf bands. Output is fiat within $\pm 1 \mathrm{db}$ through. out its frequency range. Voltage range is 30 microvolts to 3 volts, and output impedance is 600 ohms. For mensurements where low source impedance is desired, an output voltage divider provides a 6 -ohm impedance.

Six decade frequency ranges provide an effective scale length of 94 inches. The tuning dial is controlled directly, or with a 6-to-1 vernier microdrive for hairline adjustment.

Output monitor

The output voltage is monitored by a vacuum cube voltmeter which measures the voltage at the input to the attenuator system. The utvm is calibrated in volts and decibels and reads actual output voltage when the attenuators are set for zero attenuation. For other attenuator settings true output voltage is obtained by subtracting the attentuator reading from the output voltmeter reading. The output attenuator is adjustable in 10 db steps, and maximum attenuation is 50 db .

Circuits of the hp 650A have been carefully proportioned, and low temperature coefficient components have been employed to assure highest frequency stability. Ourput voltage will remain constant over long periods of time, despite wide variations in temperature. Distortion over the low-frequency bands is kept at a minimum to increase the usefulness of the instrument for audio measurements.

Specifications

Frequency range: 10 cps to 10 mc ; six decade bands.
Calibration accuracy: $\pm 2 \%, 10 \mathrm{cps}$ to $100 \mathrm{kc} ; \pm 3 \%, 100$ kc to 10 mc (including warm-up and $\pm 10 \%$ line voltage variation).

Output: 15 milliwatts or 3 volts rms into 600 -ohm resistive load; open-circuit voltage is at least 6 volts rms.

Source Impedance: 600 ohms; 300 ohms or 6 ohms when using 11047A Output Divider.

Frequency response: flat within $\pm 1 \mathrm{db}, 10 \mathrm{cps}$ to 10 mc into 600 -ohm resistive load.

Distortion: less than 1% from 20 cps to 100 kc ; less than 2% from 100 kc to 1 mc ; approximately 5% at 10 mc .
Output monltor vacuum tube voltmeter monitors level at input to attenuator, in volts or db at $600 . \mathrm{hm}$ level; zero $\mathrm{db}=1 \mathrm{mw}$ in 600 ohms; accuracy $\pm 5 \%$ of full-scale reading.
Output attenuator: 0 to 50 db in 10 db steps; accuracy ± 1 db into resistive load of 600 ohms.

Hum voltage: less than 0.5% of output voltage with meter at full scale.
Power: 115 or $230 \mathrm{v} \pm 10 \%, 50$ to $1000 \mathrm{cps}, 165 \mathrm{w}$.
Dimenslons: cabinet: 203/4" wide, 123/4" high, $15^{\prime \prime}$ deep ($527 \times 324 \times 381 \mathrm{~mm}$) ; rack mount; $19^{\prime \prime}$ wide, $101 /^{\prime \prime}$ high, $15^{\prime \prime}$ deep behind panel ($483 \times 267 \times 356 \mathrm{~mm}$).
Weight: net $46 \mathrm{lbs}(20,7 \mathrm{~kg})$, shipping $55 \mathrm{lbs}(24,7 \mathrm{~kg})$ (cabinet); net $37 \mathrm{lbs}(16,6 \mathrm{~kg})$, shipping $52 \mathrm{lbs}(23,4$ kg) (rack mount)
Accessory furntshed: one 11047A Output Divider.
Accessorles available: 11000 A Cable Assembly, \$4.50; i1001A Cable Assembly, 55.50; il1047A Output Divider, $\$ 25$.
Price: hp 650A, $\$ 550$ (cabinet); hp 650AR, $\$ 535$ (rack mount).

350C,D ATTENUATORS, HEWLETT-PACKARD ACCESSORIES

Match 500 - or $\mathbf{6 0 0}$-ohm lines, 5 -watt capability; useful accessories

350C, D Attenuators

When a high order of accuracy, ride frequency response, large powerhandling capacity or special features are required. hp 350 Series Artenuators are of grear value and convenience. They are particularly useful in attenuaring outpur of audio and ultrasonic oscillators, measuring gain and frequency response of amplifers, measuring transmission loss and increasing the scope and usefulness of other laboratory equipment.

Specifications, 350C,D
Attenuation: 110 db in 1 db steps.
Accuracy, 10 db section: from dc to 100 kc , error is less than $\pm 0.125 \mathrm{db}$ at any step; from 100 kc to 1 mc , error is less than $\pm 0.25 \mathrm{db}$ at any step.
Accuracy, 100 db section: from dc to 100 kc , etror is less than $\pm 0.25 \mathrm{~d}$ at any step up 1070 db , less than $\pm 0.5 \mathrm{db}$ above 70 db ; from 100 kc to 1 mc , error is less than $\pm 0.5 \mathrm{db}$ at any step up to 70 db , less than $\pm 0.75 \mathrm{db}$ above 70 db .
Power capacity: 350 C , 500 ohms: S watts (50 v dc or rms) maximum, continuous duty; 350D, 600 ohms: 5 watts (55 v ds or rms) maximum, continuous dury.
$D C$ isolation: signa! ground may be $\pm 500 \mathrm{vdc}$ from external chassis.
Dimensions: $6.3 / 32^{\prime \prime}$ high. $51 / 8^{\prime \prime}$ wide. $8^{\prime \prime}$ deep ($155 \times 130 \times$ 203 mm).
Weight: net $5 \mathrm{lbs}(2.3 \mathrm{~kg})$; shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Accessories avaifable: 11000A Cable Assembly, 4.f" of RG. 58C/U 50.ohm coaxial terminated by dual banana plugs, \$4.50; 11001A Cable Assembly, as above, but with one BNC male connector, $\$ 5.50$.
orice: 500 -ohm atrenuacor, hp $350 \mathrm{C}, \$ 125 ; 600 \cdot$ ohm attenuator, hp 350D, \$125.

Accessories:

10110A, 10111A BNC-To-Binding.Post Adapters
These adapters mate with a BNC or binding post receptacle, respectively, and provide either binding post or BNC outpur connectors. The 10110A is a BNC male to binding post adapter: the 10111A is a BNC female-ro-banana-plug adapter. Spacing between binding posts is $3 / 4^{\prime \prime}$. hp 10110A, $\$ 5$; hp $10111 \mathrm{~A}, \$ 7$.

11004A Line-Matching Transformer

The 11004A Transformer has a frequency response between 5 kc and 600 kc , provides fully balanced 135 . or 600 ohm output from single-ended input. Maximum level +22 dbm: hp 11004A, $\$ 60$ each.

11005A Line-Matching Transformer

The 11005A Transformer has a frequency response between 20 cps and 45 kc , provides a fully balanced $600-\mathrm{ohm}$ output from single-ended inpur. Maximum level is +15 dbm ; hp 11005A, $\$ 80$ each.

11047 A Output Divider Load

Output voltage divider for 630 A Test Oscillator. (Refer to page 262.) Source impedance 300 ohms or 6 ohms is provided for small rest signals or a low source impedance; hp 11047A, \$2S each.

11048B 50-Ohm Feed Thru
Precision 50 -ohm feed thru termination with male and female BNC connectors; 11048B, $\$ 10$ each.

HEWLETT-PACKARD CABLE ACCESSORIES

Cable assemblies, cabinet accessories

10501A Cable Assembly
$44^{\prime \prime}$ of 50.0 hm coaxial cable terminated on one end only with UG-88C/U BNC male connector; hp 10501A, $\$ 3.50$ each.

10502A Cable Assembly

$9 "$ of 50.0 hm coaxial cable terminated on both ends with UG-88C/U BNC male connectors; hp 10502A, $\$ 5.50$ each.

10503A Cable Assembly

4^{\prime} of 50 -ohm coaxial cable terminated on both ends with LG-88C/U BNC male connectors; hp 10503A, 56.50 each.

11000A Cable Assembly

Dual banana plugs terminate a section of 50 -ohm cable. $44^{\prime \prime}$ over-all; plugs for binding posts spaced $3 / 4^{\prime \prime}$; hp 11000A, $\$ 4.50$ each

11001A Cable Assembly

Identical with 11000 A except dual banana plug on one end and UG-88C/L BNC maie on the other; hp 11001A, \$5.50 each.

11002A Test Leads

Dual banana plug to alligator clips, 5^{\prime}; hp 11002A. 57.50 each.

$11003 A$ Test Leads

Dual banana plug to probe and alligator slip. $5^{\prime} ; \mathrm{h}_{\mathrm{F}}$ 11003 A, 510 each.

11035A Cable Assembly

$12^{\prime \prime} 50 . \mathrm{ohm}$ coaxial cable terminated on one end with a dual banana plug and on the other end with a UG-88C/ L BNC male connector, hp $11035 \mathrm{~A}, 55.50$ each.

11037A Cable Assembly

$44^{\prime \prime}$ dual banana plugs to alligator clips; hp 11037 A . \$6 each.

11056A Handle Kit
(for one-therd module)
Handle for carrying hp instruments whose size are onethird futl rack widrh; $h_{F} 11056 \mathrm{~A}, \mathrm{~s}^{5}$ each. (Refer to pages 13 and 14.)

11057A Handle Kit
(for one-halif module)
Handle for carrying hp instruments whose size are onehalf full rack width; hp 11057A, $\$ 5$ each. (Refer to pages 13 and 14.)

11500A Cable Assembly

6^{\prime} of specially treated 50 ohm coaxial cable rerminated on both ends with LG.21D/L Type N male connectors; hp 11500A. $\$ 15$ each.

11501A Cable Assembly

6^{\prime} of 50 -ohm coaxial cable terminated with LG.21D/L Type N male and LiG-23D/L Type N female; hp 11501A, $\$ 15$ each.

The carhode-ray oscilloscope is an exremely fast $x \cdot y$ plotter which plots an imput signal versus another signal or versus time. The "stylus" is a luminous spot which moves over the display area in response to input voltages. In the usual scope application, the x-axis input is an internally generated linear ramp voliage which moves the spot uniformly from left to right across the display screen. The voltage being examined is applied to the y-axis inpur, moving the spot up or down in accordance with its instantaneous value. The spot then traces a curve which show's how the input voltage varies as a funcrion of time.
When the signal being observed is reperitive at a fast enough rate, the display appears as a sready line. The carhoderay oscilloscope, thus, is a means of visualizing time, varying voltages. As such, it has become a universal tool in all kinds of electronic investigations. In addition to voltages, a scope can present visual representations of a wide variety of dynamic phenomena by the use of trans. ducers for converting current, strain, acceleration, pressure and other physical quantities inro voltages.

The cathode-ray tube

The cathode-ray tube (crt) is the heart of the cathode-ray oscilloscope, with the rest of the instrument consisting of circuitry for operating the crt. As is commonly known. this tube has an electron gun at one end and a phosphor display screen at the other end. The gun has a thermionic cathode, various accelerating électrodes for direcring emitted electrons roward the display screen, and a focusing electrode. The resulting narrow beam of electrons from the gun strikes the phosphor in a small spot with enough energy to cause fluorescence.

On leaving the gun, the electron stream passes between each of two pairs of deflection electrodes. Voltages applied to these electrodes bend the beam, voluages on one pair of electrodes moying the beam up and down and voltages on the orher pair noving ir from side to side. These movements are independent of each
other, so that the spot may be positioned anywhere on the phosphor screen by appropriate voleage inputs.
The accuracy with which the viewed oraveform corresponds to the deflection voltages depends in large measure on the performance of the cathode-ray tube. Careful design of the electrodes and the precision manufacturing rechniques of the Hewlett-Packard cathode-ray tube facility insuce that the beam moves linearly with respecr to the defection voltages Hewlett-Packard's precision crt's make it possible to measure accurately the input volrage amplitude at any point on the waveform by measurement of the amount of defection of the fluorescent spot.

Internal graticule

The amount of spot deflection, and, thus. the input voltage amplitude, is gauged by a rectangular graticule placed on the display area. A significant conrribution to precision oscillography was made by Hewlett.Packard with the intro.
duction of the internal graticule tube. In these tubes the graticule of fine, black lines is placed in the same plane as the phosphor. This avoids errors caused by the parallax which otherwise exists when the geaticule is external to the tube, sepa. rated from the phosphor by the thickness of the glass face -plate.
CRT photography is improved by the internal graticule tube. With the proper techniques, described on page 301, the urace shows white, the graticule shows black, while the background is an inter. mediate gray. This results in maximum contrast berween trace and graticule and ar the same time obrains an increase in photographic speed.
Another feature of Hewletr-Packard's internal graticule tube is that the outer surface of the face-plate is etched slightly. thus minimizing glare and bothersome reflections. This face-plate is made of laminated glass, giving superior protection from implosion whthout the need for an external plastic shield.

CRT phosphors

The purchaser of an oscilloscope has the option of selecting the phosphor best suited to his primary applications. The various chemical salts used in ert phosphors have different characteristics affecting the color of fuoresience and its brightness, decay and speed of response. Unless otherwise specified, most Hewletr. Packard scopes are supplied with P31 phosphor. This phosplior combines brightness and a spectral response well

suited to the eye, with ruggedness and resistance to burning. Phosphor characteristics are discussed in the table on page 268.

Basic oscilloscope circultry

The primary subsystems of a cathode. ray oscilloscope ase the crt, the vertical deflection system, the horizontal deflection system and the power supplies. The power supplies include focusing and inrensity controls for adjusting the crt spot. Sampling oscilloscopes, discussed on page 294, have additional circuitry for observation of fast signals beyond the capability of ordinary real-time oscillo. scopes.

The horizontal deflection system supplies drive voltages for moving the electron beam horizontally. Since so many measurements are concerned with plotting volkage versus time, the horizontal deflection system also includes sawtooth waveform generators for sweeping the beam horizontally at a uniform rate, plus syachronizing circuits for starting the horizontal sweep at a specific instant with respect to the measured waveform.

The horizontal ampliniers of all Hew. letr-Packard scopes may be used sepa. rately from the sweep generating circuits for deflecting the horizontal beam in response to external waveforms, a useful technique for making $x-y$ plots.

The vertical deflection system consists of an amplifer chain for a mplifying low. level input signals sufficiently to drive the crt spot. Attenuators are included, so that a wide range of ioput signal amplitudes may be accommodated within the vertical dimension of the display area.

Selecting an oscilloscope

Choice of an oscilloscope is based largely on considerations of both performance capabilities and versatility. Versatility is greatly enhanced if the scope has plug-in capability, since the scope's performance can be altered by use of the appropriate plug.in. Plug-in capability also enables a scope's performance to be updated as new plug-ins become available. The prospective purchaser should decide, firsr of all, whether his applications are broad enough to require plog in versatility.

Bandividth and sensitivity of the vertical amplifiers are the primary characteristics which describe an oscilloscope's per-
formance capabilities. Wide bandwidrh is obtained at the expense of more complicated circuitry and more expensive cathoderay rubes. High sensitivity re. quires more amplifier stages and added refinements for minimizing dc drift and noise.

Detalled discussions of the various Hew lett-Packard ascilloscopes are grouped in later sections according to plug-in capability. These discussions are divided as follows: (1) general-purpose. non-plug-in scopes, useful for the majority of industrial and laboratory applications (page 269): (2) plug-in scopes, having the additional features required for high frequency or fast pulse work (page 276): (3) sampling oscillo. scopes, which extend scope measurements to frequencies of 4 gc and above and to pulses with rise times measured in picoseconds while still retaining a large, bright display and high sensitivity (page 294).

The reader is referred to these sections for detailed discussions of scope characteristics. Certain other features, common so most Hewlett-Packard scopes, are described here.

Features of the vertical deflection system

The amplifiers in Hexiett-Packard oscilloscopes are stable enough to permit voltage measurements with confidence to at least $\pm 3 \%$ accuracy. To verify ampli. fier accuracy, all Hewlett-Packard scopes have built-in calibrators which supply precisely controlled signais for use as calibrating test signals.

DC coupling, included on all HewlerrPackard scopes, preserves the waveform of slowly varying signals and also permits a dc reference line to be established on the display, facilitating precise amplitude measurements. DC coupling is not desirable. though, when a small ac component on a relatively large do voltage is to be examined. Hewlert-Packard scopes all have provision for inserting decoupling capacitors into the signal line when de coupling is not desired.

A widely used option in oscilloscope vertical deflection systems is the provision for tro signal channels. Dual. channel operation is obrained most conveniently by electronic switching betreeen signa! channels, resulting in alternate displays of the two signals. Switching may occur berween siveeps so that the waveform of one channel is displayed during one sweep, and the other waveform is displayed on the next sweep; or switching may occur rapidly (40 kc to 1 mc) for displaying samples of both channels during one sweep. This latter merhod, frequently referred to as "chopped" presentation, is most often used for low.
frequency waveforms which otherwise Hould ficker with alternate-sweep pre. sentation.
Dual-channel presentation enables comparison studies of two signals, such as phase measurements or studies of an amplifier's ourput signal versus its input. The two inputs of dual-channel oscilloscopes have separate preamps and attenu. arors for independent adjustment of the amplitudes of the two signals. In some applications, a dual-beam oscilloscope, such as the hp Model 132A, must be used rather than a dual-trace unit. The crt of the 132A has two electron guns and two sets of deflection plates. This arrangement allows single-shot observations of events that are too fast for the "chopped" dual-trace method described above. Also, simultaneous $x \cdot y$ and $y-t$ displays or two different sweep speeds are possible without expensive delay generators usually found only in elaborate high.frequency scopes.

Other features

The beam finder button, a convenience feature found on Hewlert. Packard scopes. simplifes trace centering. Pressing this button reduces the gain of bort horizontal and vertical amplifers while simultaneously brightening and defocus. ing the trace. In this way, the trace is brought on screen, regardless of the settings of the positioning, intensity and sweep trigger controls.

Triggering the sweep is quick and easy with hip oscilloscopes through the use of auromatic triggering. Preset adjustments produce synchronized soreeps with little or no adjustment of the fronr-panel controls. An automatic baseline, present on many hp scopes, facilitates secting up the display in the absence of an input signal. The sweep magnifier feature is valuable for close examination of trace segments Which occur too late in time after the start of the trace to be examined with faster sweeps. Other features of the hotizontal defection system, such as soreep delay and single-sweep operation, are discussed in later secrions.

Reliability through conservative design is buile inco all Hewletr-Packard scopes. They are designed for ease of servicing, with all components readily accessible. Edge.on connectors, or snap-out circuit boards, as in the Model 132A Dual Beam Oscilloscope, allow easy removal of en. tire circuit sections for replacement or repair.

The newer hp scopes are packaged in the hp modular cabinets (pages 13, 14). These instruments can be stacked on the bench with other hp instruments or quickly converted to rack mounting. A tilting bail raises either end for easier viewing on the bench.

Phosphor characteristics, Hewłett-Packard cathoderay tubes

Phaspher	Trace color		Low-level persistenco?	Relative burn resistance	Relative vtsual brightness						Use
	Under exchation	Afterglow			2.6 kv nonalum.	3.5 kv alum. ${ }^{2}$	$\begin{gathered} 5 \mathrm{kv} \\ \text { alum. } \end{gathered}$	7.6 kv alum. ${ }^{3}$	10 ky alum. ${ }^{3}$	$12 \mathrm{kv}$ $\text { slum. } 3$	
P11	green	green	180 msec	100	100	190	420	860	1300	1600	visual observation of medium and fast repetitive signals
P2	Dlue	yellow	1 sec	150	130	240	550	1100	1650	2100	visual disolay and pholo. graphic recording of medium and slow repatifive signals
P7	blue-white	yellow	3 sec	75	60	110	300	600	900	1130	long persistence makes P7 useful lor visual observation of slow transients and slow repetitive signals
911	blue	blue	20 msec	75	20	70	170	400	660	800	best for pholographic recordings of fast waveforms and transients, poor ior visual work
P31	blue-green	light green	500 msec	250	190	320	740	1600	2300	3000	best general-purpose phos. phar for visual and photographic use on all wave. forms, most resistant to butning

1PI phosphor will not f\}uoresce under ullra-violet excitation. Not available with internal graticule,
a Low-level persistence is a measure of the time for the atterglow to decrease to 10% brightness, a level of light intensity which is still visible.
3 Aluminized crt has greater visual brightness and is less susceptible to burning.

Rack mount information hp oscilloscopes Dimensions in inches (mm)

	120日	122A	130 C	132A	140A	1708	176A	1856
AI	6.31/32 (177)	8-31/32 (.177)	6.31/32 (177)	8-23/32 (222)	8-23/32 (222)	12-7/32 (310)	12.7/32 (310)	12-7/32 (310)
B1	19 (483)	19 (483)	19 (483)	19 (483)	19 (483)	19 (483)	19 (483)	19 (483)
C	6.25/32 (172)	61/2 (165)	6.25/32 (172)	$8.17 / 32$ (217)	8.17/32 (217)	11-21/32 (296)	12-1/32 (306)	11.21/32 (296)
D	163/4 (420)	163/4/426)	16\%/4 (426)	163/4 (426)	$161 / 4$ (426)	16-15/16 (430)	163/3 (426)	16-15/16 (430)
E	17 (432)	191/2 (495)	171/8 (454)	171/8(454)	17788(454)	221/2 (565)	23 (584)	221/2 (565)
F	163/2 (416)	19 (483)	$163 / 8$ (416)	162/8(416)	$185 / 2(416)$	201/4 (514)	$223 / 88$ (568)	204/4 (514)
G	11/8 (29)	1/8(29)	11/8(29)	11/8(29)	11/3 (29)	1-1/16 (27)	11/8(29)	14//16 (27)
H	0	1/2 (6)	0	0	a	5/16(8)	0	$5 / 16$ (8)
J	2 (51)	11/2 (32)	2 (5)	2 (51)	2 (51)	2 (51)	2 (51)	2 (51)
K	-	-	-	--	4 (102)	6\%/9 (168)	7 (178)	65/9 (168)
L	-	-	-	-	91/s (235)	11 (279)	111/2(292)	11 (279)
M1	1-31/64 (38)	1-31/64 (38)	1-31/64 (38)	1.31/64 (38)	1-31/64 (38)	1-31/64 (38)	1.31/64 (38)	1.31/64 (38)
NI	-	-	-	-	-	$31 / 2$ (89)	$31 / 2$ (89)	$31 / 2$ (89)
P1	-	-	-	-	-	51/4 (146)	53/4 (146)	51/4 (146)
R1	4 (102)	4 (102)	4 (102)	-	$51 / 4.146)$	9/4, (235)	91/4 (235)	91/4 (235)
$\begin{gathered} \text { Cooling } \\ \text { Type } \end{gathered}$	C	C	C	C	F.A.	F.A.	F.A,	F.A.
Air in	B	8	B	B	R	R	R	R
Air out	S.T.R.	T.R.	S.T.R.	S.T.R.	5	5	S	S
CFM2	25	35	25	30	60	110	90	65

[^22]

GENERAL-PURPOSE OSCILLOSCOPES

Hewlett-Packard's general-purpose oscilloscopes make accurate voltage and time measurements on a wide variety of waveforms in the subsonic, audio, ultra. sonic and low ri frequency ranges. These scopes are intended for analysis of waveforms in which little importance is attached to frequency components beyond 500 kc . The de amplifers and long sweep rates are suitable for medical and mechanical studies, as well as for low-frequency electrical work. At the same time, fast sweep speeds are provided in these instruments for detailed studies of transient phenomena, vibration effects, audio analysis and other higher frequency physical events.

Since these instruments have relatively simple circuitry and construction, they are the most economical type of oscillo. scope. In applications such as systems, where the scope performs just one function and the added expense of plug-in flexibility is not needed, the generalpurpose oscilloscope provides maximum economy.

Cathode-ray tubes

The precision cathode-ray tubes in the hp low frequency scopes use the phosphors described on page 268 and feature parallax-free internal graticules. The graticules cover a 10 by 10 cm useful display area. A large calibrated display area such as this is especially advantageous for $x-y$ measurements.

The cathode ray tubes of most of these scopes are mono-accelerator types in which all electron acceleration takes place in the gun section. The electron stream is not subjected to any electrostatic fields after leaving the gun section, insuring straight-line travel to the phosphor screen. Accurate deflection factors result and the bright, clear cathode-ray trace remains sharply focused throughout the large display area

The Model 132A Dual-Beam Oscillo-

Figure 1. Two completely independent beams allow the Model 132A to make a wlde varlety of measurements.
scope (pages 274, 275) uses a dual elec. tron gun crt togerher with two pairs of horizontal and vertical deffection plates and amplifiers to achieve two completely independent displays. This allows dual $x \cdot y$ measurements, simultaneous $x-y$ and $y-t$ plots, and displays with two different sweep speeds. The dual-beam scope is also ideal for transient study of rapidly changing signals, since a single-beam dual-trace scope cannot display two single shots at high sweeep speeds.

Vertical amplifiers

High sensitivity is buils into hp general. purpose scopes (to $200 \mu \mathrm{~V} / \mathrm{cm}$ in the 130 C and to $100 \mu \mathrm{v} / \mathrm{crn}$ in the 132 A). High sensitivity enables transducer outputs to be connected directly to the scope, simplifying instrumentation set-ups. For instance, dynamic measurements of strain are readily made with the concise instrumentation diagrammed in Figure 2.

Figure 2. Dynamic strain meagurements made with high-sensitivity oscilloscope.

High amplifier gain with minimum drift and noise is obtained in the hp scopes by careful circuir design. Large amounts of negative feedback, aided by the use of regulated power supplies, achicve gain stability for measurement accuracy. Excellent de stability is main. rained through the use of balanced amplifiers, regulated de filament power, conservatively operated components with low coeficients of temperature, and, in the Model 132A, input nuvistors shockmounted in an aluminum block for low nicrophonics and drife.
The balanced amplifier design also means that balanced input sigrals can be connected directly to these scopes. When used in the differential mode, the scope displays the volkage difference betreen the signals on the two input leads, while canceling "in phase" (common mode) voltages existing on both leads. The 132A Dual-Beam Oscilloscope, for example, has a $40,000 \cdot r 0-1$ common mode rejec. tion ratio; this allows maximum sensitivity to be used rith low-level signals such as transducer outputs.

Provision is made for ac coupling in the amplifiers when it is desirable to remove the do component of a signal.

Horizontal amplifiers

The amplifers for horizontal deffection in hp low-frequency scopes have phase shift characteristics which are matched to the vertical amplifiers up to and beyond 100 kc . In particular, the Model 130C features verical and horizontal amplifiers which have identical characteristics with respect to both phase and sensitivity.
Marched amplifier characteristics enhance the precision of phase measurements in the $x \cdot y$ mode. A typical sine wave phase measurement is diagrammed in Figure 3. Here, horizontal and vertical amplifier gains are adjusted for equal deflection. The resulting display pattern is an ellipse whose shape indicates the phase angle between the signals at the scope's input. At one extreme this ellipse becomes a straight line slanting towards the right at 45° (0° phase shift). At the other extreme, it slants to the left at 45° (180° phase shifr). Other values of phase shift lie between these extremes; 90° (or 270^{3}) phase shift generates a circle. The phase shift is calculated from measure. ments of the parameters indicated on the diagram ${ }^{1}$. Liseful voltage-current phase relationships also can be scudied by using an hp current probe as one of the input signals.

Figure 3. Phase measurement, using scope in x - y mode.

Simple operation

These scopes have been designed for "connect-and-read" convenience, as well as having the performance capabilities required for precision measurements. With automatic triggering and direct. reading controls, hp general-purpose scopes can be operated readily by inex. perienced personnel. At the same time, the precision and flexibility required for laboratory use are available.
Ausomatic triggering is selected by a switched position on the trigger level control. This position alters the trigger circuit, so that the oscilloscope sweep cycles automatically in the absence of an inpur signal.

[^23]
120B 450 KC OSCILLOSCOPE

Easy-to-use, general-purpose $10 \mathrm{mv} / \mathrm{cm}$ oscilloscope

The hp 120B Oscilloscope offers high accuracy, convenience, ease of operation, and versatility. The no-parallax, no-glare cathode-ray tube (crt) and the calibrated sensi. tivity and sweeps permit accurate measurements; the beam finder and automatic triggering simplify operation; the modular cabinet is easily converted for rack mounting. Front-panel controls are logically arranged, making the 120 B easy to operate, even by non-technical personnel.

Automatic triggering provides a clear base line even in the absence of an input signal and eliminates complicated trigger adjustment. If desired, the automatic trigger may be switched out and the trigger level selected manually with a front-panel control. A front-panel beam finder pushbutton quickly locates an off-screen trace. Controls are color coded and logically arranged for convenient operation.

Specifications

Sweep

Range: s $\mu \mathrm{sec}$ 'cm to $200 \mathrm{msec} / \mathrm{cm}$; is calibrared sweeps accurate to wirhin $\pm 5 \%$. in $21,2.3 .$. sequence: vernier permits continuous adjustment of sweep time betueen calibrated steps and exrends the 200 msee/cm step in at lease 0.5 sec/cos.
Expand: X's sueep expansion may be used on all ranges and expands fastest soreep to 1 $\mu \mathrm{sec} / \mathrm{cm}$; expanded sweep accuracy is $\pm 10 \%$.
Aufamotic trlggering
Internas; so cps to tho ke for signals causing 0.5 em or more vertical de. flecsion: also from line vollage.
External: su eps to 590 tic for signals at least 1.5 y peak to peak.
Trigger polnt and slope: zeco crossing. pos. of neg. slope of vertical deflection signals: or zero ceossing neg. slope of external sync signals.
Amplitude selection triggering; automatic eriggering may be disabled and level of triggering set betreen -7 and +7 volts, this mode can be used to trigges the sweep below the 50 zps minimum of the automatic mode.
Vertical amplifler
Bandwldth; de coupled: de to 150 kc ; ac coupled. approx. 2 cps to 450 kc : bandwidth is at least d50 kc regardless of sensitivery serring.
Sansitivity: $10 \mathrm{mv} / \mathrm{cm}$ to $100 \mathrm{v} / \mathrm{cm}$: a calibrated seeps with atenuator ac. curscy of $\pm 3 \%, 10 \mathrm{mv} / \mathrm{cm}, 100 \mathrm{v} / \mathrm{cm}, 1 \mathrm{v} / \mathrm{cm}$ and $10 \mathrm{v} / \mathrm{cm}$; verncer permits continuous adiustment of sensitivity between sceps and extends $10 \mathrm{v} / \mathrm{cm}$ step to at least $100 \mathrm{v}^{\prime} \mathrm{cm}$.
Imernal eallbrator: calibeating signal zutomatically connecred to vertical amplifer for standardizing of gain. accuracy $\pm 2 \mathscr{F}$.
Input Impedance: I megohm. approximately so pf shunt.
Balanced Input: on $10 \mathrm{mv} / \mathrm{cm} 58 \mathrm{ngt}$; inpur impedance. 2 mazohms shunted by approximately 29 pf.
Common mode rejectlon: rejection at least 40 db ; common mode signal musr not exceed ± 3 volts peak.
Phase shift: vertical and horizontal amplifiers have same phase character. istics arithin $\pm 2^{\circ}$ to 100 kc when verniers arc in Cal.
Horlzontal amplifier
Bandwidth: de coupled: dc to 300 kc : 26 coupled: approx. 2 eps to 300 kc bandwidth is at least 300 ke regardless of sensitivity setting,

Sensitivity: 0.1 role $/ 6 \mathrm{~m}$ to 100 voles/cm: 3 caltbeated seeps, arcurate within上 $96.0 .1 v i c m .1 \mathrm{v} / \mathrm{cm}$ and $10 \mathrm{v} / \mathrm{cm}$: vernier permies continuous adjuss ment of sensitwity between steps and extends $10 \mathrm{v} / \mathrm{cm}$ step to at least $1 \mathrm{l} 0 \mathrm{v} / \mathrm{cm}$.
Input Impedance: 1 mezohm. nominal, shunted by approximately 100 pf.

General

Cathoderay tubu: G203E (P31 phosphor) internal graticulc, mono. accelerator normally supplied; 2700 -voit accelerating potental: face plare eltminates glare and reduces hazard of implosion; P2. P7 and P11 phosphors are available, see Modifications.
Intersal graticule: $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ marked in cm squares: mijor horizontal and vertical axes have 2 mon subdivisions: climinates paraliay efror.
satensity madulation: terminals on front panel; +20 vole pulse will blank urace of normal intensty.
Olmensions: 163/4" wide. $712^{\prime \prime}$ high, $18 \frac{3}{8 \prime \prime}$ deep overall $(425 \times 190 \times 466$ mmi; hardeare furnished for quick conversion to $7^{\prime \prime} \times 19^{\prime \prime}(178 \times 482$ mm).
Welght: net $32 \mathrm{lbs}(14.4 \mathrm{~kg})$: shipping $45 \mathrm{lbs}(20,2 \mathrm{~kg})$.
Power: 115 or 230 volks $\pm t 0 \%$, 50 no 1000 cps ; approx. os a,
Price: he 120B, 8495.
Madifications: cre phosphors (specify by phosphor number) : P31 standard: P2. P7, P1l available, no chaege.

Optlons:

3. Excernal graticule ert with P31 phosphor (P1, P2, P7, P11, please sperify) in lieu of standard internal geatuculc. $\$ 25$ (includes edgetighting of excernal graticules.
4. Rear terminals in parallel with ftont; two 3 -pin A / N connectors: one for vertical input, the other for horizontal or trigger and for 2 -axis inpucs. $\$ 30$ (mating A / N connectors furnished).
5. Provision for single-sweep operation, as well as conventional triggered sneep. 935.
6. Plain $3 / 16^{\prime \prime}$ thick feont panel for rack mounting only; saikable for installing specisl handles to match existing equipmert in system or console. $\$ 20^{\circ}$ (front-fancl dimensions 7 " $\left.\times 19^{\prime \prime}\right)$.
NOTE: Special x-y version wethout sweep available; sec your hp field engineer for further information.

122A,AR DUAL-TRACE 200 KC OSCILLOSCOPES

Economical versatility

Hewlett-Packard Model 122A Dual-Trace Oscilloscope provides calibrated dual-trace capabilities with highly linear sweeps, is simple to operate even by non-technical personnel. Accurate phase shifr measurements also are easily made. Rela. tive phase shift berween vertical and horizonial amplifiers is less than 2° at 100 kc . The 122 A aill accept either single-ended or balanced input signals. Also, since each attenuator operates independently, signals of differing amplitudes may be studied together. Auromatic triggering, which provides a clear base-line in the absence of an inpur signal, eliminates complicated erigger adjustments and speeds operation. The hp-developed internal graticule eliminates parallax for greater measurement accuracy.

Sweep

Specifications

Swoop range: is calabrated sweces, from s $\mu s e c / \mathrm{cm}$ to $200 \mathrm{mscc} / \mathrm{cm}$, ac. cuate to within $=5 \%$, in a $1,2,3 .$. sequence: veenier permies conneinuous adjustement of sweep time between calibrated steps and extends the $200 \mathrm{msec} / \mathrm{cm}$ range to at least $0.5 \mathrm{sec} / \mathrm{cm}$.
Swegp expand: X's sweep expansion may be used on all ranges and expands fastest sweep to 1 asec/eas: expansion is about the center of the ert, and expanded spieep accuracy is $=10 \%$.
Synchzonlzation: automatic from 10 cps 10250 kc ; internally from vertical defiection signals causing 0.3 cm or more vertical defecrion. from external signals 2.'s y peak ro peak or greater, and from line voltage.
Trigger polnt: control overrides automatic and permirs the trigeer point to be set between -10 and -10 v ; curning fally counterclockn ise into Auso restores automatic operation; pos. or neg. slope.
Vertical ampiffers
Bandwidth: de coupled: dc 10200 kc ; as coupled: approx. 2 cps to 200 kc. bandrideh is independent of calibrated sensievivity serting.
Sensitivity: $10 \mathrm{mv} / \mathrm{em}$ to 100 vicm ; calibrated steps within $=9 \mathrm{ck} .10$ $\mathrm{mv} / \mathrm{cm} .100 \mathrm{mvicm}, I \mathrm{i} / \mathrm{cm}$ and $10 \mathrm{v} / \mathrm{em}$, vernier permits continuous adiustmenc of sensurivity between sreps and extends $10 \mathrm{v} / \mathrm{cm}$ step in at least $100 \mathrm{v} / \mathrm{cm}$.
Internal callbrstor: calibrating signal automatically connecred to vertical amplifier for standardizing of gain, accuracy $=2 \%$.
Input impedanca: I mezohm, approx. So pf shunt capactance
Phasa shift: vertica! and horizonta! amplifers have same phase chatacter. istics with in ${ }^{\prime}=2^{\circ}$ to 100 kc when verniers are fulty clockwise-
Isolation: $>80 \mathrm{db}$ isolation berween channel A and B from de to 200 ke .
Balancad lnput: do $10 \mathrm{mv} / \mathrm{cm}$ fange on both amplifiecs; input impedance. 2 megohmas shunced by approx is p i; common mode rejection is at leasi 40 db : common mode sifnal must not exceed $=3 \mathrm{y}$ feak.

Difforence lnput: boch input signals raay be switched to one channel to give differential input on all vertical sensitivity eanges; the sensituvity swiches may be set separately co allow mixing signals of different levels: common mode rejection is at least to dt with both saitches on most sensitive tange. 30 db on other ranges.

Vertical presentation: swirch selects: A Only, B Only, B.A. Alternate of Chopped.
Horizontal amplifier
Bandwidth: de coupled de to 200 kc , 3e coupled: approx. 2 eps to 200 ke; bandudeh is independent of ealibrated sensititity setting.
Sensitivity: 0,1 v/cm to $100 \mathrm{v} / \mathrm{em}$; i calibraced seps. accurate within $: 5 \% \%$. $0.1 \mathrm{v} / \mathrm{cm}, 1 \mathrm{v} / \mathrm{cm}$ and $10 \mathrm{v} / \mathrm{cm}$: sernier permits contunuous adjustment of sensitivity berween secps, extends $10 \mathrm{v} / \mathrm{cm}$ step to at least $100 \mathrm{v} / \mathrm{cm}$.
Inout impedance: I megohm, nominal, shunced by approx. 100 pt.
Phase shift: horizonkal and vertical amplifers have same phase characteristics within $=2^{\circ}$ to 100 kc .
Qeneral
Cathode-ray tube: 5AQ monoacceleracori nurmally fumished with P31 phosphor: other phosphors available, set Options; accelerating potential: woter v.
Internal graticuta (standard): $10 \mathrm{com} \times 10 \mathrm{~cm}$ marked in cm squares with axes in 2 mm subdivisions; sliminstes parallex ettor.
CRT bezal: light-proof bezel provides fiam mount for oscilliscope camera.
CRT plates: diesce cunnection to deffection plates via terminals on rear; sensiticily approx. $20 \mathrm{v} / \mathrm{em}$.
Intensiky modulation: serminals on rear: 20 r pulse woll blank trace of normal incensiry.
Power: 115 or $230 \mathrm{w}=10 \%$. 50 to 1000 (ps, spprox. 150 w .
Dimensiont: cabiner: $931 / 4$ wide, $15^{\prime \prime}$ high, $21 / 4^{\prime \prime}$ deep ($248 \times 310 \times 540$ rom) ; rack mount: $19^{\prime \prime}$ wide, ${ }^{\prime \prime}$ high, $191 / 2^{\prime \prime}$ deep behind panel ($483 \times$ $178 \times 593 \mathrm{mml}$.
Welght: net 33 lbs (19.8 kg), shipping sl lbs (23 kg) (cabinct): net 33 lbs (14.9 kg). shipping f8 lbs (21.6 kR l (rack mount).
Prlee: hp 123A. 8693 (cabinet): hp 122AR. 3695 (rack mount): tor single. skeep operation specify His.122A or HIs-122AR. \$763.
Modifieatlons: ert phosphors (specify by phosphor number)-P31 standard; P2. P7. PII avalable. no charge.
Options:
U3. External graticule with edge lighting. With PI phosphor (P2. P7, P11, P31 please specify), add $\$ 3$.
06. Rear terminals in parallel with front rerminais, rua 3 -pin A / N connecenrs for vertical inputs: a BiVC connector for the horizontal/ external uigger inpus. sti) imating A / N connectors included).

122AR

130C $200 \mu \mathrm{~V} / \mathrm{CM}$ OSCILLOSCOPE

Features identical amplifiers for $x-y$ plots

The hp 130C Oscilloscope is a versatile all-purpose instrument for laboratory, production line, industrial process measurements and medical applications. The outputs of if detectors, strain gauges, transducers and other low-level devices may be viewed directly without preamplification. Calibrated sweeps allow accurate time measurements, and the identical horizontal and vertical amplifiers permit simple and precise measurement of phase.

Model 130 C is easy to operate even by inexperienced personnel. Controls are color coded to front-panel markings and are logically arranged by function. An internal-graticule crt provides a bright, clear, non-glare display without parallax. Automatic triggering minimizes adjustments. Positive pushbutton beam finder immediately locates an off-screen trace.

Identical amplifiers

Identical horizontal and vertical amplifers provide a high sensitivity of $200 \mu \mathrm{v} / \mathrm{cm}$ from dc to 500 kc and balanced inputs on all ranges. Balanced output signals from low-level transducers, such as those used in industrial and medical fields, can be measured directly without external amplification. The amplifers also may be used single-ended with ac or de coupling. Regulated power supplies, high-stability components and extensive feedback insure excellent gain stability and low noise even on the most sensitive ranges. A frontpanel switch (Amplifier AC-DC) provides ac coupling between amplifier stages and virtually eliminates all drift even on the most sensitive range. Phase shift between ampli. fiers is held to less than $\pm 1^{\circ}$ up to 100 kc for accurate phase measurements.

Probes may be used with both the horizontal and vectical amplifiers, and since the input impedance is constant, the probes will not require recompensation between sensitivity ranges.

Automatic triggering

Trigger adjustments are minimized with the 130 C by the automatic triggering feature, which provides a base line in the absence of an input signal. For fast expanded sweep times where the automatic base line would be too dim for observation, a free run mode establishes a bright base line. A trigger level control is located on the front panel so that automatic triggering may be easily locked out if desired, and a preset trigger level established.

Versatile sweeps

For accurate time measurements, 21 linear direct-reading sweep times from $1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$ are available, accurate within $\pm 3 \%$. A calibrated X 2 to X 50 magnifier expands the sweep up to $0.2 \mu \mathrm{sec} / \mathrm{cm}$, accurate within $\pm 5 \%$. A vernier control permits continuous adjustment between calibrated ranges and extends the slowest sweep speed to at least $12.5 \mathrm{sec} / \mathrm{cm}$. In addition, a front-panel switch for either normal or single sweep permits observation of single-shot phenomena or random events, Switching to single sweep will disable the sweep circuit after a single sweep so that it can not be retriggered until manually rearmed. A front-panel sweep "armed" light indicates when the sweep is armed and ready to be triggered.

Phose shif measurgments are easily made with the Model 130C's identical horizontal and vertical amplifiers.

Specifications

Sweep generator

Internal sweep: 21 ranges, $1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$, accuracy within $\pm 3 \%$; vernier provides continuous adjustment between ranges and extends slowest sweep to at least $12.5 \mathrm{sec} / \mathrm{cm}$.
Magniflcation: X2, X5, X10, X20, X50, overall sweep accuracy within $\pm 5 \%$ for sweep rates which do not exceed a maximum rate of $0.2 \mu \mathrm{sec} / \mathrm{cm}$.
Automatic triggering: base line is displayed in the absence of an input signal.
Internal: 50 cps to 500 kc signal causing 0.5 cm or more vertical deflection and also from line voltage.
External: 50 cps to $500 \mathrm{kr}, 0.5$ y peak to peak or more.
Trigger slope: positive or negative slope of external sync signals or internal vertical defection signals.
Amplitude selection triggering
Internal: 10 cps to $500 \mathrm{kc}, 0.5 \mathrm{~cm}$ or nore vertical deflection signal.
External: $d c$ coupled (dc to 500 kc), 0.5 v peak to peak or more; ac coupled (20 cps to 500 kc), 0.5 volt peak to peak or more.
Trigger point and slope: internally from any point of the vertical waveform presented on screen or continuously vaciable from +10 volts to -10 volts on either positive or negative slope of external signal.
Single sweep: front-panel switch permits single-sweep operation.

Vertical and horizontal amplifiers

Bandwidth: dc coupled, dc to 500 kc ; ac coupled (input), 10 cps to 500 kc ; ac coupled (amplifier), 2 cps to 500 kc at $0.2 \mathrm{mv} / \mathrm{cm}$ sensitivity; lower cut-off frequency ($f_{c o}$) is reduced as sensitivity is reduced; at $20 \mathrm{mv} / \mathrm{cm}$, $f_{c o}$ is 0.25 cps ; on less sensitive ranges, response ex. rends to dc.

Sensitivity: $0.2 \mathrm{mv} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$; 16 ranges in $1,2,5$ sequence with an attenuator accuracy within $\pm 3 \%$; vernier permits continuous adjustment of sensitiviry between ranges and extends minimum sensitivity to at least $50 \mathrm{v} / \mathrm{cm}$.
Internal calibrator: approximately 350 cps square wave; $5 \mathrm{mv} \pm 3 \%$; automatically connected for checking gain when the sensitivity is switched to "Cal."

Input impedance: 1 megohm shunted by 45 pf , constant on all sensitivity ranges.
Maxlmum input: 600 v peak $(\mathrm{d} c+\mathrm{ac})$.
Balanced Input: on all sensitivity ranges.
Common mode rejection (de to 50 kc): at least 40 db from $0.2 \mathrm{mv} / \mathrm{cm}$ sensitivity; common mode signal not to exceed 4 volrs peak to peak; at least 30 db from 0.5 v / cm to $20 \mathrm{v} / \mathrm{cm}$; common made signal not to exceed 40 volts peak to peak on the $0.5 \mathrm{v} / \mathrm{cm}$ to $2 \mathrm{v} / \mathrm{cm}$ ranges or 400 volts peak to peak on the $5 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$ ranges
Phase shift: within $\pm 1^{\circ}$ relative phase shift at frequencies up to 100 kc with verniers in "Cal" postion and equal input sensitivities.

General

Calibrator: approximately $350 \mathrm{cps}, 500 \mathrm{mv} \pm 2 \%$ available at front panel.
Cathoderay tube: hp G203E (P31) internal graticule. mono-accelerator, 3000 volts accelerating potential; P2, P7, and Pll phosphors are available; equipped with non-glaring safety glass faceplate.
Internal graticule: parallax-free $10 \mathrm{~cm} \times 10 \mathrm{~cm}$, marked in cm squares; 2 mm subdivisions on major horizontal and vertical axis.
Beam finder: depressing beam finder control brings trace on crt screen regardless of setting of balance, position or intensity controls.
Intensity modulation: terminals on rear; +20 volt pulse blanks crt at normal intensity.
Power: 115 or 230 volts $\pm 10 \%, 50$ to 1000 cps, approximately 90 watts.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $71 / 2^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep overall ($425 \times 186 \times 466 \mathrm{~mm}$) ; hardware furnished for quick conversion to $7^{\prime \prime} \times 19^{\prime \prime}(178 \times 483 \mathrm{~mm})$ rack mount.
Weight: net $32 \mathrm{lbs}(14,4 \mathrm{~kg})$; shipping $45 \mathrm{lbs}(22,4 \mathrm{~kg})$.
Price: hp 130C, \$695.
Modifications: crt phosphors (specify by phosphor number) : P31 standard; P2, P7, P11 available, no charge.
Options (specify by option number):
05. External graticule crt with P_{31} phosphor ($\mathrm{P} 1, \mathrm{P} 2$, P7, PII available, please specify) in lieu of iniernal graticule, add $\$ 25$; includes edge-lighting of external graticule.
06. Rear terminals in parallel with front-panel terminals; three-pin A/N-type connectors for horizontal and vertical signal inputs; BNC for trigger source. add $\$ 40$; mating A / N connectors supplied.
13. $6.31 / 32^{\prime \prime} \times 19^{\prime \prime} \times 3 / 16^{\prime \prime}$ rack mount front panel, suitable for attaching your own handles, add $\$ 20$.

Spectal order

Adapter kit for mounting Chassis-Trak slides, CTD. 118 , to the 130 C ; order K $10-130 \mathrm{C}$, add $\$ 20$.
Modifed 130 C for ac-coupled curoff of 2 cps rather than 10 cps , order $\mathrm{H} 02-130 \mathrm{C}$, price $\$ 710$.
Terminals installed on rear panel for connection to defection plates, order $C 41.130 \mathrm{C}$, price $\$ 725$.

132A DUAL-BEAM OSCILLOSCOPE

Two completely independent beams

The Hewletr-Packard Model 132A Dual-Beam Oscilloscope is designed to perform many electronic, scientific, bio-medical and mechanical measurements. Its $100 \mu \mathrm{v} / \mathrm{cm}$ sensitivity. 500 kc bandwidth, wo completely independent beams, and low microphonics and drift assure ease and accuracy in a wide variety of applications.

Unusua) versatility is available with the Model 132A through its many different display capabilities. Functions such as pressure vs. volume, the outputs of vector cardiographs, or phase shift may be shown in $x-y$ form on one channel, while related rate functions are

Figure 1. Simultaneous $x-y$ and time plots are possibie with Model 132A, since it has two complotely independent crt beams.
displayed vs, time on the other. Also, slow and fast signals may be viewed simultaneously on different sweep speeds, or the same signal may be studied at two different sweep rates. The portion of the slow sweep whicb corresponds to the magnified trace may be intensified for easy identification, in the same manner as with a sweep delay generator.

The Model 132 A is ideal for use in areas of vibration or noise, since the amplifiers have very low microphonics and dc drift. Each input stage has nuvistor tubes contained in a shock.mounted block of alumiaum. Besides isolating the auvistors from vibration, the block also serves to keep the temperature of the tubes identical, thus providing excelient de drift stability. Where de coupling is not needed, drift can be eliminated entirely by using intemal ac coupling.

Differential operation is provided on all ranges for the elimina. tion of common mode pickup such as 60 -cycle hum. Rejection ratios as higb as 40,000 to 1 (92 db) assure completely clean waveforms even in the presence of high common mode interference.

Waveforms look the same from range to range with the 132 A , since the full sooke bandwidth is rerained at all sensitivities from $1 \mathrm{mv} / \mathrm{cm}$ through $20 \mathrm{v} / \mathrm{cm}$. At the most sensitive range, $100 \mu \mathrm{v} / \mathrm{cm}$, bandridth becomes 200 kc .
Each vertical amplifier has an output at the rear panel of the 132A, allowing the user to monitor displays with an rms voltmeter, or drive a tape recorder. Also, amplifiers may be cascaded to obtain increased sensitivity.

The 3.5 kv aluminized crt provides displays that are twice as bright as those previously available, making the Model 132A an excelient instrument for observing single-shor phenomena. Two signals may be shown with evenly balanced, bright traces and fine resolution for easy viewing and clear, sharp photographs, even at two widely differing sweep speeds as shown in Figure 2. The intermal graticule of the crt eliminates paraliax error, and the shatter.proof safety face-plare is non-glaring.

Figure 2. The same signal may be shown at two diferent sweep speeds, with the stower sweep intensified to show tocation of fast sweep.

The Model 132A is a small, light instrument with hp modular construction, allowing use cither oo the bench or mounted in a rack. The front-panel controls are simplified to provide easy operation. A beam finder facilitates locating an off-screen trace by simply depressing a front-panel control.

The Model 132A uses new hp-developed sandwich board modules, which allow entire circuic assemblies to be easily removed for repair or replacement. Should trouble ever develop, an amplifier or a power supply can be replaced in seconds, thus miaimizing service time and allowing maximum use of the instrument.

Specifications

Identical vertical amplifiers

Sensitivity: $100 \mu \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm} ; 17$ calibrated ranges in $1,2,5$ sequence with an atrenuator accuracy within $\pm 3 \%$; vernier permirs continuous adjustment between ranges and exrends the minimum sensicivity to at least $50 \mathrm{v} / \mathrm{cm}$.

Bandwidth

Upper limit: greater than 500 kc (10% to 90% rise rine less than $0.7 \mu \mathrm{sec}$) on $2 l \mid$ sensitivities from $20 \mathrm{v} / \mathrm{cm}$ to $1 \mathrm{mv} / \mathrm{cm}$ with vernier in Cal; bandwidth decreases on more sensitive ranges to abour 200 kc on $100 \mu \mathrm{v} / \mathrm{cm}$.
Lower Ilmit: input and amplifier coupling ser to DC: de; input sen to $D C$ and amplifier set to $A C$: do from $20 \mathrm{v} / \mathrm{cm}$ to 50 $\mathrm{mv} / \mathrm{cm}$, approx. 0.1 ops at $20 \mathrm{mr} / \mathrm{cm}$. increasing with sensitivity to lower than 2.5 cps at $0.1 \mathrm{mv} / \mathrm{cm}$; input sec to $A C$ and amplifier set to DC: 2 cps direct or 0.2 cps with a 10 X probe
Differentlal Input: may be selected on all ranges; the follow. ing common mode signals will not overdrive the amplifier.

Sensityliy	Input dc	Input ac
$0.1 \mathrm{mv} / \mathrm{cm} \mathrm{to} 0.2 \mathrm{v} / \mathrm{cm}$	$=2 \mathrm{v}$	4 v peak to peak
$0.5 \mathrm{v} / \mathrm{cm} \mathrm{to} 2 \mathrm{v} / \mathrm{cm}$	$=20 \mathrm{~V}$	40 v peak to peak
$5 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$	$=200 \mathrm{~V}$	400 v peak to peak

The folloning rejection ratios are typical when a sine wave, not exceeding the above limits, is simultaneously applied from a low-impedance source to the dc-coupled amplifers.

Sensitivity range	\ln atil coupiling	Sine wave freq.	Approximata rejection ralio
$0.1 \mathrm{mv} / \mathrm{cm}$	dc	60 cps	40,000:192 db
$0.1 \mathrm{mv} / \mathrm{cm}$	de	1 kc	20,000:186 db
$0.2 \mathrm{mv} / \mathrm{cm}$	dc	60 cps	20,000:186 db
$1.0 \mathrm{mv} / \mathrm{cm}$	dc	50 kc	2,000:166 db
$1.0 \mathrm{mv} / \mathrm{cm}$	a	60 cps	$1.000: 160 \mathrm{db}$
$0.2 \mathrm{v} / \mathrm{cm}$	dc or ac	60 cos to 50 kc	100:140 db
$\begin{aligned} & 0.5 \mathrm{v} / \mathrm{cm} \\ & 1020 \mathrm{v} / \mathrm{cm} \end{aligned}$	dcorac	60 cps to 50 kc	35:1 30 db

Inputs: two BNC conneckors for + and - polarities; ac, $d 6$, off may be individually selected for each input: input impedance is 1 megohm shunsed by 47 pf on all sensitivity ranges; niaximum input volrage ± 600 volts peak ($\mathrm{dc}+\mathrm{ac}$) .
Amplifler outputs: a single-ended, de-coupled output is provided for each amplifer on the rear panel; voltage output is approximately $2 \mathrm{v} / \mathrm{cn}$ from a 2 K source impedance; band. widrh is about 500 kc with a non-capacitive load.

Sweep generator

Internal sweep: may be selected for bork beams or one bean only while the other is driven exiemally: 21 ranges, $1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cnt}$ in a $1,2,5$ sequence; vernier provides continuous adjusument berween ranges and extends slowest sweep speed to at least $12.5 \mathrm{sec} / \mathrm{cm}$.
Magnification: X2, X5, X10, X20, X 50 , may be selected for both beans or for one beam only while the other beam is sweeping unmagoifed; vernier provides continuous adjustment between steps.
Sweep accuracy: $\pm 3 \%$, typically within $\pm 1 \%$; when magnified $\pm s \%$, typically within $\pm 3 \%$; for swecp rates which do not exceed a maximum of $0.5 \mu \mathrm{sec} / \mathrm{con}$.
Automatic triggering: base line is displayed in the absence of an input signal.
Internat: 50 cps to 500 kc ; signal causing 0.5 cm or more vertical deflection: selected from either the A amplifer sig. nal. the B amplifier signal, or from the line.
External: 50 cps to $500 \mathrm{kc}, 0.5$ to 10 volt peak to peak required.
Trigger slope: positive or negative slope of external sync signals or internal vertical deflection signals.

Amplitude selection triggering

Internal: $d c$ ($d c$ to 500 kc) or ac (20 cps to 500 kc) ; signal causing 0.5 cm or more vertical deflection: selected from either the A amplifier, the B amplifier or from the line.
External: dc (dc to 500 kc) or ac (20 cps to 500 kc) coupled, 0.5 to 10 volt paak to peak required.

Trigger point and slope: internally from crt display' or from +10 volts to -10 volts on either positive or negative slope of external simnal.
External trigger ingut impedance: ac coupled, $0.01 \mu \mathrm{f}$ in series with I megohm: dc coupled. I megohm.
Sweep delay time: a pretrigeer of approximately $1 \mu \mathrm{sec}$ rill allow the leading edge of non-recurrent waveforms to be visible.
Single sweep: front-panel switch and pushbution permit singlesweep operation.

External horizontal amplifier

Functions: may be used on both beams simultaneously or on one beam only while the other is sureeping unmagnified.
Sensitivity: 5 mv/em to $2 \mathrm{v} / \mathrm{cm}$: 9 ranges in a $1,2.5$ sequence with an attenuator accuracy within ± 3 \%; vernier permits con. tinuous adjustment berween ranges and extends the minimuma sensitivity to at least 5 vicm.
Bandwidth: $d<$ e $0>300 \mathrm{kc}$ (with vernier in C_{a}) ; ac coupled. the lower limis is 2 cps direct or 0.2 cps with 10 X probe.
Input: BNC connector: input impedance is 1 megohm shunted by $4^{7} \mathrm{pf}$, constant on all sensitivity ranges: maximum input volrage is ± 600 volts peak (dc + ac)

$X-Y$ operation

Single beam: $x-y$ arve tracing; one of the verical amplifers can be switched to the horizontal deffection plates of the other beam. allowing $x \cdot y$ operation of the two identical amplifiers: the unused beam is positioned off screen; relative phase shift berween + inputs is within $\Psi^{\circ} 2^{\circ}$ for frequencies up to 50 kc with verniers in Cal and equal input sensitevities.
Duat-beam operation: $x \cdot y$ plots can be made between the external horizontal anplifier and the B vertical amplifier while the other bean is operating normally with the sweep and A vertical ampli-
fer, or, dual plots can be made using the external horizonral amplifier driving both beanis: relaive phase shift normally within $\pm 2^{\circ}$ for frequencies up to 10 kc with vernier in Cal and equal input sensitivities.

General

Calibrator: approxintately 350 cps square wave, 0.5 y and 0.5 mr availdble at fronc panel: accuracy $\pm 2 \%$.
Cathoderay lube: duai-gun ert with rwo independent sets of vertical and horizontal deflection plates: 3.5 kv mono-accelera. tor rube with alunninized P2 phosphor (P7, P11, and P31 available at no extra charge) ; display area for each bean is 8 cm by 10 cm ; beams overlap in the center 6 cm vertical area: equipped with non-glare safety glass; internal graticule $10 \times 10 \mathrm{cmi}$ in cm squares; vertical centerline and horizontal centerline for each beam are marked with 0.2 cm sub-divisions.
Beam finder: depressing beam finder brings traces on crt sereen regardless of setting of balance, position or incensity controls.
Intenslty modulation: termmals on rear; +20 voir pulse blanks crt at nomal intensity; input time constant is about $125 \mu \mathrm{sec}$ (9400 pf and 13.5 k ohms).
Power: 115 or 230 volrs $\pm 10 \%, 50$ to 1000 cps ; approximarely 130 wates.
Dimenslons: $163 / 4 "$ wide, $9^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep orerall (425 x $229 \times 466 \mathrm{~mm}$ \} ; hardware furnished for quick conversion to $83 / 4$ " $\times 19^{\prime \prime}$ rack mount, $163 / 8^{\prime \prime}$ deep behind panel ($222 \times 483 \times$ $416 \mathrm{~mm})$.
Welght: net $41 \mathrm{lbs}(18,5 \mathrm{~kg})$; shipping 55 (bs ($24,8 \mathrm{~kg}$).
Price: hp 132A, s1275.
Modifications: crt phosphors (specify by phosphor nuniber) P2 standard. P7. P11, P31 available. no charge.
Options (spacify by option number)
05. External graticule with P2 (specify P7, P11, or P31, if required), add $\$ 2 s$.
06. Rear terminals, add $\$ 45$.

PLUG-IN OSCILLOSCOPES

Hewlett-Packard plug-in oscilloscopes enable the user to make a very wide variety of measurements with just one oscilloscope, since instrument characteristies can be altered simply by changing the verrical and horizontal plug-ins. Bandwidth, sensitivity, number of channels, and time base all can be tailored to exact needs; other features such as rrace recorders may be added at will. All hp plug-in scopes (Models 140A, L70B, 175A) have wide bandwidet for maximum fexibility.

The Model 140 A is capable of bandwidths to 20 mc . The instrument is extremely versatile, since it contains only porer supplies and a calibrator. Everything else is plugged in. With appropriate plug-ins, the 140A can become a dualchannel high-frequency scope, a low' frequency scope with $10 \mu \mathrm{v} / \mathrm{cm}$ sensitivity, or even a time domain refectom. eter for analyzing broadband systems.

Figure 1. The design of the hp 140A oscillo. scope allows a double slzed dual-axis plug.in to be used when the center shield is removed from the olug.In compartment.

The 170 B is a 30 mc militarized scope. also having fexible dual plug-in construction. It was designed to meet rigid military environmental standards, and is the equivalent of the AN/USM-L40B.

The 175 A is a 50 mc scope with unusual versatility. It accepts various multi-channel vercical plug-ins, as well as horizontal plug-ins, for recording, sweep delay or time marking displays.

Figure 2. Dual plug-in capability adds unusual versatility to the 50 me 175A Scode. The 1784A Plug-in produces strid-chart recordings of displays with pushbutton ease.

Cathode-ray tubes

High-frequency oscilloscopes require a cathode-ray tube (crt) which produces bright traces even at fastest sweeps with low duty cycle signals. An additiona! acceleracing potential, known as a posracceleration voltage, is applied berween the gun and phosphor screen regions to obtain the bright traces.

The advanced design crrs (see Figure 3) used in the 140 A and 175 A oscilloscopes permit a full 6 cm of verrical defection at high frequencies, yet retain high sensitivity. This is obtained by using a curved, high-transmission mesh at the exit side of the deflection region. The mesh develops a spherical equipo. tential field which increases the sensitivity of the tube, as well as reducing defocusing of the beam and preventing stray illumination of the screen.

Figure 3. The hp-developed mesh ert makes possible the high performance of the 140 A and 175A scopes

A thin aluminum film on the inner face of the phosphor enhances the brilliance of all hp high-frequency scopes. This film acts as a mirror to reflect in. ward-directed phosphor light, light which otherwise would be absorbed in the inrerior of the rube.

Vertical section

While the 140 A achieves maximum versatility by depending complerely on the vertical plug-in for amplification, the 175A employs a main vertical amplifier to achieve sensitivities as high as 500 $\mu \mathrm{V} / \mathrm{cm}$ at 20 mc , or $10 \mathrm{mv} / \mathrm{cm}$ at 50 mc . single-, dual and four-channel displays are possible simply by changing plug.ins.

Delay lines in the vertical amplifiers of the 175A, 170 B and 1402 A 20 MC Plug-in for the 140A enable viewing of the leading edge of the waveform which triggers the sweep. Sync rakeoff occurs ahead of the delay line. allowing the sweep circuit sufficient time to get under way before the leading edge is actually displayed. Hewletr-Packard scopes use a conxial cable delay line requiring no frequency compensating adjustments, rather
than lumped•element delay lines which have many interacting adjustments.

Horizontal plug-ins

All hp plug-in scopes use horizontal as well as vertical plug-ins, allowing the user to add special capabilities to scope performance as desired. For instance, the basic instrument can be purchased with. out a delaying sweep, but this unit may be added later if required by unforeseen applications.

Figure 4. The display scanner plug-In for the 175A can be used to drive an external $x \cdot y$ recorder.

The 179A has a number of unique horizontal plug-ins which greatly expand its versatility. The auxiliary plugin is a basic, low cost unit which supplements the normal oscilloscope sweep circuits by providing single-sweep capability. The marker generator plug-in simplifies measurements of time intervals by providing closely spaced time interval markers. The display scanner plug-in enables recording of fast, repetitive waveforms at slow speed on an $x-y$ or scrip-chart recorder, as shown in Fig. ure 4. Besides driving a recorder, the "slowed-down" waveform may be fed to tape recorders or wave analyzers for further detailed analysis. The 1784 A recorder plug-in is a completely self-con. rained strip chart recorder, producing accurate records of waveforms with pustbution ease.
The delay generator, available with all hp plug-in scopes. produces a delay time berween the input trigger and the sweep start. This capability is used in a variety of w'ays for the study of complex waveforms. One of the modes is Mixed sweep, shown in Figure 5.

Figure 5. Train of pulses displayed in dual speed Mixed sweep by an hp delay generator plug-ín.

140A OSCILLOSCOPE

A single oscilloscope to do nearly any measurement task

The hp Model 140A Oscilloscope, used with the 1400 Series Plug-ins, provides both high-frequency (to 20 mc) and high-sensitivity ($010 \mu \mathrm{~N} / \mathrm{cm}$) capabilities for general oscilloscope applications. A total of seven general-purpose plug-in units (five amplifiers and two sweep generators) are presently available and clearly illustrate the versatility of the $140 \mathrm{~A} / 1400$ series combination. In addution, the design of the 140 A has allowed for the use of a single, doublesized plug-in to supply information to both axes of deflection. Double-size plug ins are available for resting broadband systems by means of pulse reflection (1415A) and for use with swept frequency oscillators (1416 A).

The 140 A itself consists of the essential functional blocks for both low and high-frequenc oscilloscope applications. as well as those for the sampling technique. It contains a post-accelerator cathode-ray tube, its associated power supplies and control circuitry, and the de supplies required to
porer the 1400 series plug.ins. The plustins contain all of the deflecrion circuitry and nork directly into the 140 's crt. The newly developed 7.5 kv internal graticule cot provides bright. clear parallax-free traces on a large $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ display area. High deflection sensitinty in this crt has been achieved through a carefully shaped post accelerator field. This gises the 140A high frequenc; as well as high sensitivity capabilities, maintaining a full 6 cm vertical defection ar 20 mc with the 1402 A Dual Trace Amplifier and 10 cm with the lower frequenc' and sampling plug-ins. The deHertion sensitivity of the horizontal and verrical crt deflection plates is the same, allowing tro armplifiers to be used for accurate $x-y$ measurcments

The 140A also has a convenienr beam tinder to locate an off screen trace by simultancously decreasing the deflection on both axes thus bringing the trace on screen regardless of the setting of the pluy.ins' position controls.

Specifications

Phug-ins: accepts 1400 Series Plug-ins: upper compartment for horizoneal axis and lower compartment for vercical axis; center shield may the removed to provide double-sized comparcment for use wich a single dual-axis líno Series unit.
Callbrator: 1 v and 10 v peak-to-peak line frequency square Raves; accurate to $\pm 1 \%$. +15 to $+35^{\circ} \mathrm{C}$; to $=3 \mathrm{~cm} 0$ to $+55^{3} \mathrm{C}$; rise sime is $0.5 \mu \mathrm{sec}$ or less.
Beam finder: brings trace on scieen regardless of setting of plug•ins' position controls
Intensity modulation: approximately +20 v required to blank race of normal intensity; ac-coupled input is located on rear panel.
Cathode-ray tube: 7.5 kv post-accelerator tube with aluminized

P31 phosnhor ($\mathrm{P} 2, \mathrm{P}$ a and amber fileer, and PII available at no extra charge): equipped with non-glare safety glass faceplate; internal graticule $10 \times 10 \mathrm{~cm}$ in cm squares; major horizontal and rercical axes have 0.2 cm subdivisions.
Power: 115 or $230 \mathrm{v} \pm 10 \%$: 50 to $60 \mathrm{cps}:$ normally less than 285 w (depends on plugins).
Dimensions: $163 / 4 "$ nide, 9 " high. $18 \frac{3 / s^{\prime \prime}}{}$ deep overall (425 x $229 \times-64 \mathrm{~mm})$; hardrare furnished for quick conversion to $83 / /^{\prime \prime} \times 19^{\prime \prime}$ rack mounr, $163 / x^{\prime \prime}$ deep behind panel (3 - 4 x $483 \times 41-4 \mathrm{~mm})$.
Weight: aithout plug.ins, net $37 \mathrm{lbs}(16,7 \mathrm{~kg})$: shipping 50 lhs (22,5 kg)
Price: hp lfod, s57s.

1415A TIME DOMAIN REFLECTOMETER 1416A SWEPT FREQUENCY INDICATOR

1415A complete system for testing cables, connectors, other broadband devices; 1416A simplifies swept frequency measurements

1415A Plug.in

The 1415A Time Domain Reflectometer/140A Oscilloscope represent a completely integrated broadband system for testing cables, transmission lines, striplines, connectors and many other types of broadband devices. The 1419A itself consists of a fast-rise pulse generator, a single-channel sampler and a time base generator. The method of evaluation is essentially a "closed loop radar": a voltage step from the pulse generator in the 1415 A is fed into the test system and the reflections observed. Reflections occur each time the step encounters an impedance mismatch (i.e., discontinuity) as it travels through the system, and these refiections are added to the incident wave and displayed on the 140A's crt. The time required for the reflection to return to the 1415A's sampler locates the discontinuity; the shape and magnitude of the reflected wave indicate its nature (i.e., resistive, inductive, or capacitive) and the value of the effective R, L or C causing the mismatch.

The three displays above represent resistive, capacitive, and inductive discontinuities, respectively. Each discontinuity is located a distance X from the sampling gate of the 1415A, and that distance can be measured directly on the crt display. From the displays and relationships governing propagation on a transmission line, both qualitative and quantitarive information about the system under test is immediately available.
Since discontinuities separated in distance on the line generate reflections separated in time at the mooitoring point (in. put to the 1415A), each individual discontinuity is resolved. (The limit on the resolution of two discontinuities depends on the rise time of the pulse generator-oscilloscope system. With 1415A the system rise time is less than 150 psec , allowing a resolution between discontinuities of less than 1 inch.) The 1415A, therefore, measures cable impedances without interference from the mismatch generated at connectors. It also makes it possible to tune antennas for optimum impedance matching, to adjust broadband attenuators for uniform response, and to perform many other measurements with greater resolution and faster than with traditiona! microwave methods.

Figure 1. Magnified display of a BNC cannector jolning two 50 -ohm cables. The horizontal axis is sst at $2 \mathrm{~cm} / \mathrm{cm}$. Multiplying the 3.5 cm deflection by the reflection coofficient sensitivity of $0.01 / \mathrm{cm}$, ane can determine the connector has a p of 0.035 .

Figure 2. TDR display of a section of unknown cable spliced into a length of $50-0 \mathrm{hm}$ cable. Noting the distance setting of $40 \mathrm{~cm} / \mathrm{cm}$, and raflection coefficient sensitivlty of $0.2 / \mathrm{cm}$, one can determine the unknown cable is 120 cm long and has a Z_{0} of 44 ohms. Impedance changes as smald as 0.1 ohm are readily resolved when magnified.

The most conventional method that has been employed to evaluate the quality of a transmission system involves measuring the standing-wave ratio (swr) by feeding a sine wave sig. nal into the line and observing the maximum and minimum amplitudes of the standing waves on the line. A low swr for the overall system is usually desirable. When the system includes several discontinuities, however, the swi measurement does not isolate them; oor does the measurement indicate what must be done to make improvements. It also fails to demonstrate whether or not one discontinuity is generating a reflection of the proper phase and magnitude to cancel the reflection from a second discontinuity, thereby giving a false measure of the actual quality of the system. Pulse reflection resting a voids these inherent disadvantages of the swr technique, since each discontinuity is isolated for analysis. In addition, the measuring system is completely self-contained when using the 140A/ 1415A, eliminating the cumbersome slotted line-swr meter-sig. nal generator system for broadband transmission.

Features incorporated in the hp 1415A include a "detailed scan" switch which increases the number of samples/cm by a factor of ten. In addition, the 1415A includes a trigger output for synchronizing external equipmenr and a recorder output with manual scan to preserve the trace on a de $x-y$ recorder. A more exrensive description of the applications and measurement techniques of the hp 1415 is contained in Application Note 62, available on request.

1416A Plug-in

The 1416A Swepr Frequency Indicator transforms the 140A into a specialized $x \cdot y$ oscilloscope which speeds and simplifies microwave swept-frequency measurements. Insertion loss vs frequency measurements on ferrite isolators, attenuators and filrers and return loss measurements on all types of loads are easily made, with high resolution readouts directly in db. A chopper stabilized input amplifier minimizes drift, and an adjustable bandwidth switch reduces unwanted noise. Other features include an internal db calibrator, $\mathrm{x}-\mathrm{y}$ recorder outputs and a warning light that indicates when the input signal exceeds the detector square law limit.

Specifications, 1415A*

System (in reflectometer conflguration)
Rise time: less than 150 psec .
Overshoot: 5% or less overshoot and ringing (down to 0.5% in 2 nsec).
Internal reflections: $<10 \%$ (does not limit resolution).
Reffectometer sensitivity: reflection coefficients as small as 0.001 can be observed.

Rep rate: 200 kc .
Signal channel
Rise tíme: approximately 110 psec .
Reflection coefficient: $0.5 / \mathrm{cm}$ to $0.005 / \mathrm{cm}$ in $1,2,5 \mathrm{se}$. quence.
Input: 50 ohms, feed-thru type.
Noise and internal pickup, peak: 0.1% of step (terminated in 50 ohms).
Dynamic range: ± 0.5 volt.
Attenuator accuracy: $\pm 3 \%$.
Step generator
Amplitude: approximately 0.25 v into 50 ohms (0.5 v into open circuir).
Rise time: approximately 50 psec.
Output impedance: $50 \mathrm{ohms} \pm 1 \mathrm{ohm}$.
Droop: less than 1%.
Distance time scale
Distance scale (cm line/cm display) accuracy: 5%.
Polyethylene line ($\epsilon=2.25$): $200 \mathrm{~cm} / \mathrm{cm}$ to $2000 \mathrm{~cm} / \mathrm{cm}$.
Air line ($\epsilon=1$): $300 \mathrm{~cm} / \mathrm{cm}$ to $3000 \mathrm{~cm} / \mathrm{cm}$.
Time scale: 20 to $200 \mathrm{nsec} / \mathrm{cm}, \pm 5 \%$ accuracy.
Magniffeation: X_{1} to X 200 in $1,2,5$ sequence: accuracy of the basic sweep is maintained at all magnifier settings with the exception of time represented by the first 0.1 cm of the unmagnified sweep.
Delay control: 0 to 10 cm of unmagnified sweep, calibrated.
Jitter: less than 20 psec.
Power: supplied by oscilloscope.
Weight: net $7 \mathrm{lbs}(3,2 \mathrm{~kg})$; shipping $11 \mathrm{lbs}(5 \mathrm{~kg})$.
Price: hp 1415A. \$1050,

[^24]
Tentative specifications, 1416A*

Operating modes: linear or logaríthmic
Sensitlvity: linear: $50 \mu \mathrm{v} / \mathrm{cm}$ to $10 \mathrm{mv} / \mathrm{cm}$ in 8 calibrated ranges in a $1,2,5$ sequence; accuracy $=3 \% ; \log : 1 \mathrm{db} / \mathrm{cm}$ to 10 $\mathrm{db} / \mathrm{cm}$ (referred to of input into crystal detector) in 4 cali. brated ranges; accuracy (after a $1 / 2$ hour warm-up) : ± 0.05 $\mathrm{db} / \mathrm{db}$ at $21^{\circ} \mathrm{C}\left(75^{\circ} \mathrm{F}\right), \pm 0.1 \mathrm{db} / \mathrm{db}$ from $10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Attenuation, ab: provides a continuously variable dc offset, 0-30 db range, referred to of input into crystal detector; accuracy $\pm 0.15 \mathrm{db}$.
Bandwidth: linear: variable from approximately 1 kc to 30 kc in four steps: log: varies with input level.
Noise: linear: less than $250 \mu \mathrm{v}$ peak to peak at 30 kc bandwidth. reducing to less than $75 \mu \mathrm{v}$ peak to peak at Ikc ; log: less than s db at 30 db below 0 db (50 mv) reference.
Internal calibrator: four positions: $0,10,20$ and 30 db below approximately 50 mv ; accuracy $\pm 3 \%$.
Sweep and blanking: supplied by 690 Series Sweep Oscillator.
Recorder outputs: vertical: gain adjustable from 0 to approximately $200 \mathrm{mv} / \mathrm{cm}$; de level adjustable over approximately a 3 v range; horizontal; gain adjustable from 0 to approximately $100 \mathrm{mv} / \mathrm{cm}$; de level adjustable over approximately a 2 v range.
Inputs
Vertleal: inpur impedance is 75 K ohms; negative signal required: maximum input signal is 200 mv ; BNC connector receives output from 423 A or 424 A Ctystal Derectors or 786D or 787D Directional Detectors (all Option 02.).
Horizontal: 0 to +15 v ramp required (supplied by 690 Series Sweep Oscillator).
Blanking: 0 to -5 volt gate (supplied by 690 Series Sweep Oscillator; early models require slight modification).
Square law Ilmit Indicator: front-panel light indicates input greater than 50 mv .
Power: supplied by oscilloscope.
Weight; net $7 \mathrm{lbs}(3.2 \mathrm{~kg})$; shipping $11 \mathrm{lbs}(5 \mathrm{~kg})$.
Price: hp 1416A, $\$ 675$.

1400A DIFFERENTIAL AMPLIFIER; 1401A, 1402A DUAL-TRACE AMPLIFIERS

Vertical plug-ins for 140A Oscilloscope

The hp 1400A Differential Amplifer measures outpurs from strain gages and transducers without preanmplification. Bandwidth is select. able with a front-panel switch for elimination of unwanted noise
The hp 1401A has two 450 kc channels, each with a sensicivity of $1 \mathrm{mv} / \mathrm{cm}$. In the dual-trace modes, the sweep may be triggered in temally from Chanoel A only, allowing stable traces and accurate rime measurements.
The hp 1402A 20 mc Dual-Trace Amplifier has a built-in delay line, following the trigger take.off, allowing the leading edge of fast rist signals to be viewed. Internal syncing from Channei A allows convenient, accurave time measurements.

Specifications, 1400A

Sensitivity: $100 \mu \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm} ; 17$ calibrated ranges in a 1,2 , 5 sequence; vernier allou's continuous adjustraent between calibrated ranges and extends minimum sensitivity to at least $50 \mathrm{v} / \mathrm{cm}$: attenuator accuracy is $\pm 3 \%$.

Bandwidth

Upper limit: switch selected at front panel; approx. 400. 40 or 4 kc .
Lower limit: input and amplifier coupling set to " DC ": dc; input set to "DC" and amplifier ser to " $A C$ ": de from $20 \mathrm{v} / \mathrm{cm}$ to $50 \mathrm{mv} / \mathrm{cm}$, approx. 0.1 cps on $20 \mathrm{mv} / \mathrm{cm}$, increasing with seasitivity to approx. 20 cps at $0.1 \mathrm{mv} / \mathrm{cm}$; input set to " AC " and amplifier set to " DC^{\prime} ': 2 cps .
Dlfferential Input: differential inpur may be selected on all attenu. ator ranges; common mode rejection is at least 40 db on $0.1 \mathrm{mv} /$ cm to $0.2 \mathrm{v} / \mathrm{cm}$ ranges, signal not to exceed $4 \mathrm{vp-p}$; at least 30 db on $0.5 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$ ranges. signal not to exceed $40 \mathrm{v} \mathrm{p} \cdot \mathrm{p}$ on $0.5,1$ and $2 \mathrm{v} / \mathrm{cm}$ ranges and $400 \mathrm{vp}-\mathrm{p}$ on 5,10 , and $20 \mathrm{v} / \mathrm{cm}$ ranges: measured with a 1 kc sine wave.
Inputs: two BNC signa! jacks; ac or de coupling of either or both inputs
Input impedance: 1 megohm shunted by 45 pf, constant on all attenuator ranges.
Maximum input: 600 volts ($\mathrm{dc}+$ peak ac).
Internal callbrator: 6 cm peak to peak, line frequency square wave displajed when sensitivity switch set to "Cal"; accuracy $\pm 3 \%$.
Weight: net $4 \mathrm{lbs}(1,8 \mathrm{~kg})$; shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Prlce: hp 1400A, 5210.

Specifications, 1401A

Mode of operation: (1) Channel A alone. (2) Channel B alone, (3) Channel A and Channel B displayed on altemate swerps. (4) Channel A and Coannel 8 displayed by sweeps switched at ap. proximately 100 kc , with trace blanking during switching. (S) Channel A minus Channel B.
Sensitivity: each channel has sensitivities from $1 \mathrm{mv} / \mathrm{cm}$ to 10 $v / c m$ in $1,2,5$ sequence; vernier allows continuous adjustment between calibrated ranges and extends minimum sensitivity to at least $23 \mathrm{v} / \mathrm{cm}$; atteauator accuracy is $\pm 3 \%$.
Bandwidth: input and amplifer coupling set to " DC ": dc to 450 kc ; inpur set to " DC " and amplifier set to " AC ". de to 450 kc for sensitivity from $50 \mathrm{mv} / \mathrm{cm}$ to $10 \mathrm{v} / \mathrm{cm}$; from $1 \mathrm{mv} / \mathrm{cm}$ to 20 $\mathrm{mv} / \mathrm{cm}$, lower cutoff depends on sensitivity; approximately 0.5 cps (to 450 kc) at $20 \mathrm{mv} / \mathrm{cm}$ and 10 cps (to 150 kc) at $1 \mathrm{mv} / \mathrm{cm}$: input set to "AC" and amplifier set to "DC": 2 cps to 450 ke .
Differential input: both inputs nay be switched to one channel to give differential input.
Common mode refection: at ieast $\mathbf{q} 0 \mathrm{db}$ on $1 \mathrm{mv} / \mathrm{cm}$ to $0.1 \mathrm{v} / \mathrm{cm}$ ranges, signal not to exceed 4 v p-p; at least 30 db on $0.2 \mathrm{v} / \mathrm{cm}$ to $10 \mathrm{v} / \mathrm{cm}$ ranges, signal not to exceed $40 \mathrm{v} \mathrm{p} \cdot \mathrm{p}$ on 0.2 .0 .5 and i v/cm ranges and $400 \mathrm{v} \mathrm{p}-\mathrm{p}$ on 2,5 and $10 \mathrm{v} / \mathrm{cm}$ ranges; meas. ured with 1 kc sine wave.
Input Impedance: I megohm shunted by is pf.
Maximum input voltage; 600 volis (dc + peak ac).

Internal calibrator. 6 cm peak to peak, line frequency square wave displayed when attenuator switched to "Cal"; accuracy $\pm 3 \%$. Polarity of presentation: + up or - up selectable for Channel A. Welght: ret 5 bs $(2,3 \mathrm{~kg})$, shipping 7 ibs $(3,2 \mathrm{~kg})$.
Price: hp $1401 \mathrm{~A}, \$ 375$.

Speciflcations, 1402A

Mode of operation: (1) Channel A alone, (2) Channel B alone, (3) Channel A and Channel B displaged on alternate sweeps, (4) Channel A and Channel 8 displayed by switching at approximately 100 kc , with trace blanking during switching. (5) Channel A and Channel B added algebraicalls; polarity of Channel A may be inverted to obtain differential operation
Sensitivity: each channel has sensitivities from $5 \mathrm{mv} / \mathrm{cm}$ to 10 v / cm in 11 calibrated ranges in a $1,2,5$ sequence; vernier allows continuous adjustment between calibrated ranges and extends ninimum sensitivity to at least $25 \mathrm{v} / \mathrm{con}$; attenuator accuracy $\pm 3 \%$.
Bandwidth: (6 em reference signal): de-coupled, dc to 20 mc : ac-coupled, 2 cps to 20 mc (18 nsec rise time).
SIgnal delay: signal is delayed so thar leading edge of fast rise signals is visible at start of sweep.
Common mode rejection: (in B-A mode) at least 40 db on 5,10 and $20 \mathrm{mv} / \mathrm{cm}$ ranges; at least 30 db on $50 \mathrm{mv} / \mathrm{cm}$ to $10 \mathrm{v} / \mathrm{cm}$; sine wave common mode signal not to exceed 150 cm (e.g., Iso v on $1 \mathrm{v} / \mathrm{cm}$ range) or a frequency of 500 kc
Input impedance: 1 megohm shunted by 43 ph.
Maximum input: 600 volts ($u c+p e a k a c$).
Welght: net $6 \mathrm{lbs}(2,7 \mathrm{~kg})$; shipping $8 \mathrm{lbs}(3,6 \mathrm{~kg})$.
Prlce: hp 1402 A , $\$ 530$.

1403A GUARDED DIFFERENTIAL AMPLIFIER, 1405A DUAL-TRACE AMPLIFIER

Measure microvalt signals in the presence of large common mode signals; $5 \mathrm{mv} / \mathrm{cm}$ at 5 mc

1403A Guarded Differential Amplifier

The hp Model 1403A combines $10 \mu \mathrm{M} / \mathrm{cm}$ sensitivity with a guarded input for 106 db common mode rejection, allowing accurate measurements of low-level differential signals. The guard achieves high common mode rejection by protecting both the differential input amplifier and the two leads to the test point with a floating shield. The shield may be driven either internally by the common mode signal obtained from the amplifier for full 106 ib rejection, or externally from the signal source for high common mode rejection even with unbalanced source impedances.

Bandwidth may be reduced if desired from either the high or low end with front-panel switches. This feature minimizes the effective noise, since bandwidth need only be as wide as is necessary for a given measurement.

Tentative specifications, 1403A

Sensifivity: $0.01 \mathrm{mv} / \mathrm{cm}$ to 100 mvicm in 13 calibrated ranges in a 1, 2, 5 sequence; vernier allou's continuous adjustment between calibrated ranges.
Attenuator accuracy: $\pm 3 \%$
Bandwidth: 01 cps to 400 kc at $50 \mu \mathrm{w} / \mathrm{cm}$ and above (to 200 kc ar $10 \mu \mathrm{v} / \mathrm{cm}$ and to 300 kc at $20 \mu \mathrm{v} / \mathrm{cm}$); upper and lorver limits may be independently selected with front-panel controls: lower: $0.1,1,10,100 \mathrm{cps}$; upper: max. (greater than $400 \mathrm{kc}) 100,70,1,0.1 \mathrm{kc}$.

Sensitivily range (my/cm)	Commos mode re)eclion (dh)	
	Infermal guard drlve	External guard drlve (for sourco imperdanoe unbalances up to 10 K)
0.01100 .2	106	100
0.5.1,2	90	90
5,10,20	70	70
50, 100	50	50

Differential input: differencia! inpur may be selected on all attenuator ranges; common mode rejection may be adjusted to the values given in table for signals from 10 cps to 10 kc and up to 8 volts peak to peak.
Input impedance: 10 megohms shunted by approx. 50 pf
input: an inpui swicch provides a selection of input A or input - B single-ended, or $A-B$ differentia! input: CMR and $C a l$ positions are also provided for calibrating the instrument; A and B inputs, guard, and chassis ground are brought our to a special guarded connecror; the guard is normally driven internally by a common mode signal amplifier: if source impedances are unbalanced, the guard may be driven by an external source, preserving high common mode rejection.
Maximum input: 600 volts ($d c$ d- peak ac).
Noise: 20 microvoles peak to peak at 100 kc bandwideh: noise is reduced as bandwidth is reduced.
Internal callbrator: 100 mr p-p, line frequency square wave displayed when sensitivity switch set to CaI ; accuracy $\pm 3 \%$. Weight: net $4 \mathrm{Ibs}(1,8 \mathrm{~kg})$; shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Accessorles furnished: 6 ft . double shieided extension cable and a four-terminal binding post adapter.
Price: he 1403A. \$475.

1405A Dual-Trace Amplifier

The hp 1405A provides dual-trace 5 mc bandwidth at 10 cm deflection. The two channels may be algebraically added or, by a reversai of the Channel A polarity switch, the differential signal may be viewed. When used as a differentia! amplifer, a common mode rejection of better than 40 db in the higher sensitivity positions permits the display of low-level signals while attenuating undesimable components such as hum. The wide dynamic range of the 1405 A in the $\mathrm{A}+\mathrm{B}$ mode permits a 50 cm peak-to-peak signal to be displayed without significant distortion.

Tentative specifications, 1405A

Mode of operation: Channel A alone: Channel Balone; Channel A and Channel B on alternate sweeps; Channel A and Channel B displayed by sritching at approximately 70 kc , with trace blanking during switching; Channel A and Channel B added algebraically (polarity of Channel A may be inverted to obtain differential operation).
Sensitivity: each channel has sensitivities from $5 \mathrm{mv} / \mathrm{cm}$ to $10 \mathrm{v} / \mathrm{cm}$ in a 1.2 .3 sequence; vernier allows continuous adjustment berween calibrated ranges and extends the minimum sensitivity to at least $25 \mathrm{v} / \mathrm{cm}$; attenuator accuracy is $\pm 3 \%$.
Bandwidth: dc-coupled: dc 105 me: ac-coupled: approx. 2 cps to 5 mc (the lower limit can be extended to about 0.2 cps with a X10 probe).
Differentlal operation: common mode rejection at least 40 db on the $5.10,20 \mathrm{mv} / \mathrm{cm}$ ranges and at least 30 db on less sensitive ranges, for all frequencies up to 50 kc ; common mode signal should not exceed an amplitude equivalent to 50 cm , e.g., 0.5 w on the $10 \mathrm{mv} / \mathrm{cm}$ range.
Input: impedance is I megohm shunted by approx. 43 pf; maxi. mum input voltage is 600 wolts ($d c+$ peak $a c$).
Weight: net i tbs ($1,8 \mathrm{~kg}$), shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: hp 1405A, $\$ 325$.

1420A TIME BASE, 1421A TIME BASE /DELAY GENERATOR
 Horizontal plug-ins for 140A Oscilloscope

The hp 1420A Time Base supplies sweep time, trigger and horizontal input functions to the 140A Oscilloscope. The 1420A also features automatic triggering and a single sweep mode for transient photography.

The hp 1421A Time Base and Delay Generator exteads the use of the Model 140A to exact time delay measurement between reference signal and the point of interest on a complex signal or train of pulses. Pulse-to-pulse interval measurement on a pulse train, time jitter measurement, and simultaneous slow and fast sweep signal display also are possible.

Specifications, 1420A

Internal sweep: 22 ranges, $0.5 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$, accuracy within $\pm 3 \%$; vernier provides continuous adjustment between ranges and extends slowest sweep to at least $12.5 \mathrm{sec} / \mathrm{cm}$.
Magnificatlon: X10, accuracy $\pm 5 \%$; expands fastest sweep to 50 $\mathrm{nsec} / \mathrm{cm}$,
Automatic triggering: base line displayed in the absence of an input signal.
Internal: 40 cps to $500 \mathrm{kc}, 0.5 \mathrm{~cm}$ vertical defection required: also from line voltage.
External: 40 cps to $500 \mathrm{kc}, 0.5 \mathrm{v}$ peak to peak required.
Trigger slope: positive or negative slope of external trigger source signals or internal vertical defection signals.
Amplitude selectable triggering
Internal: 10 cps to $20 \mathrm{~ms} ; 0.5 \mathrm{~cm}$ vertical deflection required to 10 mc ; slightly decreasing sensitivity to 20 mc .
External
DC coupled: de to $20 \mathrm{mc} ; 0.5 \mathrm{v}$ peak to peak required to 10 mc ; slightly decreasing sensitiviry to 20 mc .
$A C$ coupled: 10 cps to 20 mc ; 0.5 v peak to peak required to 10 mc , slightly decreasing sensitivity to 20 mc ; input capacitor rating is 600 v dc , plus peak ac.
Trigger point and slope: internally from any point of the vertical waveform presented on screen or contiguously variable from +7 v to -7 v on external sigmal ; pos. or neg. slope.
Single sweep: front-panel switch permits single sweep operation. Horizontal input

Senstitulty: approx. $50 \mathrm{mv} / \mathrm{cm}$ (magnifier Xio) or $0.5 \mathrm{v} / \mathrm{cm}$ (magnifier X 1); vernier provides continuous adjustment between ranges and extends min. sensitivity to $<5 \mathrm{v} / \mathrm{cm}$.
Bendwidth: typically beter than 1.5 mc .
Input: dc coupled with a positive signal moving the beam from left to right; impedance is 1 megohm shunted by less than 50 pf . Welght net $5 \mathrm{lbs}(2.3 \mathrm{~kg})$; shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: hp 1420A, $\$ 325$.

Specifications, 1421A

Maln sweep: for displaying signals vs time where sweep delay is not required; employs onlg the main time base.
Range: 21 ranges, $0.2 \mu \mathrm{sec} / \mathrm{cm}$ to $1 \mathrm{sec} / \mathrm{cm}$ in a $1,2,5$ sequence; accuracy is 3%; vemier provides continuous adjusment between ranges and extends slowest sweep to at least $2.5 \mathrm{sec} / \mathrm{cm}$.
Thagering: (1421A used with 1402A Dual-Trace Amplifer). Amplitude selection Internal: approximately 10 cps to 15 mc from signals causing 0.5 cm or more vertical deflection, to 20 mc from signals causing 1 cm or more deflection; also from line signal.
External
DC: dc to 20 mc from signals 0.5 v p -p or more.
AC: approx. 5 cps to 20 mc from signals 0.5 vp -p or more.
Trigger point and slope: cantrols allow selection of level and positive or negative slope: trigger level of external sync signal adjustable from -5 to +5 volts.
Automatic: bright base line displayed in absence of an input signal; triggering internally down to 40 cps on signals having 1 cm or more vertical deflection; also on line signal; triggers externally down to 40 cps on signals 1 vp -p or more; trigger slope selectable, positive or negative.
Intenslfied mode: used for setting up Delayed or Mixed Sweep

mode by increasing in brightness that part of Main Sweep which will be expanded to full screen in Delayed Sweep, or made magnified part of displag in Mixed Sweep; rotating Delayed Sweep time switch from Off position activates inrensified mode.
Delayed 5weep: delayed time base sweeps after a time delay set by the Main Sweep and Delay controls.
Range: 17 ranges, $0.2 \mu \mathrm{sec} / \mathrm{cm}$ to $50 \mathrm{msec} / \mathrm{cm}$ in a $1,2,5 \mathrm{se}$. quence; accuracy is 3%; vernier provides continuous adjustment between ranges and extends slowest sweep to at least 125 $\mathrm{msec} / \mathrm{cm}$.
Delay (before start of delayed sweep):
Time: continuously variable from $0.5 \mu \mathrm{sec}$ to 10 sec .
Accuracy: $\pm 1 \%$; linearity is $\pm 0.2 \%$; time jitter is less than 0.005% of max. delay of each range (1 part in 20,000).
Trigger output: (at end of delay time) approx. +4 v with <1s0 nsec rise time, from I K output impedance.
Triggering: (applies to intensified Main, Delayed, and Mixed Sweep modes)
Automatic: delayed sweep starts precisely ar end of delay period.
Internal: delayed sweep triggered by vertical signal after end of delay period; signals must be approximately 10 cps to 15 mc causing 0.5 cm or more vertical deffection, to 20 mc from signals causing 1 cm or more deflection.
Extermal: delayed sweep triggered by external signal after end of delay period.
DC: dc to 20 me from signals $0.5 \mathrm{v} \mathrm{p} \cdot \mathrm{p}$ or more.
AC: approx. 5 cps to 20 mc from signals 0.5 v p-p or more.
Trigger point and slope (internal and external): controls allow selection of level and positive or negative slope; trigger level of external sync signal adjustable from -5 to +5 volts.
Mixed sweep: dual sweep speed display in which main sweep drives first portion of display and the delayed sweep completes display at sweep speeds up to 100 times faster; changeover point determined approximately by delay seting.
Triggering: same as for delayed sweep.
Single sweep: any display can be operated in single sweep.
Magnifier: expands any display by 10 times; total sweep accuracy is 5%; increases fastest sweep to $20 \mathrm{nsec} / \mathrm{cm}$.
Welght: net $5 \mathrm{lbs}(2,3 \mathrm{~kg})$; shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: hp 1421A, \$625.
Option 09،: External horizontal input, add $\$ 50$.

175A 50 MC OSCILLOSCOPE

High-performance 50 mc scope with versatile horizontal, vertical plug-ins

Advantages:

Eight vertical plug-ins provide bandwidths to 50 mc , sensitivities to $1 \mathrm{mv} / \mathrm{cm}$
Five horizontal plug-ins offer sweep delay, pushbutton recordings, 0.5% time measusements
Bright, sharp trace, $6 \times 10 \mathrm{~cm}$ display
No parallax, non-glare crt increases accuracy
Easy to calibrate and maintain
Positive syncing over entire bandwidth
The hp Model 175A Oscilloscope is an accurate, general. purpose test instrument that provides at least 50 mc of bandwidth for a wide variety of measurements. It has both horizontal and vertical plug-in capability, allowing the user to choose the exact features he desires.

Using an hp-developed post-accelerator crt with a large $6 \times 10 \mathrm{~cm}$ display area, the 175 A represents a major advance in oscilloscope design. Circuitry has been simplified, making it easier to adjust and maintain. In addition, extra features such as the improved triggering, logrcally arranged controls and convenient beam finder make the oscilloscope easier to use.

Horizontal and vertical plug-ins

The Model 175A accepts not only a wide line of vertical plug-ins, but also a series of horizontal time axis plug-ins which greatly extend its versatility. Such features as sweep delay, 0.5% time measurements, $x \cdot y$ recorder driving, or pushbutton recordings may be added when necded, allow.
ing one instrument to be used for several widely differing measurements. If no special horizontal capability is needed, the inexpensive basic plug-in may be used. In this way, you need purchase only the features you desire, resulting in maximum economy. Eight vertical and five horizontal plug. ins are available. In different combinations they adapt the Model 175 A to almost any test application.

12 kV crt

The crt. developed by Hewlett.Packard especially for the Model 175A, gives 6 cm of vertical defection and yet has a very low level of distortion. Trace defection defocusing, which causes widening of the trace at extremes of the sweep. is so low that the astigmatism control seldom requires adjustment, and pincushion or barrel distortion is virtually unnoticcable. The tube provides clear, sharp traces over the entire display area.

The crt is operated with a 12 kv accelerating potential which. together with the P31 aluminized phosphor, insures high brightness and writing rate. Thus, the oscilloscope is convenient to use for observing or recording singic-shot phenomena, as well as reperitive signals.

In addition, the tube is equipped with an internal graticule, developed by hp, to eliminate parallax error. The optically fat non glaring glass faceplate minimizes seflections.

Simple, Accessible Circuits

Maximum emphasis has been given to service and maintenance. Component and test-point accessibility is extremely

good, making for ease of adjustment, maintenance and service. Tubes and other components are easy to remove and replace if necessary; etched circuit boards are connected into the circuit with solderless "edge-on" connections, as shown in Figure 1, simplifying their removal and replacement.

The vertical amplifier in the 175 A provides over 50 mc of bandwidth and is easy to maintain and adjust. An hp. developed coaxial delay line is used in conjunction with an amplifier containing only ten tubes, all of which are the rugged frame grid type. Such simplified circuitry reduces calibration time and increases reliability. The 175A uses a total of only seven vacuum tube and five transistor types throughout, thus minimizing the number of spares required in the maintenance of secvice shops.

Figure 1. Etched circuitry with solderless "edge-on" connectors simplifies servising and maintenance.

User conveniences

The Model 175A has been designed with the user in mind. Many features have been included which provide simple, convenient operation. One single preset adjustment establishes optimum triggering for almost all conditions throughout the instrument's entire bandwidth. Employing a tunnel diode circuit to achieve this performance, the preset synchronization feature of the 175 A makes possible simpler and faster measurements.

Another feature of the 175 A is a pushbutton beam finder which automatically locates the off-screen spot or trace. The beam finder is simple and positive in operation and easily used by inexperienced personnel.

The horizontal amplifier of the 175A provides two sweep magnifications: "times-1" for normal operation and "times. $10^{\prime \prime}$ for examining any 1 cm section of the normal display. Further, the horizontal amplifier also can be used as an external sweep amplifier and has calibrated sensitivities of 1 volt/cm and 0.1 volt/ cm .

Flexible cabinetry

The advanced cabinet design featured in the 175A contributes both to ease of use and ease of maintenance. The oscilloscope is equally suited for bench use or for rack mounting and is easily converted from one to the other whenever desired. The top, bottom and side cabinet covers can be quickly removed, allowing complete accessibility to all components and adjustments. When rack mounted, the dimensions are RETMA standard ($121 / 4^{\prime \prime} \times 19^{\prime \prime}$); when used on the bench, other instruments may be stacked on top.

Specifications

Sweep generator

Range: $0.1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$ in $1,2,5$ sequence, 24 steps; vernier provides continuous adjustment between ranges and extends slowest sweep to at least $12.5 \mathrm{sec} / \mathrm{cm}$.
Magnification: X1 and X10.
Accuracy: $\pm 3 \%, \pm 5 \%$ with X 10 magnifier.
Triggering: internal, ac coupled; power line; external, ac of de coupled.
Trlggerlng sensltivity: internal, appcox. 2 mm vercical deflection at $1 \mathrm{mc}, 2 \mathrm{~cm}$ at 50 mc ; external, approx. 0.25 volt peak to peak at 1 mc , approx. 0.5 wolt peak to peak at 50 mc .
Triggering point: controls allow selection of level and slope; trigger level of external sync signal adjuscable -5 to +5 volts.

Horizontal amplifler

Bandwidth: dc coupled, dc to 500 kc ; ac coupled, approx, 2 cps 10500 ke .
Sensltivity: 2 ranges; $0.1 \mathrm{v} / \mathrm{cm}$ and $1 \mathrm{v} / \mathrm{cm}$, accuracy $\pm 5 \%$; vemier provides continuous adjustment between the ranges and extends minimum sensitivity to $10 \mathrm{v} / \mathrm{cm}$.
Input Impedance: 1 megohm shunted by approximately 30 pf.

Main vertical amplifier

Rise time: less than 7 nsec.

Callbrator

Type: 1 kc square wave, approx. $3 \mu \mathrm{sec}$ rise time.
Voltage: 2 ranges, 1 vand 10 v peak to peak $\pm 1 \%$ at $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ ambient, $\pm 3 \% 0^{\circ} \mathrm{C}$ to $53^{\circ} \mathrm{C}$ ambient.
Cathode-ray tube and controls
Type: post-accelerator, 12 kv accelerating potential, Type G20s; P31 aluminized phosphor standard, other phosphors (P2, P7, and P11) are available at no extra charge; equipped with nonglare safety glass faceplate.
Wrlting rate: a single 6 cm step function displaying 7 asec main vertical amplifier rise time can be photographed with the 196B.. 197A Oscilloscope Camera (pages 302, 303).
Gratlcule: internal, parallax-free, $6 \times 10 \mathrm{~cm}$, marked in cm squares: 2 mm subdivisions on major axis; front-panel recessed Scale control aligns trace with graticule.
Beam finder: depressing beam finder control brings trace on crt screen regardless of setting of horizontal or vertical position controls or intensity cootrol.
Intenslty modulation: approximately +20 volt pulse will blank trace of normal intensity (BNC connector on rear panel).

General

Power: $11 s$ or 230 volts $\pm 10 \%, 50$ to 60 cps, 425 watts, maximum (depends on plug.ins used).
Dlmenslons: $163 / 4^{\prime \prime}$ wide, $121 / 4^{\prime \prime}$ high, $243 / 8^{\prime \prime}$ deep over all ($425 \times 311 \times 593 \mathrm{~mm}$) ; hardware fumished for quick con. version to $12 \frac{1}{4}$ " $\times 19^{\prime \prime}$ rack mount, $22^{\prime \prime}$ deep behind panel ($311 \times 483 \times 559 \mathrm{~mm}$).
Weight: net $70 \mathrm{lbs}(31,4 \mathrm{~kg})$; shipping $92 \mathrm{lbs}(41,4 \mathrm{~kg})$ (with heaviest plug-ins installed).
Accessorles furnlshed: two $10: 1$ voltage divider 10003A Probes: detachable power cord; rack mounting hardware.
Price: hp 175A, 81325 (without plug-ins; two plug-ias required).
Modiflcations: crt phosphors (specify by phosphor number): P31 standard; P2, P7, P1I available, no charge.
Option: (specify by option aumber):
08. Gate and sawlooth outputs. add $\$ 23$.

Special order*
Specific modifications, shown below, are available on special order to mect particular situations:

1. So to 440 cps frequency; 115 v or $230 \vee \pm 10 \%$ line power: order H12-175A; price, $\$ 1375$.
2. Line filter and modifcations to meet RFI spec MIL I 16910A for portable test equipment; order H20-175A; price, $\$ 1400$.
3. Adaprers for mounting Chassis-Trak Detented, rotating slides, CTD 124, to the 175A ; order K10-175A; price, $\$ 20$.
[^25]
DUAL- AND SINGLE-CHANNEL PLUG-INS FOR 175 A

50 mc at $50 \mathrm{mv} / \mathrm{cm}$

1750B Dual-Trace Vertical Amplifier

Dual 50 mc channels with simplifed triggering at low cost The 1750B Dual-Trace Amplifier permits the user of the 175A Oscilloscope to compare directly two electrical signals with ease and accuracy. Its two independent vertical input amplifiers, each with a bandwidth of more than 50 mc and a maximum sensitivity of $50 \mathrm{mv} / \mathrm{cm}$, can be used either independently or together in five different modes of operation to perform a wide variety of measurements.
For convenience in dual-channel measurements, the Channel B signal can be connected to the Model 175A external trigger inpur through the use of the rrigger amplifier. This feature is useful where dual traces are displayed on alternate sweeps: the time relationship berween the two signals is preserved, since the sweep always triggers on the same point on the Channel B signal. Also, using the trigger amplifier when in the chopped dualtrace mode assures syncing on the displayed waveform rather than the chopper. This feature thereby avoids resorting to an external triggering arrangement for either of these dualtrace presentations.

Specifications, 1750B*

Mode of operation

One: Channel A alone.
Two: Channel B alone.
Three: Channels A and B displayed od alternate sweeps.
Four: Channels A and B displayed by switching at 200 ke rate, with blanking during switching.
Five: Channel Á plus Channet B (algebraic addition).
Each Channel
Sensitivity range: $0.05 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$; dine calibrated ranges in a 1, 2. S sequence; vernier extends minimum sensitivity to approxionately $50 \mathrm{v} / \mathrm{cm}$; a sensitivity calibration adjustment for each channel is provided on the front panel.
Attenuator accuracy: $\pm 3 \%$.
Bandwidth: de to at least 30 mc ; ac coupled, approximately 2 cps to 30 mc .
Rise tlme: less than 7 nsec .
Input Impedance: 1 megohm shunted by approximately 23 pf.
Input capactior rating: 600 v dc (ac-coupled input).
Polarity presentation: + or $-U_{P}$, selectable.
$A+B$ Input
Amplifier: bandwidth and seasitivity remain unchanged; either Channel A or B may be inverted to give A - B operation.
Differentlal Input common mode rejection at least 30 db at maximum sensitivity or at least 20 db when using attenuators (adjustable to at least 40 db , dc to 90 kc , with vernier controls).
B trigger output
Bandwidth: de to 2.5 mc .
Sensitivity: will trigger Madel 175A sweep externally with approximately 0.5 cm signal on crt .
General
Weight: net $5 \mathrm{lbs}(2,3 \mathrm{~kg})$: shipping 7 lbs (3.2 kg).
Accessorles furnished: one 10121A Coaxial Cable.
Prlce: hp 1730B, $\$ 325$.

1751A Single-Channel Vertical Amplifler

Lou'coss 50 me plag-in - The hp 1751A Fast Rise Vertical Amplifier makes use of the excellent transient response of the main vertical amplifier in the hp 175 A Oscilloscope. The 7 nsec rise time of the 1751A-175A combination permits accurate measurements of fast waveforms. Bandwidth is 50 mc or greater at all input sensitivities from $50 \mathrm{mv} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$.

Specifications, 1751A ${ }^{4}$

Bandwidth: de coupled, de to 50 mc : ac coupled, approximately 2 cps to 50 mc .
Rise time: less than 7 nsec.
Sensitivity: nine calibrated ranges in $1,2,5$ sequence from 0.05 v / cm to $20 \mathrm{v} / \mathrm{cra}$; vernier provides continuous adjustment between ranges and extends maximum sensitivity to at least $50 \mathrm{v} / \mathrm{cm}$.
Attenuator accuracy: $\pm 3 \%$.
Input impedance; 1 megohm (nominal) shunted by approx. 22 pf .
Maximum Input: 600 v peak ($a c+\mathrm{dc}$).
Weight: net 5 lbs $(2,3 \mathrm{~kg})$; shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: hp 1751A, $\$ 160$.
*instalied in hp 175A Oscilloscope

1752A, 1752B VERTICAL AMPLIFIERS

$5 \mathrm{mv} / \mathrm{cm}$ at low cost

1752A High-Gain Vertical Amplifier

$5 \mathrm{mvi} / \mathrm{cm}$ sensirivity with differensial input. Model 1752A Higin-Gain Vertical Amplifer enhances the versatility of your 175A Oscilloscope by increasing irs sensitivity to $5 \mathrm{mv} / \mathrm{cm}$. The rise time of the 175A/1752A combination is less than 20 nsec; this improves to approximately 16 nsec on the less sensitive ranges.

Differential input with at least 40 db common mode rejection is included for the ranges $5 \mathrm{mv} / \mathrm{cm}$ through $50 \mathrm{mv} / \mathrm{cm}$. Isolation between the two input points is at least 80 db . Sub. stantial feedback in the transistor amplifier stage provides unusually high stability characteristics for a high gain amplifier.

Specifications, 1752A*

Sensitivity: $5 \mathrm{mv} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$ in 12 calibrated ranges in a $1,2.5$ sequence; vernjer allows contimuous adjusunent between cali-
brated ranges and extends min sensitivity to at least $90 \mathrm{v} / \mathrm{cm}$; a sensitivity calibration adjustment is provided on the front panel.
Attenuator accuracy: within $\pm 3 \%$.
Dual Inputs: two signal input jacks (8 NC) ; ac or dc coupling of cither input selectable with front-panel switch; isclation between inputs at least 80 db .
Differentlal input: ac or de differeatial input may be selected in the ranges of $5 \mathrm{mv} / \mathrm{cm}$ to $50 \mathrm{mv} / \mathrm{cm}$; common mode rejection at least 40 db at 1 kc ; common mode signal should not exceed 4 v p.p.
Bandwldth: dc coupled: $50 \mathrm{mv} / \mathrm{cm}$ range and above, de to 22 mc ; $20 \mathrm{mv} / \mathrm{cm}$ to $5 \mathrm{mv} / \mathrm{cm}$ range, dc to 18 mc ; ac coupled; identical except down 3 db at approx. 2 cps .
Input impedance: I megohm with less than 35 pf shunt capacitance.
Maximum Input: 600 v peak ($\mathrm{ac}+\mathrm{dc}$).
Wetght: net $5 \mathrm{lbs}(2,3 \mathrm{~kg})$; shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: hp 1752A, \$225.

1752B High-Gain Vertical Amplifier

$5 \mathrm{mu-dc}$ to $30 \mathrm{mc}: 50 \mathrm{me-dc}$ to 40 mc . The 1752 B has a bandwidth of 30 mc at $5 \mathrm{mv} / \mathrm{cm}$ and 40 mc at 50 mv and above. Also, separate attenuators on each input allow signals of widely differing amplitudes to be displayed differentially.

Specifications, 1752B*

Sensitivity

Normal mode: $50 \mathrm{mv} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$ in 9 calibrated ranges in a $1,2,3$ sequence; dennier allows continuous adjustment between calibrated ranges and extends min. sensitivity to at least $50 \mathrm{v} / \mathrm{cm}$.
X10 mode: $5 \mathrm{mv} / \mathrm{cm}$ to $2 \mathrm{v} / \mathrm{cm}$ in 9 calibrated ranges in a $1,2,5$ sequence; vernier allows continuous adjustment between calibrated ranges and extends min. sensitivity to at least $5 \mathrm{v} / \mathrm{cm}$.
Input attenuator aceuracy: $\pm 3 \%$.

Bandwidth

Normal mode: dc coupled: dc to 40 mc (9 nsec rise time) on all sensitivity ranges; ac coupled: 2 cps to 40 mc .
$\times 10$ mode: dc coupled: dc to 30 mc (12 nsec rise lime) on all sensitivity ranges; ac coupled: approx. 2 cps to 30 mc ,

Inpust: either single-ended or differential input may be selected on any sensitivity range for both nomal and X10 modes; coupling may be ac or dc on either or both inputs, and separate atrenuators enable differential operation with signals of widely differing am. plitudes.
Input impedance: 1 megohm shunted by no more than 23 pf for each channel ; for differential operation, input impedance is 2 meg. ohms shunted by less than 12 pf
Maximum input voltage: 600 volts (dc + paak ac).
Isolation between inputs: 60 db at 40 mc in Normal mode and at 30 mc in X 10 mode.
Common mode rejection: at least 40 db at max. sensitivity, or 30 db on atteruvated ranges, for common mode signals up to $3 \mathrm{v} \mathrm{p}-\mathrm{p}$.
Dynamic renge: amplifier can be overloaded by 18 cm without causing noticeable signal distortion.
Vertical position control: $\pm 9 \mathrm{~cm}$ range.
Weight: net 5 lims ($2,3 \mathrm{~kg}$); shipping $7 \mathrm{lbs}(3,2 \mathrm{~kg})$.
Price: hp $1752 \mathrm{~B}, \$ 285$.

[^26]
1754A, 1755A VERTICAL AMPLIFIERS

40 mc 4 -channel, 50 mc high-gain plug-ins

1754A Four-Channel Amplifier

The 1754A provides four 40 me channels for logic circuit resting. Trace identifiers and selectable triggering from any channel add to convenience of operation.

Specifications, 1754A

Mode of operation: any channel or combination of chanaels may be displayed; channels displayed on alternate sweeps or by switching at 1 me rate with blanking during switching.

Each channel

Sensituvity range: 0.05 to $20 \mathrm{v} / \mathrm{cm}$; 9 calibrated ranges in $1,2,5$ sequence: vernier extends min. sensitivity to at least $50 \mathrm{v} / \mathrm{cm}$. Attenuator accuracy: $\pm 3 \%$.

Bandwidth: dc coupled, de to 40 mc ; ac coupled, approx. 2 cps to 40 mc .
Rise time: less than 9 nser
Input Impedance: 1 megohm shunted by approximately 22 pf.
Maximum Input: 600 vpeak (ac +dc).
Polarity + up - up, selectable for each channel.
Triggering output de coupled output suitable to trigger 175A externally.
Trigger amplffer bandwidth: dc to 8 mc in Alt
Weight: net $7 \mathrm{lbs}(3,2 \mathrm{~kg})$; shipping $9 \mathrm{lbs}(4 \mathrm{~kg})$.
Accessory furnlshed: 1012A Cable, 8 inches long (23 cm), BNC. to-BNC.

Price: hp 1754A, $\$ 595$.

1755A Dual-Trace Amplifier

The 175sA permits dual-trace measurement of low-level, high-frequency signals. Dual-trace sensitivity is $1 \mathrm{mv} / \mathrm{cm}$ at 20 mc ($500 \mu \mathrm{c} / \mathrm{cm}$ single Channel in $A+B$) and $10 \mathrm{mv} / \mathrm{cm} \mathrm{at}$ 50 mc (7 nsec rise time). Triggering from Channel B adds convenience to dual-trace operation.

Specifications, 1755A*

Mode of operatlon: 1.) Chanael A alone; 2.) Chaotel B alone; 3.) Channel A and B displayed on alternate sweeps; 4.) Channel A and B displayed by switching at 200 kc rate; display blanking during switching; 5.) Algebraic addition of Channel A and B.

Each channel

Sensitivity range
X2 mode: $0.005 \mathrm{v} / \mathrm{cm}$ to $5 \mathrm{v} / \mathrm{cm}$ in ten calibrated ranges in a $1,2,5$ sequence; attenuator accuracy $\pm 3 \%$; vernier allow's conuinuous adjustment between ranges and extends minimum sensitivity to $12.5 \mathrm{v} / \mathrm{cm}$: a sensitivity calibration adjustment for each channel is provided on the front panel.
X5 moder íncreases maximum sensitivity to $1 \mathrm{mp} / \mathrm{cm}$; accuracy $\pm 3 \%$.
X5AC mode: provides internal ac coupling to eliminate drift with the same sensitivity and accuracy as X 5 mode.
Bandwidth and ise time

Sensifivity	Bandwideh
$10 \mathrm{mv} / \mathrm{cm}$ to $5 \mathrm{v} / \mathrm{cm}$ (Sens moda XI)	dc to 50 mc (7 nsec)
$5 \mathrm{mv} / \mathrm{cm}$ (Sens mode XI)	dc 1040 mc (9 nsec)
$1 \mathrm{mv} / \mathrm{cm}$ (Sens mode $\times 5$)	dc $10.20 \mathrm{mc}(17 \mathrm{nsec})$

Lower bandwidth limit, ac coupled: X1, approx. 2 cps; Xs, approx. 2 cps ; XsAC, approx. 4 cps .
Input impedance: 1 meg shunted by approx. 22 pf.
Maximum input: 600 v peak (dc + peak ac).
Algabraic Input. both channels, with their respective attenuators, may be switched to one common channel for algebraic addition; the attenuators may be on different settings to allow combining of signals of different amplitude.
Common mode rejection: 20:1 or more from de to 50 kc with verniers in Cal position; common mode rejection can be increased to greater than $100: 1$ by adjusting vernier controls for minimum common mode amplitude; maximum common mode signal allowable on any sensitivity setting is 10 cm .

B trigger output

Sensitulty; 0.5 cm of cre display in the X1 Sens mode (2.5 cm in X s and XSAC) will provide suffeient signal to externally trigger the $175 A$; the signal amplification from the channel B Input to B Triz Out is approx, 60 with no input attenuation.
Output Impedance: 200 ohros nominal.
Bandwldth: dc to approximately 5 mc .
Welght: net 5 lbs ($2,3 \mathrm{~kg}$) ; shipping 7 lbs ($3,2 \mathrm{~kg}$).
Accessory furnished: one 10121A Coaxial Cable, 8 inches long (23 cm), BNC-10-BNC.
Price: hp 1755A. $\$ 375$.

[^27]
HORIZONTAL PLUG-INS FOR 175A OSCILLOSCOPE

Five plug-ins increase scope versatility

1780A Auxiliary Plug-in

Maximum economy - The hp Model 1780A Auxiliary Unit allows the 175A Oscilloscope to perform all the functions of a standard instrument at minimum cost. Using this plug-in, the full range of the oscilloscope's internal sweeps are available for repetitive sweep operation. In addition, single-5weep operation with either internal arming or arming by an external signal is provided.

Specifications, 1780A*

Sweep occurrence: Normal or Single Sweep.
Sweep arming: incernal or by external pulse, 1 to $200 \mu \mathrm{sec}$, approximately +15 to +25 volts peak.
Input connector: BNC
Weight: net $1 \mathrm{lb}(0,45 \mathrm{~kg})$; shipping $4 \mathrm{lbs}(1,8 \mathrm{~kg})$.
Price: hp 1780A, $\$ 25$.

1781B Sweep Delay Generator

Measure lime intervals and jitter on pulse trains acctiratel) - The 1781 B extends the use of the 175 A Oscilloscope to exact time delay measurement between reference signal and the point of interest on a complex signal or train of pulses. Pulserto-pulse interval measurement on a pulse train and time-jitrer measurement are also possible.

Four types of sweeps possible with the Model 17818 are shown in the photographs above. They are: (s) Main Sweep; (0) Delaying Sweap (with the seclion covered by the dalayed main sweep intensified); (c) Main Delayed Sweep (with the intensified saction expanded to fil the entirally

Sweep and delay functions

Main Sweep: This function "locks out" the 1781B Sweep Delay Generator, allowing the 175A to perform as a normal oscilloscope.

Delaying Sweep: Provides fast setup by intensity modulating those pulses to be displayed in Main Delayed Sweep position.
Main Delayed Sweep: The start of the scope trace is delayed from the reference signal by an amount determined by the settings of the front-panel delay controls; thus, time jitter between the reference signal and the observed signal can be conveniently measured, since the observed signal can be magnified using a fast main sweep. If desired, the 175A sweep may be armed to give a trace that is steady and free from jitter even when jitter is present in the signal being observed
Mixed Sweep: In this function the display is presented using two separate sweep speeds. It is possible to view simultaneously the character of a pulse train and also "peel off" and expand individual pulses for minute inspection at the end of the train.
Main Single Sweep: A switch on the hp 1781B allows single-sweep operation of the 175A sweep generator for displaying transient and other single-shor phenomena.

Specifications, 1781B*

Delay time: $0.5 \mu \mathrm{sec}$ to 10 sec delay time is the product of the Delaying Sn'eep setting in $\mathrm{sec} / \mathrm{cm}$ and the Delay Length setting in cm .
Delaying sweap: $2 \mu \mathrm{sec} / \mathrm{cm}$ to $1 \mathrm{sec} / \mathrm{cm} ; 18$ calibrated ranges in a 1. 2,5 sequence.

Delay length: 0 to 10 cm (the physical location, in cm from the be. ginning of the race, to the point at which the main sweep is triggered).
Delay accuracy: $\pm 1 \%, 2 \mu \mathrm{sec}$ to $0.1 \mathrm{sec} / \mathrm{cm}$ ranges; $\pm 3 \%, 0.2$, $0.5,1 \mathrm{sec}$ ranges; $\pm 0.2 \%$ linearity.
Jitter: $\pm 0.002 \%$ of max. delay on each range (1 part in 50.000).
Delay function: (a) trigger main sweep; (b) arm main sweep.
Triggering: internal, ac coupled (2 mm or more vertical deflection), power line or external, ac or de coupled (0.5 volt p-p or more).
Triggering point: controls allow selection of level and slope; trigger level of external sync signal adjustable -5 to +5 volts.
Sweep selector: (a) main sweep; (b) delaying sweep-brightened segment of trace indicates time relationship between delaying sweep display and main sweep display: (c) main delayed sweep; (d) mixed sweep; (e) single sweep of main sweep.

Delayed trigger output: approximately 10 volts positive.
Weight: net $41 / 2 \mathrm{Ibs}(2,2 \mathrm{~kg})$; shipping $7 \mathrm{Jbs}(3,2 \mathrm{~kg})$.
Price: hp 1781B, $\$ 325$.

1782A Display Scanner

Record or digitize crit displays - Used with an x-y recorder, the Model 1782 A Display Scanner permits permanent recordings of the waveform displayed on the scope crt. These high-resolution recordings are not limited by the width or height of the crt display, but may be as large as the physical size and sensitivity of the recorder will allow.

The 1782A employs sampling techniques to transform high-speed phenomena to the bandwidth of conventional x-y recorders such as the Moseley 7050. An automatic pen stabilizer provides a nearly constant writing rate to the recorder, so that fast pulses may be recorded faithfully in minimum time. For quick correlation of time between the crt trace and recorder, the recorder pen position is identified by an intensity change on the crt trace.

This plug-in also may be used with auxiliary equipment to digitize a crt display. The desired portion of the trace is scanned once or repeatedly and the output reduced in frequency for recording or analysis. To digitize the display you can monitor the output with a digital voloneter. Or by scanning with an external sawtooth you can use the 1782 A to reduce high-speed signals to low-speed signals for recording on audio tape recorders.

Specifications, 1782A ${ }^{\circ}$

Vertical output: approximately $200 \mathrm{mv} / \mathrm{cm}$; gain and dc level are independently adjustable.
Horlzontal output: output level, adjustable to zero volts; output amplitude, adjustable from 0 to +15 volts.
Bandwidth: at least 30 mc when installed with a 40 mc verical plug-in amplifier.
Scanning: manual, internal (with pen speed either stabilized or linear) or external, requires 0 to 15 v for full scan; maximum external scan rate, 1 kc .
Scanning time: internal, linear: approximately 1.5 minutes; internal, with pen speed stabilized: approximately 20 seconds when displaying time base only.
Osellloscope sweep speed: from fastest sweep to $5 \mathrm{msec} / \mathrm{cm}$; signal repetition rate greater than 20 cps .
Remote pen lift: lifts pen when switching from Record to Arm Recorder.
Welght: aet 5 lbs ($2,3 \mathrm{~kg}$) ; shipping 8 lbs $(3,6 \mathrm{~kg})$.
Price: hp 1782A, \$425.
Special order: pulse triin amplitudes can be digitized and recorded with 1% accuracy using the H02-1751A Single Channel Amplifer and Scanner plug.in. Since the H02-1751A is a vertical plug.in
containing a scanner, the horizontal plug-in comparment is left free for plug-ins such as the 1781 B Delay Generator. Price: hp H02.1751A 5455 . See your hp field engineer for further details.

1783A Time Mark Generator

Intensity-modnlated time markers, 0.11010 usec, $\pm 0.5 \%$ accuracy - The 1783A Time Mark Generator provides synchronized intensity-modulated time markers on the 175A Oscilloscope trace. The markers simplify rise time and pulse duration measurement and also are useful for scope photographs, for calibrating certain sweeps or for operation between calibrated sweep ranges.

The time mark generator is triggered by the sweep gate of the oscilloscope and thus is synchronized to the crt trace. Markers are selectable at 10,1 or $0.1 \quad \mu \mathrm{sec}$ intervals, accuracy $\pm 0.5 \%$. Marker duration is a function of the adjustable intensity but always less than 40% of marker interval. The time markers also may be switched to a frontpanel BNC output jack, a feature useful for calibrating oscilloscope sweep speeds or external equipment.

Specifications, 1783A*

Intensity modulation
Range: $10 \mu \mathrm{sec}, 1 \mu \mathrm{sec}$ or $0.1 \mu \mathrm{sec}$ intervals.
Accuracy: $\pm 0.5 \%$.
Presentation: trace-intensifying marks with duration a function of intensity, but always less than 40% of marker interval.
Synchronizatlon: triggered by sweep gate; synchronized to crt presentation.
External output markers
Range: $10 \mu \mathrm{sec}, 1 \mu_{\mathrm{sec}}$ or $0.1 \mu \mathrm{sec}$ intervals.
Accuracy: $\pm 0.5 \%$.
Amplitude: 0 to 1 v peak (positive) into open circuit, adjustable.
Waveform: positive polaricy clipped sine wave with duration a function of amplitude, but always less than 40% of marker interval.
Output impedance: approximately 75 ohms.

Functions

Tlme marker: Off, marker de-energized; Output, markers provided at BNC output jack; Display, markers provide synchronized intensity modulation of display (intensity mosulation control set to Internal).
Intensity modulation: external, provide input for normal incensity modulation; internal, allows intensity modulation of trace (time markers set to Display).
Welght: net $3 \mathrm{~b} / 2 \mathrm{lbs}(1,6 \mathrm{~kg})$; shipping $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Price: ho 1783A, \$130.
*insalled in hp 175A Oscilloscope

1782A

1783A

1784A RECORDER, 175A SERVICE ACCESSORIES

Recorder offers accurate, permanent records with pushbutton ease

The uaique hp 1784A Recorder Plug-in provides an easy, inexpensive way to permaneatly record displays on the Model 175A Oscilloscope. Simply push a button, and the displayed repetitive waveform is recorded on a strip chart. complete with graticule markings.

The plot is made on special beat-sensitive paper by a heated stylus. Records are permanent, and the paper is easy to write on and attach in notebooks for future reference. The cost of each record is $1 / 20$ th the price of a photograph. Lab reports now can be well documented with many waveforms, and a record of actual performance characteristics can be shipped to customers along with an instrument.

The Model 1784A will record signals up to 30 mc when used with a 40 mc or greater vertical plug-in, and faithfully reproduce displays with better than 3% accuracy. With noisy signals, the 1784A eliminares random deviations, actually producing a recording that is much clearer than the Cr display.
Mrultiple traces can easily be recorded by rewinding the paper as many times as desired. By using the themb wheel, the starting point of the traces can be made to coincide, thereby preserving time cosrelation.

Tentative Specifications, 1784A

Repetition rate: signal rep rates of 60 cps or greater and sweep speeds faster than $2 \mathrm{msec} / \mathrm{cm}$ are required; (usable below these limits, but with progressively greater distortion in the form of small steps on the plot).
Bandwidth: dc to greater than 30 mc when installed with a plug.in having 40 mc or greater bandwidth.
Writing rate: waveforms with slopes of at least $50: 1$ can be re. corded with a continuous line.
Recording cycle time; approximately 20 seconds.

Accuracy of recording recording duplicates crt display with betrer than 3% ассuracy.
LIne width: approximately 0.25 mm at normal line intensity.
Recording paper: hp recording Permapaperb, imprinted with a strip-chart replica of the 175A crt graticule; the chart marking is approx. 20% smaller than the graticule marking; one 75 ft . roll of paper, (hp Part no. 9281-0083), gives more than 125 recordings; price, $\$ 1.50$ per coll.
Woight: net $81 / 2 \mathrm{lbs}(3,8 \mathrm{~kg})$; shipping $11 \mathrm{lbs}(5 \mathrm{~kg})$.
Pricer hp 1784A, \$775.

175A Service Accessories

10400B, 10402A Plug-in Extenders - The 10400B, 30 -inch (762 mm) extension cable for 170B and 175A vertical plug ins; price: hp $10400 \mathrm{~B}, \$ 25$. The $10402 \mathrm{~A}, 24$.inch (610 mm) extension cable for 170B and 175A time axis plug-ins; price: hp_{p} 10402A, $\$ 35$.
10403 A Alignment Attenuator - The 10403A Alignment Attenuator may be used to check and adjust input capacity. It is adjustable to match the input of any of the 175A or 170 B vertical amplifiers. Price: hp 10403A, \$3s.
10404A Verical Test Adapser - The 10404A Vertical Test Adapter provides a convenient means of applying a known voltage to the main vertical amplifier of the 175A for setting the gain. Price: hp 10404A, \$15.
10405 A Vertical Response Tester - The 10405A Vertisal Response Tester provides a fast step function for use in establishing and adjusting the "step" response of the main vertical amplifier in the 175A. This plug-in generates a positive or negative $2 v$ adjustable pulse with a rise time less than 1 nsec, 250 cps . Price: hp 10405 A , \$125.

- Installed in he 175A Oscilloscope.

Figura 1. CRT display (above), and 1784A recording.

H30-175A HIGH-WRITING-RATE OSCILLOSCOPE; K01-, K02-1759A SINGLE-CHANNEL VERTICAL PLUG-INS

Ideal scope for transient study; plug-ins with 2.5 nsec rise time

H30.175A, usable with all 175A plug.ins
The hp Model H30-175A Oscilloscope is a standard 175A equipped with a special high-writing-rate crt. The very small spot size provided by the cit, together with the 12 kv accelerating potential and P11 phosphor, allows high-speed transients to be easily recorded on film.

All 1700 series horizontal and vertical plug-ins may be used with the Model H30-175A, since the standard Model 175A 6 cm by 10 cm internal graticule has been sealed down to match the loacer sensitivity of the special cre. Thus, front-panel time and voltage calibrations remain direct rcading, and all of the advantages of the scandard Model 175A and its plug.ins ase retained. Additional dashed.line graticule divisions have been added to take advantage of the increased vertical range obtainable with the K01- and K02-1799A Fast-Rise-Time Vertical Plug-ins (see Figure 1).
The special crt used in the Model H30.175A may be purchased separaraly and installed in any standard 175 A to obtain high-writing capability. No modification is necessary.

Specifications, H3O-175A

(Specifications same as standard 173A except as follows)

Cathode-ray tube

Type: post-accelerator, 12 kv accelerating potential; p_{11}
aluminized phosphor standard; equipped with non-glaring safery glass faceplate.
Writing rate: a single 6 cm step displaying 2.5 nsec rise time (obtained with K01- or K02-1759A Vertical Plug-in) can be photographed with the 196B or 197A Oscilloscope Camera.
Graticule: internal, parallax-free, $4 \mathrm{~cm} \times 6 \mathrm{~cm}$ incernal graticule calibrated vertically in eight divisions and horizon. tally in ten divisions
Price: hp H30-175A, 5135s: high-writing-rate ctt alone (hp Stock No. 5083-0842). \$190.

K01-, K02-1759A Plug-ins

On special order, the K01. and K02-1759A Plug-ins are available for increased rise time capability, achieved by connecting the input signal directly to the crt through a modified circuit network.

Expressly suited for studying fast nuclear tzansients is the combination of either plug. in with the special-high. writing.sate crt for the Model 175A. For the specialty plug-in unies, the hp 175A should be externally triggered 200 nsec in advance of the observed signal.

Specifications, K01-, K02-1759A
Direct-coupled plug.in
Rlse time: approximately 2.5 nsec .
Sensitluity: approximately 3 v per division.
Input Impedance: 50 ohms.
Welght: 2 lbs ($0,9 \mathrm{~kg}$); shipping s lbs ($2,3 \mathrm{~kg}$).
Price: hp K01-1759A, $\$ 100$.
AC-coupled plug-In
Rise time: approximately 2.5 asec.
Sensitivlty: 1.5 v per division.
Input impedance: approximately 50 ohms.
Sag: approximately 10% in $2 \mu \mathrm{sec}$ (ac coupled).
Welght: 2 lbs (0.9 kg) ; shipping $5 \mathrm{lbs}(2,3 \mathrm{~kg}$).
Price: hp K02.1759A, \$200.

Figura 1. Singlershot transient displayed on Model H30.175A (swaep speed 50 rsec/cm).

170B,BR OSCILLOSCOPES

Militarized high-frequency oscilloscope offers plug-in versatility

Advantages:

Meets rugged military environmental requirements.
Maximum versatility through horizontal and vertical plug-ins.
Simplified operation; convenient beam finder.
Equivalent to the AN/USM-140B.
The Model 1708 Oscilloscope combines militarized design with conventional controls and dual plug-in capability for ruggedness, versatility and utmost convenience-making it ideally suited for shipboard use, mobile calibration vans and system checkout installations.

Besides accepting vertical amplifier plug-ins, the oscilloscope also accepts time axis plug.in units for increased versatility, which enables you to add such features as sweep delay when needed and to adapt one instrument for several widely different measurements.

The 170 B main vertical amplifier has a bandwidth greater than 30 mc but is easier to maintain and adjust through the use of a fixed delay line and simple amplifier circuitry.

The oscilloscope is easy to operate even by inexperienced personnel. The pushbutton beam finder feature allow's quick location of off-screen trace. Simplified triggering and colorcoded controls add to the user convenience.

Specifications, 1708, BR

(with 166F installed)

Sweep generator

Internal sweep: 24 ranges, $0.1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm} ; \pm 3 \%$; vernier extends slowest sweep to $12.5 \mathrm{sec} / \mathrm{cm}$.
Magniffeation: 7 calibrated ranges, X1, X2, X5, X10, X20, X 50 and X 100 ; increases fastest sweep speed to $0.02 \mu \mathrm{sec} / \mathrm{cm} ;$ accuracy: X1, X2 and X5, $\pm 3 \%$; X 10 and X20, $\pm 3 \%$ to 0.02 $\mu \mathrm{sec} / \mathrm{cm} ; \mathrm{X} 30$ and $\mathrm{X} 100, \pm 10 \%$ to $0.02 \mu \mathrm{sec} / \mathrm{cm}$.
Triggering: internal, power line or vertical input signal (2 mm or more vertical deflection) : external, 0.5 v peak to peak or more.
Tilgger point: positive- or negative going voltage: trigger level of external sync signal adjustable from -30 to +30 volts.
Sawtooth output: approximately -40 to +40 volts.
Gate output: approximately +45 volt pulse.
Horlzontal amplifier
Bandwidth: dc to 1 mc .
Sensitivity: 7 ranges, $0.1 \mathrm{v} / \mathrm{cm}$ to $10 \mathrm{v} / \mathrm{cm}$; vernier extends minimum sensitivity to $25 \mathrm{v} / \mathrm{cm}$.
Input impedance: 1 megohm shuated by 30 pf .
Maln vertical amplifler
Bandwldth capablity: 35 mc .

Calibrator

Type: $1000-$ cycle square wave, $1 \mu \mathrm{sec}$ rise and decay time.
Voltage: 18 calibrated ranges, $\pm 3 \% ; 0.2$ millivolt to 100 volts peak to peak.
Current: s ma peak to peak, $\pm 3 \%$.

Cathoderray tube

Type: alumenized s BH post-accelerator crt; normally supplied with P2-AL Phosphor; specify P31-AL if required, no extra charge; accelerating potential, 10 kv .

Filter supplied: compatible with phosphor, green with P31 and P2, amber with P7 and blue with P11.
External graticule (standard): 10 cm long $\times 4 \mathrm{~cm}$ high, marked in centimeter squares; 2 mm subdivisions on horizontal and vertical axes; controlled edge lighting.
Internal graticule (optlonal): graticule in same plane as phosphor; eliminates parallax error; equipped with non-giaring safery faceplate.
Deflection plate connection: pin type terminals.
Deflection sensitivity: approximstely $7 \mathrm{v} / \mathrm{cm}$.

General

Power: 115 or 230 volss, $\pm 10 \%, 50,600: 400 \mathrm{cps}$, approxinately 500 watrs maximum.
Dimensions: cabinet: $145 / 8^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $221 / 8^{\prime \prime}$ deep ($372 \times$ $483 \times 672 \mathrm{~mm}$) ; rack mount: $121 / 4^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $22^{\prime \prime}$ deep behind panel ($310 \times 483 \times 559 \mathrm{~mm}$).
Color: grey enamel in accordance with Type III Class 2 of Specifications MIL-E-15050.
Weight: net 85 lbs (38 kg); shipping $108 \mathrm{lbs}(49 \mathrm{~kg}$) (includes two plug-ins).
Accessories furnished: one 10001A (red boot), one 10001 C (black boot) (both marked MX 2817A/U) Test Probes, 10:1 voltage division; Power Cable Assembly, 170A-16AL-(N) (marked CX 4704/U), 8 ft . (244 cm) minimum.
Prica: hp 170B (cabinet) or hp 170BR (rack mount), \$2350.
Optlons
03. Internal-graticule crt in lieu of standard crt, add $\$ 30$. Tifting detented slides for 170BR rack mount are available on special order. Price installed, add $\$ 105$.
Speclal order
E03.170B to include the 170 B with $162 \mathrm{C}, 166 \mathrm{~F}$ and 10165 B Front Cover with accessories; price, $\$ 2905$ (same as AN/ LISM-140B without source inspection and tubes, transistors, transformers and blower motor)
E03.170BR to include the 170 BR with 162 C and 166 F ; price, $\$ 2875$ (same as AN/USM-141A without source inspection of tubes, transistors, transformers and blower motor; in. cludes accessories but not front cover).
AN/USM-140B and AN/USM-141A (rack mount) are also available to those who have prime government contract numbers; contact your local hp field engineer for details.

Plug-ins for the 1708

Three militarized plug-ins for the hp 170B Oscilloscope increase measuring flexibility by adding dual-trace, highgain and sweep delay capabilities. These vertical and timeaxis plug-ins provide expandable measurement capability as it is needed.

162C Dual-Trace Amplifier

Model 162C Dual-Trace Amplifier permits you to view two electrical phenomena simultaneously with $20 \mathrm{mv} / \mathrm{cm}$ sensicivity. A and B channel amplifiers may be electronically switched by chopping or by alternate sweeps. Differential operation allows undesirable common mode signals, such as hum, to be eliminated.

Specifications, 162 C *

Each channel

Sensitivity range: $0.02 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$; ten calibrated ranges in $1,2,5 \ldots$ sequence; vernier exteads minimum sensi-

[^28]
tivity to at least $50 \mathrm{v} / \mathrm{cm}$, and provides continuous adjust. ment between ranges; a sensitivity calibration adjustment for each channel is provided on the front panel.
Attenuator accuracy: $\pm 3 \%$.
Bandwldth: de coupled, dc to 22 mc , less than $0.016 \mu \mathrm{sec}$ rise time ; ac coupled, 2 cps to 22 mc .
Input impedance: 1 megohm (nominal) shunted by $<30 \mathrm{pf}$.
Polarity of presentation: + up or - up, seleciable.
Maximum Input: 600 volts (de + peak ac).
Differentlal input: both input attenuators nay be switched to one channel to give differential input; the input attenuators may be set separately to allow mixing signals of different levels.
Amplifier: Channel A; amplifier inpu: A - input B.
Common mode rejection: at least 40 db at maximum sensitivity, at least 30 db when using attenuators.
Weight: net 6 lbs $(2,7 \mathrm{~kg})$; shipping $13 \mathrm{lbs}(3,9 \mathrm{~kg})$.
Price: hp 162C, $\$ 420$.

166E Sweep Delay Generator

The 166 E extends the use of the 170 B Oscilloscope to exact time delay measurement between reference signal and the point of interest on a complex signal or train of pulses; pulse-to-pulse interval measurement on a puise crain; timejitter measurement; and with Mixed Sweep, simultaneous slow and fast-sweep signal display.

Specifications, 166E*

Delay time: $1 \mu \mathrm{sec}$ to 10 sec .
Delaying sweep: 18 calibrated ranges for $2 \mu \mathrm{sec} / \mathrm{cm}$ to $1 \mathrm{sec} / \mathrm{cm}$ in $1,2,5 \ldots$ sequence.
Delay length: 0.5 to 10 cm ; when delaying sweep functions in piace of main sweep, setting in cm controls occurrence of main sweep; when delayed main sweep is used, setting acts as multiplier on Delaying Sweep seting to determine total delay time.

[^29]Delay accuracy: $\pm 1 \%, 2 \mu \mathrm{sec}$ to 0.1 sec ranges; $\pm 3 \%, 0.2,0.5$, 1 sec ranges; $\pm 0.2 \%$ linearicy, all bur 2,5 and $10 \mu \mathrm{sec}$ ranges; $\pm 5 \%$ linearity, 2,5 and $10 \mu \mathrm{sec}$ ranges.
Jitter: less than $0.01 \mu_{\mathrm{sec}}$ or $\pm 0.005 \%$ of roral delay.
Delay functions: (a) trigger main sweep; (b) arm main sweep.
Triggering: internal, power line or vertical input signal $(0.5 \mathrm{~cm}$ or more verticai deflection) ; external, 0.5 v peak to peak or more.
Triggerlng point: positive or negative-going voltage: trigger level of externa! syne signal adjusrable -30 to + 30 volts
Sweep selector: (a) Main Sweep; (b) Delaying Sweep; brightened segment of trace indicates time relationship berween delaying sweep display and main sweep display: (c) Main Sweep delayed: (d) Mixed Sweep.

Delayed trigger output: approximately 20 volts positive.
Weight: net $41 / 2 \mathrm{lbs}(2,9 \mathrm{~kg})$; shipping $81 / 2 \mathrm{lbs}(3.8 \mathrm{~kg})$.
Price: hp 166E, 8435 .

166F Auxiliary Plug-in

The hp Model 166 F Auxiliary Plug.in fits into the receptacle for 170 B Oscilloscope time axis plug-in units and provides the connections for normal ascilloscope operation. The 166 F permits full Alexibility of the oscilloscope's internal sweeps with all available vertical amplifier plug-ins.

Specifications, $166 \mathrm{~F}^{*}$

Intensity modulation: internal or external; +20 v pulse will blank crt trace of normal intensity.
Sweep occurrence: normal of single sweep.
Sweep arming: incemal or external.
External arming pulse required: 1 to $200 \mu \mathrm{sec}$, approximately +25 to +25 volts.
Weiglt: ner $1 \mathrm{lb}(0,45 \mathrm{~kg})$; shipping $5 \mathrm{lbs}(2,25 \mathrm{~kg})$.
Prlce: hp 166F. \$35.

SAMPLING OSCILLOSCOPES

Sampling oscilloscopes use a strobescopic approach to reconstruct the input waveform from samples taken during many recurrences of the waveform, thereby circumventing the bandwidth limitations of conventional cathode-ray rubes and amplifiers. This technique is illustrated by the waveforms of Figure 1. In reconstructing a waveform, the sampling pulse "turns on" the sampling circuit for an extremely short interval (approximately 30 psec in the 188A) and the waveform voltage at that instant, shown by the dots on the waveform, is measured. The crt spot is positioned ventically to the corresponding voltage am. plitude.

ramp reaches the voltage level being held by the horizontal deflection circuits, a comparator circuit generates a pulse which initiates the sampling pulse. The horizontal waveform then steps to a higher level.

The "real time" ramp controls the time base of the reconstructed display. The sweep speed control is labeled in osee or $\mu \mathrm{sec}$ per cm and is operated in conventional fashion. Sampling density is determined by the voltage change between steps of the horizontal deflection waveform. Sampling density, therefore, remains constant despite any changes in the sweep speed or sweep magnifier controll, even on the fastest sweeps.

Sampling circuit

The unique sampling circuit, developed by hp, minimizes circuit loading with its high input impedance. During a sampling interval, sampling pulses momentarily bias the diodes of the balanced sampling gate in the forward direction, briefly connesting inpour capacitance to the test point

Figure 1. Waveforms pertinent to operation of sampling ascllioscope Actual photo has 1000 samples which blend into continuous line.

The next sample is taken during a subsequent cycle at a slightly later point on the input waveform. The cat spot moves horizontally a short distance and is repositioned vertically to the new volt. age. In this way, the scope plots the waveform point by point, as many as 1000 samples being used 10 reconstruct the waveform.

A bright trace is obtained regardless of sampling rate, sweep speed or waveform duty cycle, since each crt spot remains "on" during the full interval between samples. Also, small fluctuations on large signals may be examined in detail because of the exceptional dynamic range of the sampling scope. For instance, any part of a 2 v signal may be viewed with $0.4 \mathrm{mv} / \mathrm{cm}$ sensitivity by adjusting vertical position.

The progressive delay in the sampling pulses is derived from the other waveforms shown in Figure 1. Trigger pulses initiate the "real time" ramp, which fundtons during the portion of the input naveform being examined. When the
(the balanced bridge minimizes coupling of the sampling pulses back into the test circuit). The capacitance is charged slightly toward the new voltage level. This charge is then amplified to the original value present in the rest circuit and fed back to the input. In effect, the circuit detects the "error" signal between the previous and the new samples and nulls our the difference. High sensitivity and gain stability are thus achieved.

Dual-trace operation

Separate sampling circuitry' and inputs are provided for each channel of the 187 C and 188 A dual-trace plugins. Sampling operations are carried out in both channels simultaneously. This al. lows simultaneous display of two input waveforms with no displacement in their phase relationship.

Circuit measurement considerations

The high-impedance probes supplied as integral parts of 187 C Dual-Trace

Amplifier enable circuit probing in the usual sense with minimum circuit dis. turbance. When working with fast pulse or high-frequency circuits, however, the inductance of any conductor can have an appreciable effect (about $0.025 \mu \mathrm{~h}$ per inch), and stray capacitance can resonate with this inductance. The 187 C probes have short, low -inductance probe pins to minimize this effect. Compatible accesssories, such as ac blocking capacitors and voltage dividers, are available for extending the usefulness of the probes.

188A

The Model 188A, with its feed-thru samplers, was designed especially for use with 50 ohm coaxial systems at fee. quencies up to 4 gc (to 10 gc at reduced amplitude). The signal is fed into the in. put and reappears at the output conner. tor, where it may be fed back into the system under test. This method allows transmission lines and other circuits to be monitored without termination. The feedthru system is also excellent for time domain reflectometry (see pages 278 , 279), since it does away with refection. producing tees and attenuators.
Another vertical channel option is the hp 186A Switching Time Tester Plug-in, a self-contained test system for evaluat. ing transistor, diode and tunnel diode switching times, and for other pulse re. sponge measurements.

185B SAMPLING OSCILLOSCOPE
 Convenient, versatile scope for picosecond measurements

Advantages:

Plug ins for fast-rise, high Z probing and switching time measuremencs
Bright $10 \times 10 \mathrm{~cm}$ display of picosecond signals
High-impedance samplers to minnmize cuccuit loading Sweep speeds to $40 \mathrm{psec} / \mathrm{cm}$ for extreme time resolution
Positive synchronization to 1000 mc Non-parallax, no-glare, internal-graticule crt
Easy to operate: conventional scope controls with beam finder, $x \cdot y$ recorder output and time and amplitude calibrators

The hp Model 185B Oscilloscope brings low-frequency scope convenience to high-frequency measurements. Employing a sampling technique using special Hewlett-Packard high-speed diodes, the hp 185B offers extremely aide bandwidth while maintaining large, bright, easy-to read displays. Three plugins are available for the Model 185B, giving it added versatility for fast measurements. In addition to the Model 187C. 1000 MC Dual-Trace Amplifier for use where fast rise and minimum loading are important, a Model 186A Switching Time Tester is offered for semiconductor and generai-purpose measuremenrs, and a Model 188A Amplifer for very fast rise measurements.

Direct-reading conventional controls

With the 185B, direct observation of last pulse phe. nomena on a 5 -inch crt is possible without optical magni. fication of use of photography because of the full $10 \mathrm{~cm} \times$ 10 cm display drea, fast sreeep speeds and high brightness independent of duty cycle. Bright traces are obtained for puise rates as low as 50 cps . and the hp internal graticule completely eliminates parallax error and minimizes glare.

A calibrated 10 -position sweep time selector and 7 -position sweep magnifier provide direct reading of time. Because sample density and trace duty cycle are independent of magnifier setring, there is no decrease in brightness and accuracy with magnification. For convenience, a beam finder control quickly locares an off-screen trace and facilitates its positioning to center screen, no matter how far the position or intensity controls may have been misadjusted.

Versatile triggering and scanning

The 185B Oscilloscope will synchronize on signals with repetition rates from 50 cps to 1000 mc . The trigyering range can be extended to 10 gs with the 1103 A Trigeser Countdown. At most sweep speeds the maximum sampliag rate is 100 kc , and on these sweeps the oscilloscope syn. chronizes independently on each input signal from 50 cps

to 100 kc , presenting a steady display even when signals are randomly spaced. Above 100 kc , hold-off and countdown circuitry is used to provide synchronization on a subharmonic of the input signal, thereby allowing synchronization beyond 1000 mc and beyond 10 gc when using the Model 1103A Trigger Countdown.

Additionally, 15 mv trigger sensitiviry is available for triggering on small signals. The sync circuitry is designed so that virtually no signal is fed back to upset the operation of the system under test.

The Model 1100 A Delay Line is available for viewing the leading edge of the signal used to trigger the 185 B . Versatility can be further increased with a combination of the delay line and a resistive divider probe that increases input resistance.

Sync pulse output and recorder output

The fast-rise. 1.5 volt sync pulse conveniently allows external circuit triggering or testing; triggering the test circuit with the sync pulse automatically synchronizes the oscilioscope and enables the signal's leading edge to be viewed without a delay line. To test high-speed circuits, the sync pulse may be free-run at about 100 kc or externally controlled by such instruments as the hp 211A (page 334).
riherent in the sampling technique is the ability to reduce the advance rate for x-axis scan, so that even slow. speed $x-y$ recorders can track. Both x and y recorder outputs are provided, as are three types of scanning: Record (automatic 60 -second x -axis scan), Manual (front-panel control), External (programmed scanning, rear terminals provided).

Specifications

Horizontal

Sweep speeds: 10 ranges, 10 nsec/em to $10 \mu \mathrm{sec} / \mathrm{cm}$, accuraç within $\pm 5 \%$; vernier gives continuous adjustment between ranges and increases fastest unmagnifed sweep speed to 4 neec/cm; accuracy of the basic sweep is maintained at all nosg. nifier settings with the exception of time represented by first 0.25 cm of the unmagnified sweep.

Magnification: 7 calibrated ranges: X1, X2, X5, X10, X20, X 50 and X100; increases maximum calibrated sweep speed to 100 psec/cm; with vernier, maximum sweep speed is further ex. tended to $40 \mathrm{psec} / \mathrm{cm}$; intensity and sample density are not afiected by magnification.
Delay control: three turn variable delay control is available when using magnified sweep: permits any portion of unmagnified trace to be viewed.
Minimum delay (Input trigger to start of trace): less than 120 nsec at $100 \mathrm{nsec} / \mathrm{cm}$ sweep and faster; on slower sweep speeds, minimum delay increases to a maximum of approximately 5 $\mu \mathrm{sec}$ on the $10 \mu \mathrm{sec} / \mathrm{cm}$ range.
Sample density: continuously adiustable from approximately 70 samples per trace to 1000 samples per trace.

Scanning functions

Internal: x-axis driven by internal staircase for normal viewing.
Record: x-axis driven by internal slow ramp; approximately 60 seconds for one trace.
Manual: x -axis driven by manual scan control knob,
External: x -axis driven by external voltage; approx, 12 v for 10 cm deflection, input impedance $>25 \mathrm{~K}$.

```
Trigger functions
    Normal-external trigger
        Amplifer: \pm190 mv to #2 v peak; up to S v ems or 100 v
                peak will not damage input circuit.
            Width: 5 nsec at minimum amplitude.
        Rate: s0 cps to 1 mc on the 10 }\mu\textrm{sec}/\textrm{cm}\mathrm{ smeep speed secting;
                maximum rate increases to 100 mc on the 200 nsec/cm
                and faserer ranges.
        Jitter: less than 30 psec or 0.02% of time represented by the
                unmagnifed sweep, whichover is greater (fast rise signals);
                reduced approx. 5:1 in the "smoothed" response position.
            Input impedance: 50 ohms nominal, do coupled; reflection
                from a step of 0.5 nsec rise time is less than 8%%.
    SensItive-external trigger
        Amplitude: }\pm15\textrm{mv}\mathrm{ to }\pm200\textrm{mv}\mathrm{ peak; up to }9\textrm{v}\mathrm{ rms or 10 v
                peak will not damage input circuit.
            Width: S osec at minimum amplitude.
            Rate: same as Normal.
            Jitter: same as Normal.
            Input impedance: 50 ohms nominal, de coupled.
    High frequency
        Ingut frequency: 50 mc to 100 mc for sweep speeds of 200
                nsec/cm and faster.
```

Sensitivity: 200 mv peak to peak; operates from smaller signals at sone increase in jitter; up to s v rms or 15 v peak will not damage the input circuit.
Jitter: 5% of cycle from 50 to $400 \mathrm{mc} ; 8 \%$ of cycle from 400 to 1000 na.
Internal signal appearing at input connector: less than is mis peak to peak, approximately 10 mc .
Input impedance: 50 ohms nominal, ac coupled; reflection from a step of 0.5 nsec rise time is less than 8%.
Sync probe: the 10200 (ust with any trigger function) increases inpue impedance to more than 750 ohms. ac coupled; it redures sensitivity by approx. 4:1 at 10 me and higher, and by approx. 20:1 at low frequencies.

Sync pulse output

Amplitude: positive; at least 1.5 volts into 50 ohms.
Rise time: less than 2 nsec.
Wioth: approximately $s \mu s e c$.
Recurrence: one pulse per sample.

Calibratar

Voltage: $20 \mathrm{mv}, 100 \mathrm{mv}, 200 \mathrm{mv}$ and $1000 \mathrm{mv}: \pm 3 \%$.
Time: approximately s $\mu \mathrm{sec}$ burst of 50 mc sine wave ; frequency accuracy $\pm 2 \%$.
$X-Y$ recorder output: x - and y-axis signals are available at rear terminals in all positions of the scanning control; in the Manual and Record positions the voleage can be used to make pen recordings with a conventional $x \cdot y$ recorder.
Horlzontal output: approx. 0 v at stant of sweep to +13 v at end of sweep ($12 \mathrm{v} / \mathrm{cm}$) ; source impedance approx. 20.000 ohms.
Vertical output: approx. +i "at top of graticule, -1 "at botton ($0.2 \mathrm{v} / \mathrm{cm}$): source impedance approx. 10.000 ohms.
General
Cathode-ray tube: 3 kr mono-accelerator ont with P 2 phosphor.
Internal graticule (standard): graticule in same planc as phos. phor eliminates parallax; $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ display area; 1 st and 9 cm lines (10% and 90%) along with major axes, have 2 mm subdis isions.
Power: 115 or 230 v $工 10 \%$, 50 to 60 cps , approx. 300 w .
Dimensions: cabinet: $145 / 8$ " high, $19^{" 1}$ wide, $221 / 8^{\prime \prime}$ deep ($372 \times$ $483 \times 562 \mathrm{~mm}$) ; rack mount: $121 / 4^{\prime \prime}$ high. $19^{\prime \prime}$ wide, $21^{\prime \prime}$ deep behind panel ($313 \times 483 \times 234 \mathrm{~mm}$).
Weight: net $75 \mathrm{lbs}(34 \mathrm{~kg}$) ; shipping $99 \mathrm{lbs}(44.5 \mathrm{~kg}$), includes plug-in.
Accessorles furnished: 10200 B Sync Probe.
Price: hp 185日 (cabinet) or 185BR (rack mount). $\$ 2000$ (ver. tical plug-in required).
Modifications: crt phosphors (specify by phosphor number): P2 standard: P7, P11, P31 available, no charge.
Option 05.: E. G. with P2 (specify P7, P11, P31 if required), add $\$ 25$.
Special: Channel A versus channel B; $x-y$ display available by ordering H04-18sB: price $\$ 2189$.

187C DUAL-TRACE AMPLIFIER

Versatile 1 gc probes

The hp Model 187C Dual-Trace Amplifier has a 350 psec rise time (1000 mc), while permitting easy, accurate circuit probing with small high-impedance probes. Wirh the ner: "slenderized" probes, measurements may be made in crowded circuits. Convenience is further enhanced with the attachment of the hp 10216A Isolator or the hp 10214A 10:1 Divider to provide an extra long small-diameter probe. An input imped. ance of 100 K shunted by 2 picolarads insures maximum versatilicy for circuit probing or bridging transmission lines.

A maximum calibrated sensitivity of $1 \mathrm{mv} / \mathrm{em}$ with automatic smoothing allow's measurement of very 5 mall signals at a low noise level. A wide dynamic range permits viewing suh.millivolt disturbances on 2 volt pulses. Where less sensilivity is desired. the hp 10214A 10:1 Divider extends the maximum signal level to $2 \mathrm{v} / \mathrm{cm}$ and increases input impedance to 1 megohm.

The ride variety of accessories furnished with the hp 187 C increases versatility, accuracy and convenience. The 10216A Isoiator prevents de shift of the trace with test circuit impedance
changes; blocking capacitors eliminate unwanted dc; dividers attenuate large inplt signals: BNC and GR adapters make direct connection to cables possible: and the Microdot adapter permits easy connection to a female 50 -ohm Microdot miniature coaxial connecror. In addition, the hp L0221A 50-ohm Tee allows bridging of a 50 -ohm transmission line arith minimum disturbance to the signal being fed through. If termination is desired, the 50 -ohm termination may be used.
Simultaneous sampling of the two channels permits accurate time comparisons hetween events viexred on Channe! A and events viewed on Channel B. The delay difference hetween channels is less than 100 psec . The trace is time-shared in such a way that there is no reduction in the rate of information presented and a minimum loss of brightness when shifting from single- to dual-channel operation. The scope also can be used to view differential signals, facilitating analysis of signals containing common mode elements.

Specifications*

Modes of operatlon

1. Channel A alone.
2. Channel B alone.
3. Channel A and Channel B.
4. Channel A and inverted Channel B.
5. Channel A minus Channel B (differential).

Each channel

Rise time: <350 psec using a 10221A so.ohm Tee Connector in a 50 -ohm system (bandruidth, ds to $>1 \mathrm{gc}$); overshoot or undershoor: $<5 \%$.
Sensitivity: calibrated ranges from $1 \mathrm{mv} / \mathrm{cm}$ to $200 \mathrm{mv} / \mathrm{cm}$ in $1,2,3$ sequence; automatic smoothing in the 1 and 2 $\mathrm{mv} / \mathrm{cm}$ positions to provide noise suppression; vernier con. trol provides continuous adjustment between ranges and increases maximum sensitivity to $0.4 \mathrm{mv} / \mathrm{cm}$.
Isolation between channeis: greater than 40 db .
Attenuator accuracy: $\pm 3 \%$.
Input impadance: 100 K shunted by 2 pf , nominal.
Noise: (3 X rms, or observed signal excluding 10% of random dots) $<1 \mathrm{mv}, 5 \mathrm{mv} / \mathrm{cm}$ to $200 \mathrm{mv} / \mathrm{cm}$; on the zuto. marically smoothed ranges, <1 niv at $2 \mathrm{mv} / \mathrm{cm}$ and 0.8 mv
at $1 \mathrm{mv} / \mathrm{cm}$: smoothed position of smoothing swiech re. duces noise or jitter approx. 2:1; vernier control provides continuous adjustment berween the normal and smoorhed modes of operation.
Drift: typically less than 3 mv/hr after warm-up.
Dynamic range: ± 2 volts.
Maximum input voitage: ± 9 volts.
Accessorles furnished

Quanity	Ap Madal	Derciplian
2	10214A	10:] divider
2	10216A	ísolator
2	10217A	
2	10218A	BNC adader
1	10215A	QR a ${ }^{\text {asplar }}$
2	10220A	Mictodot adspler
1	102214	50-0hat Tee
1	6, 874.W53	50.0hm load (hp pari ${ }^{\text {a }}$ (0950-0000)
6	10213.62102	ground clips
6	5020.0457	probe lids
1		accessory box

Weight: net 7 lbs (3 kg); shipping $14 \mathrm{lbs}(6,5 \mathrm{~kg})$.
Price: hp 187C. \$1250.
*Installed in 185B

188A DUAL-TRACE AMPLIFIER

Observe 90 picosecond rise times without terminating test circuit

The hp Model 188A Dual-Trace Vertical Amplifier, a plug-in for the 185B Oscilloscope, provides 90 psec rise time, $1 \mathrm{mv} / \mathrm{cm}$ calibrated sensitivity and a unique "bridging" sampler that allows analysis of extremely high-frequency, low-level signals without termination. A unique, advanced design, two-diode sampler permits "state-of-the-art" measurements. At 100% sampling efficiency (amplitude reaches final value in one sample), the rise time is specified at less than 90 psec . By adjusting the front-panel response control for lower sampling efficiencies, rise times as fast as 60 psec are possible, extending the bandwidth to 5.8 gc . Signals up to 10 gc may be observed by using the Model 1103 A Trig. ger Countdown.

Signals such as circuit-driving pulses may be accurately measured with the 188A without disturbing the circuit under test. A high-impedance sampler bridges a 50 -ohm line connecting the input and output connectors of each channel, thus allowing the signals to pass through the 188 A completely unattenuated. When a 50 ohm teminated input is needed, a 50 -ohm load is simply connected to the output connector. Thus, the 188A is ideal for measuring the input and output of switching circuits or monitoring several waveforms in a $50-0 h m$ system.

The 188 A has sensitivities to $1 \mathrm{mv} / \mathrm{cm}$ for analysis of low level signals. The sensitivity may be further extended to $0.4 \mathrm{mv} / \mathrm{cm}$ with a vemier that also provides continuous control between attenuation ranges. In the lower three ranges, $5 \mathrm{mv} / \mathrm{cm}$ to $1 \mathrm{mv} / \mathrm{cm}$, the display is automatically "smoothed" to reduce the noise level. On the "smoothed" ranges, random changes in signal amplitude are attenuated, reducing the noise level without bandwidth degradation.

Time delay measurements

Accurate time delay measurements may be made at the plug-in's highest frequency limit, since the time difference between channels is less than 20 psec. Furthermore, with good time coincidence between channels, the use of the plug-in's differential mode is greatly enhanced for the

[^30]
analysis of signals containing high frequency, common mode elements.

For convenient circuit probing and as a means of increasing the 50 -ohm input impedance of the Model 188A, resistive divider probes with signal divisions of 5 and 10 are available. Both the hp 10201A (S:1) and the hp 10201 B (10:1) have a low shunt capacitance of only 0.4 pf to reduce loading at high frequency. Price, $\$ 40$ each.

Specifications

(Installed in the 185 B)
Mode of operation: (1) Channel A alone, (2) Channel B alone, (3) Channel A and Channel B, (4) Channel A and (-) Channel $B,(5)$ Channel A minus Channel B (differential).

Each channel

Characteristic impedance of input: 50 ohms; a 50 -ohm load may be connected to the output connector to terminate the line.
Rise time: less than 90 psec .
Overshoot: less than 5%.
Sensitivity: 8 calibrated ranges, $1 \mathrm{mv} / \mathrm{cm}$ to $200 \mathrm{mv} / \mathrm{cm}$ in a $1,2,5$ sequence; vernier gives continuous attenuation between ranges and increases the sensitivity to $0.4 \mathrm{mv} / \mathrm{cm}$.
Attenuator accuracy: $\pm 3 \%$.
Dynamic range: ± 1 volt.
Noise: (3X mm , or observed signal excluding 10% of random dots) less than $3 \mathrm{mv}, 10 \mathrm{mv} / \mathrm{cm}$ to $200 \mathrm{mv} /$ cm ; on the automatically smoothed ranges: less than 2 mv at $5 \mathrm{mv} / \mathrm{cm}, 1 \mathrm{mv}$ at $2 \mathrm{mv} / \mathrm{cm}$, and 0.8 mv at $1 \mathrm{mv} / \mathrm{cm}$; smoothed position of response control reduces noise by a factor of approximately two.
General
Accessories proulded: two 50 -ohm terminations.
Weight: net $7 \mathrm{lbs}(3 \mathrm{~kg}$); shipping $14 \mathrm{lbs}(6,5 \mathrm{~kg})$.
Price: hp 188A, \$1500.

186A SWITCHING TIME TESTER

Complete solid-state device tester

The hp Model 186A Switching Time Tester provides easy, accurate measurements of transistor, diode and tunnel diode switching chacacteristics, as well as the pulse response of circuit networks.

For maximum Aexibility, the plug-in contains: a fast-rise pulse generator, a wideband vertical amplifier for the 185B Oscilloscope, and two bias supplies for biasing the component or circuit under test. Hence, with one plug-in, measurements can be made under various bias and driving pulse
conditions. No additional instrumentation is necessary.
Transistor rise and fall times, tunnel diode switching times, and forward switching and reverse recovery times of diodes are but a few of the parameters that can be closely examined on the large $10 \times 10 \mathrm{~cm}$ crt display.

Test set-ups may be changed in seconds by attaching various test boards to the test board adapter. Furthermore, the circuit components also can be easily changed for special applications.

Four rise time curves of a PNP 2N1495 transistor driven into saturation with driving pulse amplitudes of $1,2,5$ and 10 v . Collector emitter voltage, 7 v , Driving pulse width, 0.2 zesec . Scope sensitivity, $10 \mathrm{ma} / \mathrm{cm}$; sweep speed, $20 \mathrm{nsec} / \mathrm{cm}$.

Specifications (Installed in the 185A,B)

Pulse generator

Rise time: less than 1 nsec.
Fall time: less than 3 nsec for $0.2 \mu \mathrm{sec}$ pulse; less than 4 nsec for $1 \mu \mathrm{sec}$ pulse.
Ovarshoot and ringing: less than 10% peak to peak.
WIdth: $0.2 \mu \mathrm{sec}$ or $1 \mu \mathrm{sec}$, switch selected (set at factory; each is adjustable from approximately $0.2 \mu \mathrm{sec}$ to 1 $\mu \mathrm{sec}$ internally).
Amplitude: 0.1 volt to 20 volts peak into 50 ohms, in a 1, 2, 5 sequence, either polarity.
Source output impedance: 50 ohms, except on 20 v range.
Repettion rate: approximately 5 kc to 50 kc , continuously variable.
Trigger out: triggers the $185 \mathrm{~A}, \mathrm{~B}$ approximately 120 nsec in advance of the pulse ourput.

Vertlcal amplifier channel

Senslitilty: $10 \mathrm{mv} / \mathrm{om}$ to $10 \mathrm{v} / \mathrm{cm}$, in a $1,2,5$ sequence; vernier provides continuous adjustment berween steps and increases maximum sensitivity to $4 \mathrm{mv} / \mathrm{cm}$.
Rlse time: less than 0.5 nsec .
Overshoot: less than 5%.

Noise: less than 3 mv .
input impedance: 50 ohms.

Bias supplies

Supply No. 1 (collector): 0 to $\pm 30 \mathrm{v}$; 50 ma max. average current (1 amp peak with 5% duty cycle).
Supply No. 2 (base): 0 to ± 10 volts, referable either to ground or to the emitter-collector supply voitage; 10 ma maximum average curcent (0.2 amp peak with 5% duty cycle).
Accessories furmished: 186-76A Test Board Adapter; 186 -
65 D Transistor Test Board; 186.65E Diode Test Board; 186-65F Tunnel Diode Test Board; 186A-65G-1 Pulse Test Board (for observing the 186A output pulse); 10225A Universal Adapter for circuit tests; 10226A Blank Board for building special test circuits; 10121A Sync Cable, 8 inch (20 cm) male BNC-to-male-BNC, 50 ohm; accessory case.
Accessory avallable: 10227A Extender Cable for remote operation of adaprer and test board, $\$ 50$.
Welght: net $7 \mathrm{lbs}(3 \mathrm{~kg}$); shipping $13 \mathrm{lbs}(6 \mathrm{~kg})$.
Price: hp 186A, \$2700.

SAMPLING OSCILLOSCOPE ACCESSORIES

1100A Delay Line

The bp Model 1100A Delay Line enables signals to be viewed whenever suitable triggers are not separately available by providing a delay between the trigger input and the vertical amplifier input. The 1858 Oscilloscope may be set on top of the 1100 A. Price: hp $1100 \mathrm{~A}, \$ 300$.

1102B Accessory Kit

The Model 1102B Accessory Kit permits convenient circuir probing and reduced circuit loading with oscilloscopes that have 50 -ohm input impedances. Thus, it allows probing with the 187 C where the Model 1100A 50-ohm Delay Line is needed for internal triggering. The kit also is ideal for 188A and 186A where a high input impedance is needed to prevent loading of the test circuit.

Duantity	Model	Desortpition
1	10201A	5:1 resistive divider
1	10201 B	10:1 resistive divider
1	102010	50:1 resistive divider
1	10201 D	100:1 resistive divider
1	10208A	0.001μ l blocking capacitor
I	10209A	0.1μ f blocking capacitor
1	10122A	cable, coaxial, Tyoe N-io-BNC female
1	GR Type 874	Type N female-to-GR adapter
2	5060.0415	ground tlip
1		accessory box

Price: hp 1102E, \$300.

1103A Trigger Countdown

The hp Model 1103A Trigger Countdown permits stable triggering to 10 gc by dividing down the frequency of triggering signals to approximately 30 mc . This permits the triggering circuits of timing systems to lock in solidly with high-frequency signals in the gigacycle range. Price: hp 1103A, \$265.

Specifications, 1100A
Rise time: approximately 0.25 nsec.
Delay: 120 nsec.
Overshoot: $<2 \%$ overshoot contributed to 0.5 nsec rise time signal.
lnput impedance: 50 ohms.
Connectors: Type N female input, Type N male output.
Accessories furnished: 10205A Sync Take-off, Type N female input, Type N male output, BNC female for sync output; 10121A Sync Cable, connects 10205A to the 185; 10212A or 10222A Delay Line Load, Type N female input, mating connector for 187 B or 187 C probe.
Dlmensions: cabinet: $191 / 8^{\prime \prime}$ wide, $4^{\prime \prime}$ high, $223 / 4^{\prime \prime}$ deep ($486 \times 102 \times 578 \mathrm{~mm}$); rack mount: $19^{\prime \prime}$ wide, $31 / 2^{\prime \prime}$ high, $203 / 4^{\prime \prime}$ deep behind panel ($483 \times 89 \times 528 \mathrm{~mm}$).

Specifications, 1103A
Input
Frequency range: 500 mc to 10 gc .
Sensitivity: (minimum input required for specified jitter) 15 mv from 500 mc to s gc , increasing above 5 gc to 250 mv at 10 gc .
Time flter: (at specified sensitivity) time jitter of 1103A/ 185B combination is 30 psec or less for inputs above $1 \mathrm{gc}, 60 \mathrm{psec}$ or less for inpurs below 1 gc .
Maximum input voitage: 2 volts peak (4 volts $\mathrm{p}-\mathrm{p}$).
Inpust Impedance: 50 ohms; reflection from 100 psec step less than 7.5%.
Signal appearing at input connector: alternate positive and negative pulses of $<100 \mathrm{mv}$ amplitude and <1 nsec duration (input terminated in 50 ohms).
Output
Center Prequency: typically 25 to 35 mc .
Varlation: typically $\pm 2 \mathrm{mc}$ (depends upon setting of stability control).
Amplitude: typically 90 mv .
General
Power: 115 or $230 \mathrm{v} \pm 10 \%, 50$ to $1000 \mathrm{cps}, 2.5 \mathrm{w}$.
Dimensions: $51 / 8^{\prime \prime}$ wide, $11 / 2^{\prime \prime}$ high, $63 / 4^{\prime \prime}$ deep (130 x $38 \times 172 \mathrm{~mm})$.
Weight: net $2 \mathrm{lbs}(0,9 \mathrm{~kg})$; shipping 3 lbs ($1,4 \mathrm{~kg}$).
Price: hp $1103 \mathrm{~A}, \$ 265$.

OSCILLOSCOPE PHOTOGRAPHY

Oscilloscope cameras produce perma. nent records of oscilloscope displays for use in engineering reports or in other situations where pictures of waveforms facilitate discussion and analysis. Furthermore, oscilloscope cameras can photograph single transients and other phenomena which are too short-lived for the eye to see
Polaroid (i) Land Film is widely used in scope photography, primarily because the finished print may be examined shortly after the exposure is made. This "quick check" makes it easy to find the optimum camera and oscilloscope control settings, thus assuring satisfactory photos in short order.

Oscilloscope cameras

Oscilloscope cameras are similar to conventional cameras but have additional refinements for facilitating scope photography. The camera is within a light-tight enclosure which clamps or bolts over the face of the carhode-ray tube, preventing external light from "washing out" the cat trace. Also, the optical system is in line with the axis of the crt (no mirrors means no inver. sions). A viewing port wide enough for "two-eye" viewing permits observation of the displayed waveform. The port has a face-fitting flexible hood for prevent. ing light leakage around the eyes.

Special lens

The lenses used in Hewlett-Packard cameras are designed especially for oscilloscope use. They eliminate the barrelling and pin-cushioning effects so often encountered in similat close-up situations, insuring accurate reproduction of oscilloscope craces. Accurate scale measurements of phoros made with these cameras are possible, especially when the cameras are used in conjunction with Hewlett-Packard's internal graticule cathode-ray tubes. (The internal graticule tube eliminates any inaccuracies commonly caused by parallax between the trace and an external graticule.)

Hewlert packard cameras can be moved vertically through 11 detented positions, allowing several traces to be photographed on one film without disturbing the position of the crt trace.

Graticule illumination

A new technique which enhances the quality of scope photos is available with Hewlett-Packard cameras. A low-power ultraviolet (UV) light is used for expos. ing the black graticule in Hewlett-Pack.
ard internal graticule crt's. The UV light causes the crt phosphor to glow uniformly over its entire surface, this glow appearing as an intermediate gray in the finished picture. The gray background sharply contrasts the white trace with the black graticule lines, making oscillograms taken with this camera easier to interpret. Figure 1 shows the improvement in photographic quality obtained with the ultravioiet light.
The ultravioler light also obtains a two-fold increase in film speed by generating an effect equivalent to "prefogging" of the film at the same time that the picture is taken. Ordinarily, a single. faint trace may not expose the film sufficiently to bring the density level above the brightness threshold level (the "toe" of the density/exposure curve as shown in Figure 2.) The gray back-

Figure d. "Harf-and-half" photo made with special eathoderay tube compares photosraphic qualltes of conventional externa graticule (left and UV-IIghted internal graticule.
ground provided by the UV light, however. moves the trace's "zero" exposure level into the gray region. where a slight increase in exposure, caused by the trace, becomes visible.

Making oscilloscope photos

Many variables must be accounted for in making oscilloscope photos. Initial artempts involve cut-and-try procedures, frst-time procedures usually going as follows:
The cat trace intensity is adjusted so that fast transients in the waveform almost disappear (trace conerast actualiy photographs brighter than it appears to the eye); crt foous is adjusted for the finest trace. The UV light is adjusted for a visible phosphor glow.
For steady waveforms, a relatively long exposure and a small iris opening are recommended, e.g., $1 / 2$ second at $f / 11$. As in other types of photography,
a small iris opening (large f-number) is preferred for best overall photographic quality.

If the waveform is unstable or noisy, exposure time is reduced to capture fewer trace repectitions, and the f number is decreased accordingly.

Figure 2. Tyoical density/exposure curve of photographic film shows how "pre-fogging' (presensitizing) moves exposure leval into resion of maximum sensitivity.

Single-trace photography

Single-trace photography of fast tran. sients is possible with the sensitive film now available. Single events which are too fast and faint for the eye to notice can be captured on Polaroid Type 107 Film (ASA 3000).
In single-trace photography, the oscilloscope initially should be set by using a pulse generator operating at a low repe. tition rate (30 cps or less) as a test sig. nal. The low repetition rate avoids the increase in trace brightness caused by phosphor persistence when traces overlap and permits optimum cri focus adjustment. During this initial adjustment, the sweep speed should be set on the same speed to be used in the final picture. To make the photograph of the desired transient. the camera shutter is held open manually on Bulb or Time while the oscilloscope sweep is triggered once by the signal being photographed.

To include graticule information in a single-sweep photo, the graticule, whether edge-lighred or UV-lighted, should be captured during a separate time exposure with no trace. The trace then is photographed during a second exposure with the graticule light turned off.

One further precaution regarding external graticules concerns parallax between the trace and graticule: allowance for parallax should be made when adjusting trace height and position. Pazallax is not present, though, if an internal graticule crt is being used.

[^31]
196A,B AND 197A OSCILLOSCOPE CAMERAS
 Permanent records of scope traces

Advantages, 197A:

New hp electronic shutter: accurate speeds from $1 / 60 \mathrm{sec}$ to 4 sec , remote operation, sync contacts to trigger external equipment, all solid-state circuitry
New $f / 1.9$ high light transmission Jens
Color-coded controls, outside camera for easy adjustment
Interchangeable, rotatable back
Continuous, easy adjustment of foous and reduction ratio

197A Camera

The 197A Oscilloscope Camera provides an accurate, convenient way of recording oscilloscope displays. It is a precision instrument, meant for long, hard use.

The 197A employs a new electronic shutter which provides accurate exposure times from $1 / 60$ to 4 sec . The shutter may be tripped electrically from a remote source, and an X sync output provides a contact closure when the shutter is opened, aliowing synchronizing of other equipment with the camera. Circuitry is all solid state.
The new $f / 1.9$ Jens, designed for Hewlett-Packard by Wollensak, is mounted in a direct line with the film and transmits a maximum amount of light for photography of dim traces.

An ultra-violet light is included in the 197A for illuminating the internal graticule used on hp oscilloscopes. The "black" light, adjustable in intensity to suit conditions, excites the phosphor on the tube face and causes it to glow gently, clearly illuminating the thin black graticule lines by contrast. Trace intensity is not degraded by this induced
fuorescence, and the resulting photographs are actually easier to read. since the black graticule lines also contrast clearly with the trace, and their exact crossings can be ac. curately located. This black light has the additional advantage of presersitizing the film at the same time that the photograph is taken. The uniform glow of the crt face lowers the apparent threshold sensitivity of the film, enabling it to record dimmer traces and making possible clearer, sharper photographs of both repetitive and single sweep phenomena.

All 197A controls are located outside the camera. Shutter speed. f-stop, and UV light brightness are color coded to provide an optimum starting point for the inexperienced photographer. The lightareight 197A is quickly and easily mounted on any oscilloscope, and swings away from the crt face when not needed. The face-fitting, flexible hood has a low viewing angle for easier lining up of the trace with an external graticule. The hood may be removed and replaced with a lat panel, allowing a series of cameras to be stacked on oscilloscopes with heights as low as 7 inches.

The 197A back may be rotated from the normal horizontal position to a vertical position, allowing two smaller pictures to be taken on one photograph. The back also can be moved through 11 detented positions for multiple exposures, or it can be removed and replaced with another camera back such as the $4 \times 9^{\prime \prime}$ Graflok back. The entire film area of a new back may be utilized through the use of the Model 197A's easily adjustable continuous reduction ratio feature. The camera may then be quickly refocused with a simple knob adjusument, using the furmished split image focusing plate stored in the camera.

available MID. 1965

Specifications, 197A

Object-to-image ratio: continuously adjustable from $1: 1$ to 1:0.7.
Lens: $75 \mathrm{~mm}, f / 1.9$ high-transmission lens, manufactured exclusively for hp by Wollensak; $f / 1.4$ lens available.
Shutter, electronically operated and timed shutter, with all solid-state circuitry; shutter speeds are $1 / 60,1 / 30,1 / 15$, $1 / 8,1 / 4,1 / 2,1,2,4 \mathrm{sec}$, Time, Bulb; shutter has X sync contact closure ourpul and input jack for remote operation.
Camera back: Polaroid Land Camera for the new pack film standard; Graflok $4 \times 5^{\prime \prime}$ back available; backs may be interchanged without refocusing and rotated in 90 degree increments.
Mounting: quick lift on-off mounting with positive lock; swing away to left.
Viewing: low-angle direct-viewing flexible face mask; hood may be removed and replaced with panel to allow stacking on $7^{\prime \prime}$ high scopes.

Multiple exposure: back moves vertically through 11 detented positions at $1 / 2 \mathrm{~cm}$ per detent at $1: 0.9$.
Focus: adjustable focusing with lock; split image focusing plate provided for Polaroid Land Camera Back.
Dimenslons: $14^{\prime \prime}$ long, $101 / 2^{\prime \prime}$ high, $75 / 8^{\prime \prime}$ wide (356 x $267 \times 194 \mathrm{~mm}$) with hood; $12^{\prime \prime}$ long, $61 / 2^{\prime \prime}$ high, $75 / 8^{\prime \prime}$ wide ($305 \times 165 \times 194 \mathrm{~mm}$) without hood.
Weight. net $10 \mathrm{lbs}(4,5 \mathrm{~kg})$; shipping $19 \mathrm{lbs}(8,6 \mathrm{~kg})$.
Power: $115 \mathrm{v} \pm 10 \%, 60 \mathrm{cps}, 6 \mathrm{w}$.
Accessories furnished: split image focusing plate.
Accessories avallable (prices on request): 10352 A Graflok ${ }^{\text {B }}$ 4×5 inch back; 10353A Polaroid Land Pack Film Back; 10354A Viewing Hood Replacement Plate; 10355A Tektronix or Dumont $5^{\prime \prime}$ bezel adapter; 10356A Tektronix 560 series adapter; 10357 A Tektronix 647 series adapter; 10358A Carrying Case; 10359A Viewing Lens.
Price: on request.
"Grafock" (arb by Grafex, inc.

Flgure 1. Multiple-exposure photographs are easily made with the 196A.日 and 197A Cameras.

Dimersions: $10^{\prime \prime}$ wide, $131 / 2^{\prime \prime}$ long, $101 / 4^{\prime \prime}$ high, (254 x $343 \times 262 \mathrm{~mm}$).
Weight: net $9 \mathrm{lbs}(4,1 \mathrm{~kg})$; shipping $18 \mathrm{lbs}(8,1 \mathrm{~kg}), 32$ lbs ($14,9 \mathrm{~kg}$) with carrying case.
Power: (196B) $115 \mathrm{v} \pm 10 \%, 60 \mathrm{cps}, 10 \mathrm{w}$.
Accessories available: 10351A Carrying Case, $\$ 40$; 10350A Tekronix Adaprer, $\$ 4.50$.
Price: hp 196B, \$445; hp 196A (identical with 196B, but without black light source), \$395.
On special order: $1: 1$ object to image ratio, add $\$ 25$; and order C01-196A for 196A, C06-196B for 196B; solenoidoperated shutrer for remote operation (actuated by external contact closure). 115 v ac external power required. add $\$ 125$ and order H05-196A for 196A, H05-196B for 196 B ; solenoid operation same as above, except 28 v de external power required, add $\$ 65$ and order H01-196A for 196A, H06-196B for 196B.
Conversion kits: 196A-95C, converts "A" to "B", price: $\$ 50$; 196A-95D, same as above but with Option 12, price: $\$ 65$.
Option 12.: 196B for 115 or $230 \mathrm{v} \pm 10 \% \mathrm{c}, 50$ to 60 cps operation, add $\$ 15$.

1110A AC CURRENT PROBE, 1111 A AMPLIFIER; 1116A, 1117 B TESTMOBILES
 Accessories for increasing oscilloscope versatility

With the hp 1110A and 1111A Current Probe and Amplifier you can observe fast-rise, ac current waveforms on any wideband oscilloscope. The 1110 A Probe may be used by itself, giving a sensitivity of $1 \mathrm{mv} / \mathrm{ma}$. The 1111 A Amplifier increases the 1110A Probe's sensitivity and extends low frequency response. When used with a $50 \mathrm{mv} / \mathrm{cm}$ sensitivity oscilloscope, the 1111A's attenuator indicates directly in milliamperes per centimeter on the crt, thus eliminating cumbersome conversion factors.

The 1116A Testmobile offers the advantage of convenient oscilloscope viewing. It readily adjusts to operator height, makes it easy to move heavy inscruments and features toeoperated wheel locks. The 1117 B offers the capability of mobilizing a complete set of test equipment. It features standard rack mounting, front and rear, and accepts convenient accessory drawers.

Specifications, 1110A
Sensitivity: $1 \mathrm{mv} / \mathrm{ma}$.
Accuracy: $\pm 3 \%$.
Bandwidth: lower limit: 1700 cps (850 cps with 10100 B 100. ohm termination): upper limit: inversely proportional to capacitance of load: 4 pi load, $45 \mathrm{mc}, 7$ nsec rise time (e.g. 185B/187C Sampling Oscilloscope): 30 pf load: $35 \mathrm{mc}, 9$ nsec rise time (e.g., 175A/1750B Oscilloscope).
Maximum de current: 0.5 ampere.
Maximum ac current: 15 amperes p-p above 4 kc ; decreasing below 4 kc at the zate of $3.8 \mathrm{amps} / \mathrm{kc}$ ($30 \mathrm{amps} \mathrm{p}-\mathrm{p}$ max. with $10100 \mathrm{~B} 100 \cdot$ ohm termination).
Insertion impedance: approximately 0.01 ohm, shunted by 1 $\mu \mathrm{h}$; capacity to ground is less than 3 pf .
Accessory available: $10100 \mathrm{~B} 100 \cdot \mathrm{ohm}$ feed-through rermination; decreases sensitivity to $0.5 \mathrm{mv} / \mathrm{ma}$, lower cutoff to 850 cps ; increases maximum ac current to $30 \mathrm{amps} \mathrm{P}-\mathrm{P}$ above 4 kc; price $\$ 17.50$.
1110A with 1111A
Sensitivity: $1 \mathrm{ma} / \mathrm{cm}$ to $50 \mathrm{ma} / \mathrm{cm}$ in X_{1}, and $100 \mathrm{ma} / \mathrm{cm}$ to $5 \mathrm{amps} / \mathrm{cm}$ in X 100 ($1,2,5$ sequence) when used with an oscilloscope at $50 \mathrm{mv} / \mathrm{cm}$ sensitivity.

Accuracy: $\pm 3 \%$ on $50 \mathrm{ma} / \mathrm{cm}$ sensitivity and below; $\pm 4 \%$ on $100 \mathrm{ma} / \mathrm{cm}$ sensitivity and above. (when 1110 A and 1111A are calibrated together).
Bandwidth: 50 cps to 20 mc (Is nsec rise time).
Noise: less than $100 \mu \mathrm{~m}$ p-p, referred to input.
Maximum ac current: 50 a mps p-p above 700 cps , decreasing belor : 00 cps at the rate of $1.4 \mathrm{amps} / 20 \mathrm{cps}$
Output impedance: 50 ohms.

General

Dimensions: amplifier: $11 / 2^{\prime \prime}$ high. $51 / s^{\prime \prime}$ wide. $6^{\prime \prime}$ deep (3.8 x $13 \times 15 \mathrm{~cm})$; probe: aperture, $5 / 32^{\prime \prime}(0.4 \mathrm{~cm})$ diameter; s ft. cable (152 cm).
Weight approximately $2 \mathrm{lbs}(0,9 \mathrm{~kg})$
Power: 115 or 230 volts $\pm 10 \%$, 50 to 1000 cps , approxi. mately 1.5 watts
Price: hp 1110A, $\$ 100$; hp 1111A, $\$ 160$

Specifications, 1116A

(Use with hp Models: 160B, 170A, 185A.B, 524C,D)
Dimensions: approximately $40^{\prime \prime}$ high, $24^{\prime \prime}$ deep, $20^{\prime \prime}$ wide $(102 \times 61 \times 51 \mathrm{~cm})$; botrom basket $163 / 4$ " wide, $231 / 4^{\prime \prime}$ deep ($425 \times 591 \mathrm{~mm}$).
Weight: net $39 \mathrm{lbs}(17,5 \mathrm{~kg}$); shipping $+5 \mathrm{lbs}(25 \mathrm{~kg})$.
Price: hp 1116A, $\$ 85$.

Specifications, 1117B

Dimenslons: $39^{\prime \prime}$ high. $20.7 / 32^{\prime \prime}$ wide, $241 / 3^{\prime \prime}$ deep ($991 \times 51+\mathrm{x}$ 613 cm).
Weight: net $82 \mathrm{lbs}(37 \mathrm{~kg})$: shipping $120 \mathrm{lbs}(54 \mathrm{~kg})$.
instrument mounting hardware provided: B Scren's ($10.24 x$
$3 / 4$), hp stock No. 2680.0029; 8 Tinnerman Nuts, hp stock No. 05 10.0737.
Price: (withour drawers) hp 1117A, \$155.
10475A 3-inch Drawer
Weight: net $10 \mathrm{lbs}(4.5 \mathrm{~kg})$: shipping $13 \mathrm{lbs}(5,9 \mathrm{~kg})$.
Price: hp 10475A, 530.
10476A 8-inch Drawer
Weight: net $14 \mathrm{lbs}(6.3 \mathrm{~kg})$; shipping $17 \mathrm{lbs}(7,7 \mathrm{~kg})$.
Price: hp 10476A, $\$ 35$.

OSCILLOSCOPE ACCESSORIES

For increased measurement versatility, accuracy

Probe specifications

hp Prole	Attor.	Banduldth (0.5 db)		Copacitince	$\begin{aligned} & \text { Dfy. } \\ & \text { mocu- } \\ & \text { Pesy } \end{aligned}$	$\begin{aligned} & \text { Penk } \\ & \text { Sapt } \\ & \text { volia } \end{aligned}$	Agprax. ovimell 10ngh th (0n)	
10000A or C*	10:1	dc to 30 mc	10	10 of	2%	600	5 (152)	5 nsac
1000r8 or 0^{*}	10:1	dc to 30 mc	10	20 pf	2\%	600	10 (305)	5 nsinc
J0002A or C*	50:1	de to 30 mb	9	2.5 Df	3\%	1000	5 (152)	5 nsec
100028 or D*	$50: 1$	de to 30 mc	9	5 Df	3\%	1000	10(305)	5 nsec
10003A or B^{*}	10:1	dc to 40 mc	10	10 pf	2\%	6000	4(122)	3 nsec

*Thesa probes have black Identification boots; the oiherg have red baots.
Cable specifications

Lp Model	Length	Desseription	Prices
10120A	3. $(91 \mathrm{~cm})$	mate BNC-lo-male BNC	\$10
10121A	$8^{\prime \prime}(203 \mathrm{~mm})$	male BNC.ro-male BNC	\$10
10122A	$3^{\prime}(91 \mathrm{~mm})$	male BNC-10-male Type N	\$10
10123A	$6^{\prime}(183 \mathrm{~cm})$	male BNC-to-male BNC	\$11
10124A	$9^{\prime}(274 \mathrm{~cm})$	male BNC-to-male BNC	\$12
10126A	$18^{\prime}(549 \mathrm{~cm})$	male BNC. 10 -male BNC	\$13
10127A	$1^{\prime}(305 \mathrm{~mm})$	GR-to-male BNC	\$13
10128A	$1^{\prime}(305 \mathrm{~mm})$	GR-to-female 8NC	$\$ 13$

Voltage divider probes

The bigh impedance input of these probes reduces loading of oscilloscopes on the circuit under test, and the probes provide attenuation for large signals. The probes may be quickly and accurately compensated for optimum step response; price, $\$ 30$ each.

Voltage divider probe tips

Provide maximum versatility when used with the voltage divider probe. The kit contains a pincer jaw, banana tip, pin tip, hook tip and spring tip. Price: hp 10035 A Probe Tip Kit, \$5; 10010C BNC Tip, \$10.

Straight-through voltage probe

The hp 10025A is a thin, fexible probe with small, pushbutton pincer jaws which provides a straight-through connection to voltmeters, ohmmeters and oscilloscopes. Maximum input voltage is 600 voits peak, and the shunt capacity is approximately 150 picofarads. The cable is terminated in a shielded dual banana plag. Price: hp 10025 A, $\$ 9$.

Adapters

The Model 10110A Adapter (BNC male-to-dual-banana post) quickly converts standard BNC input terminals on oscilloscopes to dual banana posts. Price: hp 10110A, $\$ 5$.

The hp Model 10111A Adapter (shielded banana-post-to-female-BNC) converts banana post inputs on oscilloscopes to shielded BNC inputs for low-level signal work. This adapter may be used in pairs for balanced input characteristics. Price: hp $10111 \mathrm{~A}, \$ 7$.

Viewing hoods

The hp 10175 A polarized hood increases contrast and reduces glare for viewing dim traces under all ambient light conditions; price, $\$ 10$.

The hp 10175 B hood with removable vinyl face mask is ideal for viewing fast transients; price, $\$ 15$.

Terminations

The hp Model 10100A is a 50 -ohm (± 1 ohm) feedthrough termination which can be used to terminate 50 ohm systems at scope inputs. Price: hp 10100A, \$15.

The hp Model 10100 B is a 100 -ohm (± 2 ohms) feedthrough termination which can be used to increase the maximum ac current capability of the 1110 A current probe. Price: hp $10100 \mathrm{~B}, \$ 17.50$.

High-quality cables

Specifcally designed for high-frequency pulse applica. tion, the hp 10120 Series of $50-0 h m$ coaxial cables insures faithful transmission of fast rise signals. Mismatch loss is reduced to a minimum by using close tolerance (1%) 50 ohm cable and high quality connectors. Long life and good flexibility are assured by enclosing the low.density polyethylene dielectric in a single-braided shield with a tough vinyl jacket.

8000A PULSER

Ideal for work with fast circuits

Advantages:

Step output with less than 1 nsec rise time
Excellent pulse shape-overshoor and top variations less than 2%
0.1 to 10 volts, positive or negative 100 kc repetition rate for bright display Advance trigger output-no delay line required

Uses:

Measure response of fast circuits and instruments
Determine transition times of semiconductors
The hp Model 8000A Pulser provides 1 nanosecond rise time pulses at a repetition rate of 100 kc . This rapid rise time and the high quality of the pulse shape make this instrument particularly suitable for accurate determination of the pulse response of high-speed components, circuits and instruments. A flat top is maintained for at least 100 nsec: overshoot and pulse top variations are less than 2%. Amplitude is adjustable in a $1,2,5$ sequence from 0.1 volts to 10 volts, either polarity. A trigger output of 0.5 volts
into 50 ohms is available 200 nsec in advance of the pulse, so that the pulser may be used with the hp Model 185B or similar sampling oscilloscope without a delay line.

Figure 1. 8000A pulse; 1 volt output: sweep 20 nsec/em; sersitivity, $200 \mathrm{mv} / \mathrm{cm}$.

Specifications

Output puise

Rise time: less than 1 nanosecond.
Amplitude: 0.1 v to 10 v into 50 ohms, adjustable in $1,2,5$ sequence.
Polarity: positive or negative.
Shape: overshoot and pulse top variations less than $\pm 2 \%$.
Wlath: flat top maintained for at least 100 nanoseconds.
Fall time: less than 20 nanoseconds.
Repetition rate: $100 \mathrm{kc} \pm 20 \%$.
Source impedance: 50 ohms nominal.
Trigger pulse
Timing: 200 nanoseconds advance $\pm 20 \%$.

Jitter: less than 100 picostconds, trigger to output.
Rise time: less than 6 nanoseconds.
Amplltude: 0.5 v into 50 ohms .
Polarily: negative.
Width: 20 nanoseconds $\pm 20 \%$ (between 10% points).

General

Output connector: BNC.
Input power: 115 or $230 \mathrm{v} \pm 10 \%, 50$ to 400 cps .
Dimensions: $51 / 8^{\prime \prime}$ wide, $3-7 / 16^{\prime \prime}$ high, $115 / 8^{\prime \prime}$ deep ($130 \times 87 \times 295 \mathrm{~mm}$).
Weight: net $4,4 \mathrm{lbs}(2 \mathrm{~kg})$; shipping $6 \mathrm{lbs}(2,7 \mathrm{~kg})$.
Price: hp 8000A, $\$ 375$.

Electronic power supplies can be defined as circuits which transform electrical input power, either ac or $\mathrm{d} c$, into output power, either ac or dc . The ac in-dc out power supply is by far the most common and is genera!ly the one referred to when speaking of a "power supply." This catalog section deals enticely with as imput-de output regulated power supplies.
The basic elements of a voltage-regulated de power supply are shown in Fig. ure 1 . The rectifier and filrer convert the

Figure 1. Regulated de power supply.
ac line power into raw, unregulared dc power. The regulator functions as a variable impedance connected in series with the output line. It introduces the right amount of voltage drop in the line to hold the outpur at a preset, constant level despite changes in the raw $d c$.
Regulator control originates in the error amplifier, which compares the output voltage to the reference voltage and controls the regulator action to maintain this voltage difference constant.
Because many elements are common to the constant voltage power supply and the constant current power supply, the two circuit principles can be combined in one supply. Fortunately, most of the expensive. heavy power elements are
common to both configurations, and only low-voltage circuitry and a current monitoring resistor need be added to the constant voltage supply so that it can be used is a constant current source. Mosr Harrison supplies employ this CV/CC circuit technique.

Two comparison amplifiers are included in a CV/CC supply, one for controlling output voltage and the other for controlling output current. The two comparison amplifiers cannot operate simultaneously. For a given value of load resistance, the porer supply acts either as a constant voltage source of as a constant current source. Transfer between the two modes is accomplished auto. matically at the value of load resistance equal to R_{c} as defined in Figure 3.
In the constant voltage mode, the voltage drop across resistor R_{R} equals the reference voltage. This means that the

Figure 3. Operating locus of CV/CC power supply.
current through R_{R} (and thus R_{p}) is constant, and the voltage drop across R_{P} is a linear function of the voltage control. By feedback action, the regulator matches the output voltage to the voltage drop across R_{p}.

Constant current control is achieved with the other feedback loop shown in Figure 2. In this case, the voltage drop

Figure 2. Constant voltage/constani current (CV/CC) power supply.
across series resistor R_{g} is made equal to the voltage across the current programming resistor Ro.

Heavy-duty SCR supplies

The block diagram of Figure 4 shows a regulating circuit suitable for supplying large amounts of current with bigh eff. ciency. This type of supply uses silicon controlled rectifiers (SCR's) with the Harrison "Ramp-Lock"phase control circuit to perform simultaneously the rectifying and series-regulating functions. Each SCR in the recrifier bridge passes no current until triggered by a signai, and then maintains conduction until the voltage across the SCR is reversed. The fring angle during each ac cycle is controlled by an error amplifiec, thus maintaining the output voltage at the desired level.
This same technique also is used (1) for three-phase input power supplies and (2) as a preregulator in higher-power supplies employing a tandern series regulator. In the latter application, the SCR's serve to minimize the power dissipated in the series regulator transistors.

Basic specifications

Regulation is a measure of the change of the static output voltage or current resulting from changes in output load demand and/or input line variations.
Ripple is the residual ac component which is superimposed on the de output.

Stability refers to the variation in power supply output which occurs in the presence of constant load, line, and am. bient temperature.
Temperature coefficient relates the change in output to a temperature change causing it. It is specifed in per cent per degree Centigrade.
Transient response (or transient recovery time) is, loosely speaking, the time required for the output voltage to come back to within a level approximating the normal dc outpur following a sudden change in load current.

Power supply features

Remote Sensing: Certain operational refinements contribute to the usefulness

Figure 4. SCR regulated powar supply.
of dc power supplies. Remote sensing, for instance, prevents degradation of regulation at the load when there is a significant IR drop in the connecting leads. Remote sensing is effected simply by disconnecting the control leads, shown attached to the outpur buses in Rigure 2, and extending them for reatrachment directly at the load.
Remote programming: Remote programming, or remote control of the output, is desirable in a number of situations, particularly in automatic check-out equipment where sequences of voltages or currents are required for test purposes. Remore programming can be accomplished using a control resistance (R_{1}. placed externally), control voltage, or current.
Series operation: Automatic series operation (Auro-Series) of regulated sup. plies, with total output control coming from one supply, enables several power supplies to be "cascaded" for higher voltage output.
Parallel operation: Parallel operation (Auto-Parallel) permirs several power supplies to be used in parallel for higher current output, again with one knob control.

Power supply selection

(1.) Determine dc output voltage rating. A dc voltage requirement often is expressed as a nominal rating, but power supplies are rated in terms of maximum output under worst operating conditions. For example, if the de voltage required is nominally 32 volts, adjustable $\pm i 0 \%$, a 36 volt supply (not 32 voles) should be obtained, provided operation is actually desired at 110% of nominal (35.2 volts).
(2.) Determine dc ourput current rating. The output current rating of a power supply must be selected on the basis of the peak cursent requirement, not the average current requirement; chis results from the fact that the curcent limiting protection circuitry internal to the supply is exrremely fast in order to protect the series power cransistors. The current limit circuir is normally adjustable up to 105% or 110% of the nominal current cating of the power supply.
(3.) Consult condensed listing (pages 311-314). Enter the condensed listing at the voltage rating found from (1). Supplies above this point are eliminated from consideration because of insufficient output voltage. Many supplies below this point also are eliminated because of a current rating too small compared with (2). If the desired output voltage-current combination does not appear in the condensed listing, don't forget to consider series and parallel combinations of power supplies.
(4.) Constant voltage and/or constant
current output. Most applications require constant voltage power supplies. However, some load devices, such as electromagnet coils and certain semiconductor loads, require a constant current source of dc power. Still other applications call for supplies which have automatic crossover between constant voltage and current limiting operation. If the requirement involves constant current performance, then the condensed listing should be used to determine which supplies remaining from (3) are capable of constant curfent operation-further evalua. tion of these constant current supplies must be based on the detailed specifications in this catalog. Remember that all remote programming constant voltage supplies also can be converted to constant current use with one external resistor.
(5.) Specifcations for load regulation, line regulation, ripple and transient response. Generally speaking, a power supply employs one of two basic circuit techniques- (A) a transistor regulator. or (B) an SCR regulator. (In the case of high power output rating, the transistor regulator is preceded by an SCR preregulator.) All low outpur power sup. plies use cirevit technique (A), since this results in both lower cost and better performance. Either circuit technique (A) or (B) may be utilized in a supply of moderate output power capability-the former yielding a well regulated output, the latter achieving moderate regulation with greater efficiency and lower cost. Power supplies of very high outpur power employ circuit technique (B). These two circuit techniques resule in distinctly different performance characteristics-particularly with regard to regulation, ripple and transient response.

Speolfiaatlon	(A) Trans lstor regulated	(B) SCR regulated
Load regulation	0.01% to 0.05%	0.1% to 1%
Line regulation	0.01% to 0.05%	0.1% to 1%
Ripple and noise	$100 \mu v 101 \mathrm{mv}$	$0.1 \% 101 \%$
Transient response	lesss than $50 \mu \mathrm{sec}$	less than 50 msec

(6.) Is remote programming required? If it is desired to control the ourput of the power supply remotely, using switched or variable values of resistance, or if the supply is to be controlled by means of a voltage input, then look on the condensed listing for power supplies with a check under "Remore programming".
(7.) Physical configueation. Power supplies are available in three basic pack. ages-rack mounting (standard 19", 483 mm, RETMA), bench and modular. For high output ratings, rack mounting is the only practical confguration. All supplies not normally rack mounting are easily adapted to rack applications. Reference to appropriate catalog pages will indicate the nature and cost of this
rack mounting adapting hardware.
(8.) Miscellaneous requirements. Depending on the particular application one should check also for remote error sensing. permissible values of input line voltage and frequency, front and/or rear output terminals, meters, etc. Many of these miscelianeous requirements can be checked directly on the condensed listing. In other cases, it will be necessary to refer to the more detailed information on the catalog pages referenced by the condensed listing.
(9.) Klystron power supplies. Two klystron power supplies (page 331) include the hp 716 B , which offers outstanding regulation, noise, ripple and hum characteristics, giving the broad capability of powering more than 250 klystrons, The hp 715A is an economy model with high performance standards for lowpower klystrons.

Series designations of Harrison power supplies

In order to clarify the relationships which exist among various power supplics, certain families have been assigned three-letter designations. These series designations have been applied only to the most up-to-date lines. These designa. tions underscore family groupings of power supplies related in circuit techaique and operating characteristics. Note that each three-letter series designation suggests the general type of power supply in a given category and, indicates (in the third letter) the nature of the power supply case and its "normal" mode of installation. A final " B " indicares bench supplies and a final " R " applies to units which are rack mounted. Absence of a " B " or " R " as the final letter means that the supplies have not been designated primarily for either bench or rack use.
Notice that these designations are not part of the model number. They do not appear on the instroment and should not be used when ordering.

Surfes	Descripition
HVR	High Voltage Rack, highly regulated, output greater than 750 v
LAB	Laboratory Bench, latest generation, adapted to rack maunting
LVR	Low Voltage Rack, highly regufaled, output less than 75 v
MOD	Modular Plug-in, well regulated, adapted to rack installation
MVR	Medium Voltage Rack, highly regulated, outputs up to 320 v
SCR-1	Silicon-Controlled Rectifier Rack, single phase input, medium regulation
SCR-IP	Silicon-Controlled Rectifíer Rack, single phase input, madium regulation, reduced size and weight
SCR. 3	Silicon-Controlled Rectifier Rack, three-phase input, medium regulation

Banah supplies*									Page
General-purpose	output	0.7.5v, 0.3 a	$0.18 \mathrm{y}, 0.0 .6 \mathrm{a}$	0-20v.0.1.5a	0.20 v, 0-1.5 a	0-40 v, 0-0.75 a	$0.32 \mathrm{v}, 0.1 \mathrm{a}$	$0.160 \mathrm{v}, 0.0 .2 \mathrm{a}$	315
laboratory supplies			$0.36 \mathrm{v}, 0.0 .3 \mathrm{a}$	0.40 v, 0.0.75 a			$0.64 \mathrm{v}, 0-0.5 \mathrm{a}$		to
LA8 Series	model	6203A	6204A	6200A	6201 A	6202A	6206A	6207A	317
Heavy duly bench	output	$\operatorname{twin}_{0.36 \mathrm{v}, 0.1 .5 \mathrm{a}}$	$0-36 \mathrm{v}, 0.2 .5 \mathrm{a}$	$0.100 \mathrm{v}, 0.1 \mathrm{a}$					318
supplies	model	800A.2	8008.2	880					
Compact	output	$0.18 \mathrm{v}, 0.3 \mathrm{a}$	$0-30$ v, 0-0.15 a	$0.36 \mathrm{v}, 0.1 .5 \mathrm{a}$	0.40 v, 0.0.5 8				319
laboratory supplies	model	6223A	721A	6226A	723A				
Medium voltage multiple output	output	$\begin{aligned} & 0.500 \mathrm{~V} 0.0 .1 \mathrm{a} \\ & 12.6 / 6.3 \vee \mathrm{zc} \end{aligned}$							330
	model	711A,AR	7128.BR						
high-speod laboratory supplies	output	$\frac{0.18 \mathrm{v}, 0-1.5 \mathrm{a}}{855 \mathrm{C}}$	$\frac{0.40 v, 0.0 .5 z}{865 C}$						332

- Yhese supplies can also be rack mountod. Refer to pages indicated for detalis.

* Thess supplles can also be rack mounted. Refer to gages indicated for detalls.

HARRISON POWER SUPPLIES

Condensed listing

$\begin{aligned} & \text { 营 } \\ & \text { 亳 } \end{aligned}$	管 亳	흥 E 5 5 5	$\frac{4}{8}$			$\begin{aligned} & \text { 喜 } \\ & \text { 采 } \\ & \frac{8}{3} \end{aligned}$												WIds	menalo inchas ifrm HIgh	doeg			Spatal festuras	Pr100
0 to 7.5	$\begin{aligned} & 0 \\ & 10 \\ & 3 \end{aligned}$	6203A	LAB	315	5 mV	3 mv	0.2	50	$\left.\begin{gathered} 105 \cdot 125 \\ 08 \\ 210.250 \end{gathered} \right\rvert\,$	$\begin{aligned} & 50 \\ & 10 \\ & \$ 00 \end{aligned}$	4／3	\checkmark	，	\checkmark	R	$\begin{aligned} & 18 \\ & 81 \end{aligned}$	$\begin{gathered} 20 \\ 9 \end{gathered}$	$\begin{aligned} & 811 \\ & 210 \end{aligned}$	$\begin{array}{\|c} 31 / 2 \\ 89 \end{array}$	$\begin{aligned} & 13 \\ & 330 \end{aligned}$	\checkmark	\checkmark	Iront and rear oulpul terminals， $1 / 2$ rack width dackage，variable voltage and current limit	\＄179
0 10 8	$\begin{gathered} 0 \\ 10 \\ 300 \end{gathered}$	8450A	SCR－3	326		mv	80	$\begin{gathered} 50 \\ (\mathrm{~m} 5 a c) \end{gathered}$	$\begin{gathered} 3 \phi \\ 208 / 230 \\ 460=10 \% \end{gathered}$	$\left\{\begin{array}{l} 57 \\ 10 \\ 63 \end{array}\right.$	v\＆a	\checkmark	，		\checkmark	$\begin{gathered} 238 \\ 107,1 \end{gathered}$	$\left\|\begin{array}{l} 275 \\ 123,8 \end{array}\right\|$	$8 \text { 19 }$	$\begin{aligned} & 34 \\ & 356 \end{aligned}$	$\begin{array}{r} 181 / 4 \\ 464 \end{array}$	\checkmark	\checkmark	high efficiency：vantrie voltase and curreat limit	51550
0 0 15 15 10	$\begin{gathered} 0 \\ 10 \\ 200 \end{gathered}$	6453A	SCR．3	326	$\begin{array}{r} 0.2 \%++ \\ 00 m b i \end{array}$	$+10 \mathrm{my}$	150	$\begin{gathered} 50 \\ \text { (mseci) } \end{gathered}$	208／200 $450=10 \%$	$\begin{aligned} & 57 \\ & \text { to } \\ & 63 \end{aligned}$	v80	\checkmark	v		\checkmark	$\begin{array}{\|c\|c\|} \hline 238 \\ 107.1 \\ \hline \end{array}$	$\left.\begin{array}{l\|} \hline 275 \\ 123.8 \end{array} \right\rvert\,$	8	$\begin{aligned} & 14 \\ & 356 \end{aligned}$	$\begin{gathered} 181 / 2 \\ 48 i d \end{gathered}$	\checkmark	\checkmark	high efficiency：veriable voltage and current limut	\＄1550
0 10 18	$\begin{gathered} 0 \\ 10 \\ 0.3 \end{gathered}$	6343A	MOO	328	$\begin{array}{\|c\|} \hline 3 \mathrm{mv} \\ 00 \\ 0.03 \% \end{array}$	$\left[\begin{array}{c} 3 m y \\ 01 \\ 0.03 \% \end{array}\right.$	1	50	$\begin{array}{\|c\|} \hline 105-125 \\ 00 \\ 210.250 \end{array}$	$\begin{aligned} & 48 \\ & 10 \\ & 10 \end{aligned}$	no	v	\checkmark		R	3	$\begin{gathered} 5 \\ 2,3 \end{gathered}$	$\stackrel{3}{76}$	$\left\lvert\, \begin{gathered} 21 / 2 \\ 64 \end{gathered}\right.$	${ }_{2}^{8}$		\checkmark	olus－in module：all input，ouldut and control connections wia 11 －pin Dius： variable current limit	$\$ 120$
$\begin{aligned} & 0 \\ & 10 \\ & 18 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 0.6 \end{gathered}$	$\begin{aligned} & 6204 \mathrm{~A} \\ & 6204 A M \end{aligned}$	LAB	315	$\left\|\begin{array}{c} 4 \mathrm{mv} \\ + \\ 0.01 \% \end{array}\right\|$	$\left\lvert\, \begin{gathered} 4 \mathrm{mv} \\ 4 \\ 0.01 \% \end{gathered}\right.$	0.2	50	$\begin{gathered} 105 \cdot 125 \\ o r \\ 210-250 \end{gathered}$	$\begin{aligned} & 50 \\ & 10 \\ & 400 \end{aligned}$	$\begin{gathered} n o \\ 188 a \end{gathered}$	v	\checkmark	\checkmark	π	$\begin{aligned} & 12 \\ & 5,4 \end{aligned}$	$\begin{gathered} 16 \\ 7,2 \end{gathered}$	$\begin{aligned} & 81 / 2 \\ & 216 \end{aligned}$	$\begin{array}{\|l\|l\|} 31 / 2 \\ 89 \end{array}$	$\begin{aligned} & 10 \\ & 254 \end{aligned}$		\checkmark^{\prime}	tront and rear oulpul terminals， $1 / 2$ rack wadlh dackage，dual lange output selected by front－panel pushbutions； otrer range： 0.36 v， 0.0 .3 a；varibble currenl limit	\＄124
$\begin{aligned} & \hline 0 \\ & \text { to } \\ & 18 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	6384A	MOD	328	$\begin{array}{c\|} \hline 3 \mathrm{mv} \\ 0 \mathrm{or} \\ 0.03 \% \end{array}$		1	50	$\begin{array}{\|c\|} \hline 105-125 \\ \text { or } \\ 210 \cdot 250 \end{array}$	$\begin{aligned} & 48 \\ & 10 \\ & 60 \\ & 63 \end{aligned}$	по	\checkmark	v		R	$\begin{gathered} 7 \\ 3.2 \end{gathered}$	$\begin{aligned} & 10 \\ & 4,5 \end{aligned}$	$\begin{gathered} 3 \\ 127 \end{gathered}$	$\begin{gathered} 3 \\ 76 \end{gathered}$	$\underset{229}{9}$		\checkmark	plug．tn module：all inout，ouiput and contral connoctions via 11 pla plus： varable current limit	5165
$\begin{aligned} & 0 \\ & 10 \\ & 18 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 1.5 \end{gathered}$	8556	－－	332	$\begin{array}{\|c\|} \hline 250 \mu \mathrm{\mu} \\ \hline .02 \% \\ 0.02 \end{array}$	$\begin{aligned} & 250 \mathrm{\mu} \\ & \hline \frac{1}{2} \\ & 0.02 \% \end{aligned}$	0.2	50	$\begin{array}{\|l\|} \hline 105-125 \\ 00 \\ 210-250 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 10 \\ & 40 \end{aligned}$	v／8	\checkmark	：	\checkmark	Q	$\begin{aligned} & 14 \\ & 6,3 \end{aligned}$	$\begin{aligned} & 16 \\ & 7.2 \end{aligned}$	$\left.\begin{gathered} -.13 / 16 \\ 198 \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} 5 \cdot 1136 \\ 128 \end{array}\right\|$	$\begin{aligned} & 81 / 2 \\ & 266 \\ & \hline \end{aligned}$	v	\checkmark	ingh－speed programming；useful as a low－Irequency amplofies	\＄179
$\begin{aligned} & 0 \\ & 10 \\ & 18 \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 2.5 \end{aligned}$	6345A	M00	328	$\begin{gathered} 3 \mathrm{mv} \\ 0 \mathrm{or} \\ 0.03 \% \end{gathered}$	$\left\{\begin{array}{c} 3 \mathrm{mv} \\ o r \\ 0.03 \% \end{array}\right.$	1	50	$\begin{gathered} 105 \cdot 125 \\ \text { or } \\ 20 \cdot-250 \end{gathered}$	$\begin{aligned} & 48 \\ & 10 \\ & 63 \end{aligned}$	по	，	，		R	$\begin{array}{r} 13 \\ 5.9 \end{array}$	$\begin{aligned} & 19 \\ & 8,6 \end{aligned}$	$\begin{aligned} & 61 / 4 \\ & 159 \end{aligned}$	$\frac{9}{229}$	$\begin{gathered} 5 \\ 127 \end{gathered}$		\checkmark^{\prime}	plug－in module；all ingut，output and control connection vie 11．pin olus： vaciable cutrant limil	\＄225
$\begin{aligned} & 0 \\ & \text { to } \\ & 18 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 3 \end{gathered}$	6224A	－	319	$\left\lvert\, \begin{gathered} 2 \pi v \\ 000 \\ 0.03 \% \end{gathered}\right.$	$\begin{aligned} & 2 \mathrm{mv} \\ & o r \\ & 0.02 \% \end{aligned}$	0.5	50	$\begin{array}{\|c\|} \hline 105 \cdot 125 \\ 0 \\ 210.250 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 10 \\ & 70 \end{aligned}$	v／a	\checkmark	v	v	R	$\begin{aligned} & 15 \\ & 6,8 \end{aligned}$	$\begin{gathered} 20 \\ 9 \end{gathered}$	$\begin{aligned} & 545 \\ & 190 \end{aligned}$	$\begin{aligned} & 6 x, 9 \\ & 171 \end{aligned}$	$\frac{11}{279}$	${ }^{\prime}$	\checkmark	front and re31 output terminals，b／a rack width packagg：variable voltage and current timet	\＄340
0 0 10 18 18	$\begin{aligned} & 0 \\ & 10 \\ & 10 \end{aligned}$	6263A	LVR	320	$\left[\begin{array}{c} 200 \mu v \\ +.01 \% \\ 0.01 \% \end{array}\right.$	$\begin{gathered} 200+\mathrm{y} \\ +0.0 \\ 0.0 \end{gathered}$	0.5	50	$\begin{gathered} 105 \cdot 125 \\ o \mathrm{or} \\ 210-250 \end{gathered}$	$\begin{aligned} & 48 \\ & 10 \\ & 63 \end{aligned}$	v\＆	\checkmark	\checkmark		v	$\begin{gathered} 36 \\ 162 \end{gathered}$	47	$\begin{gathered} 19 \\ 483 \end{gathered}$	$\begin{array}{\|l\|l\|} 31 / 2 \\ 89 \end{array}$	$\begin{aligned} & 111 / 1 / 2 \\ & 445 \end{aligned}$	\checkmark	\checkmark	variable voltage and cuicent limil	5435
18 10 18	$\begin{aligned} & 0 \\ & 10 \\ & 10 \end{aligned}$	6363A	LVR	320	$\begin{gathered} 200 \mu \mathrm{vv} \\ 0.01 \% \end{gathered}$	$\begin{aligned} & 200 \mu 4 \\ & +\stackrel{4}{1} \% \\ & 0.01 \% \end{aligned}$	0.5	50	$\begin{aligned} & \hline 105-125 \\ & \text { of } \\ & 210 \cdot 250 \end{aligned}$	$\begin{aligned} & 48 \\ & 10 \\ & 63 \\ & \hline \end{aligned}$	no	\checkmark	v		，	$\begin{aligned} & 34 \\ & 15,3 \end{aligned}$	$\begin{gathered} 45 \\ 20,3 \end{gathered}$	$\underset{48}{18}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{aligned} & 1736 / 2 \\ & 485 \\ & \hline \end{aligned}$		\checkmark	well－regulated＂stripped－down＇version od 6263 k	\＄359
0 0 18 18	$\begin{aligned} & 0 \\ & 10 \\ & 15 \end{aligned}$	6427A	SCR－1P	325		my or so\％ bined	36	$\begin{gathered} 300 \\ (\text { msec }) \end{gathered}$	105．125	$\begin{aligned} & 51 \\ & 10 \\ & 63 \\ & \hline 6 \end{aligned}$	u\＆a	\checkmark	＊		\checkmark	$\begin{gathered} 35 \\ 15.8 \end{gathered}$	$\begin{gathered} 46 \\ 20.7 \end{gathered}$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\left\|\begin{array}{l} 171 / p \\ 445 \end{array}\right\|$	\checkmark	\checkmark	high offciency，vanable vollage and current Imit	\＄380
$\begin{aligned} & 0 \\ & \text { to } \\ & 18 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	6264R	LVR	320	$\begin{array}{c\|} \hline 200 \mu v \\ 0.01 \% \end{array}$	$\begin{gathered} 200 \mu \mathrm{H} \\ +\quad+\quad \\ 0.01 \% \end{gathered}$	0.5	50	$\begin{array}{\|l\|} \hline 105.125 \\ 01 \\ 210.250 \end{array}$	$\begin{array}{\|c\|} \hline 48 \\ 10 \\ 63 \\ \hline \end{array}$	v\＆a	V	\checkmark		\checkmark	$\begin{gathered} 54 \\ 24,3 \end{gathered}$	$\left\|\begin{array}{c} 66 \\ 29,7 \end{array}\right\|$	$\begin{gathered} 19 \\ 483 \end{gathered}$	$\left\lvert\, \begin{aligned} & 51 / 4 \\ & 133 \end{aligned}\right.$	$\begin{aligned} & 171 / 2 \\ & 445 \end{aligned}$	\checkmark	\checkmark	variable vollage and current limit	\＄525
$\begin{array}{r}18 \\ \hline 10 \\ 18 \\ \hline\end{array}$	$\begin{aligned} & 0 \\ & 10 \\ & 20 \end{aligned}$	6364A	LVR	320	$\begin{array}{l\|} 220+\mu 4 \\ + \\ 0.01 \% \end{array}$	$\begin{gathered} 200 \mu \psi \\ 00^{+} \\ 18 \% \end{gathered}$	0.5	50	$\begin{aligned} & 105 \cdot 125 \\ & 0 \% \\ & 210-250 \end{aligned}$	$\begin{aligned} & 48 \\ & 10 \\ & 63 \end{aligned}$	no	v	v		v	$\begin{aligned} & 52 \\ & 23,4 \end{aligned}$	$\begin{gathered} 64 \\ 28.8 \end{gathered}$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{aligned} & 31 / 4 \\ & 133 \end{aligned}$	${ }_{4}^{171 / 2}$		\checkmark	well－regulated＂strigpea－down＂version of 5254 A	\＄450
0 10 18	$\begin{array}{l\|} \hline 0 \\ 10 \\ 45 \\ \hline \end{array}$	6428A	SCR－1P	325	\％ 54	mivad	36	$\left[\begin{array}{c} 300 \\ (\pi 58 c) \end{array}\right]$	$105 \cdot 125$	$\left\{\begin{array}{l} 57 \\ \text { to } \\ 63 \end{array}\right.$	v\＆a	v	\checkmark		\checkmark	$\begin{aligned} & 65 \\ & 29,3 \end{aligned}$	$\begin{gathered} 78 \\ 35,1 \end{gathered}$	$\begin{gathered} 19 \\ 683 \end{gathered}$	$\begin{aligned} & 51 / 133 \\ & 130 \end{aligned}$	$\begin{array}{r} 1031 \\ 425 \end{array}$	\checkmark	\checkmark	tigh efficiency：varable voltage and cyrtent limit	\＄550
0 00 20	0 10 1.5	6200A	LAB	315	$\left\|\begin{array}{c} 4 \mathrm{mv} \\ + \\ 0.01 \% \end{array}\right\|$	$\begin{gathered} 4 \pi v \\ \frac{1}{0.01 \%} \end{gathered}$	0.2	50	$\begin{aligned} & 105 \cdot 125 \\ & 00 \\ & 210.250 \end{aligned}$	$\left.\begin{aligned} & 50 \\ & 10 \\ & 400 \end{aligned} \right\rvert\,$	V\＆a	${ }^{\text {i }}$	v	\checkmark	R	$\begin{aligned} & 18 \\ & 8.1 \end{aligned}$	$\begin{gathered} 20 \\ 9 \end{gathered}$	$\begin{aligned} & 81 / 6 \\ & 210 \end{aligned}$	$\begin{gathered} 31 / 2 \\ 89 \end{gathered}$	$\begin{aligned} & 13 \\ & 130 \end{aligned}$	\checkmark	，	dual range outbut selected by liont． panel pushbuttons：other range： $0.40 \mathrm{u}, 0.0 .758$ ；variable volitage arid calrent limit	\＄210
0 10 20	0 10 10 1.5	6201A	LAB	315	$\begin{gathered} 8 \mathrm{mv} \\ + \\ 0.01 \% \end{gathered}$	$\begin{gathered} 4 \mathrm{mv} \\ 0 . \\ 0.01 \% \end{gathered}$	0.2	50	$\begin{gathered} 105 \cdot \mathrm{~J} 25 \\ o r \\ 210250 \end{gathered}$	$\begin{array}{\|} 50 \\ 10 \\ 400 \end{array}$	V／a	，	\checkmark	v	R	$\begin{array}{r} 18 \\ 8,1 \end{array}$	$\begin{gathered} 20 \\ 9 \end{gathered}$	$\begin{aligned} & 81 / 4 \\ & 210 \\ & \end{aligned}$	$\begin{gathered} 31 / 2 \\ 89 \end{gathered}$	13	\checkmark	\checkmark	Front and rear output tetminals，Y／2 rack width package：variable vollage and current limit	\＄179
0 0 10 25	0 10 0.2	8016	－	318	2 mv	2 mv	0.1	50	105－125	$\begin{array}{\|l\|} \hline 55 \\ 10 \\ 65 \\ 60 \end{array}$	п0		\checkmark		，	$\begin{gathered} 4 \\ 1.8 \end{gathered}$	3.8	$\begin{aligned} & 13 / 8 \\ & 41 \end{aligned}$	$\begin{array}{\|c} 5 \\ 12 \end{array}$	$\left\lvert\, \begin{gathered} 14 / 3 \\ 378 \end{gathered}\right.$			stran gase suboly． 9 fit on $51 /^{\circ}$ high panel；high R and low C to case and inpul ac	\＄148
0 to 30	$\begin{gathered} 0 \\ 60 \\ 0.15 \end{gathered}$	7218	－	319	$\begin{array}{\|l\|} \hline 30 \mathrm{mv} \\ 0.1 \\ 0.3 \% \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline-15 m y \\ 0 . \\ 0.3 \% \\ \hline \end{array}$	0，15	－	$\begin{gathered} 115 / 230 \\ \pm 10 \% \\ \hline \end{gathered}$	$\begin{aligned} & 50 \\ & 10 \\ & 50 \end{aligned}$	v／a			v		$\stackrel{4}{1.8}$	$\frac{1}{3,2}$	$\stackrel{7}{178}$	$\left\lvert\, \begin{array}{ll} 41 / 2 \\ 111 \end{array}\right.$	$\begin{aligned} & 51 / 4 \\ & 133 \end{aligned}$			4．position curtent limit swich	5145

HARRISON POWER SUPPLIES

Condensed listing

$\begin{aligned} & \frac{1}{5} \\ & \frac{5}{5} \\ & \frac{5}{5} \end{aligned}$	量 覃 8		$\frac{8}{5}$				AMS ripple and molste (av)											Wlds	menslo Inehes mm hloh	800s			Spestal lasturas	Probe
$\begin{aligned} & 0 \\ & 10 \\ & 32 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 10 \end{gathered}$	$\begin{gathered} 6206 \mathrm{~A} \\ 8206 \mathrm{AM} \end{gathered}$	LAE	315	$\begin{gathered} 4 \mathrm{mv} \\ t \\ 0.01 \% \end{gathered}$	$\left\lvert\, \begin{gathered} 4 \mathrm{my} \\ + \\ 0.01 \% \end{gathered}\right.$	0.2	50	$\begin{gathered} 105-125 \\ 02 \\ 210-250 \end{gathered}$	$\left(\begin{array}{c} 50 \\ 00 \\ 500 \end{array}\right)$	$\begin{array}{r} n 0 \\ v \& a \end{array}$	\checkmark	\checkmark	v	8	$\begin{aligned} & 18 \\ & 8,1 \end{aligned}$	$\begin{gathered} 20 \\ 9 \end{gathered}$	$\begin{aligned} & 81 / 4 \\ & 210 \end{aligned}$	$\begin{aligned} & 3: / 8 \\ & 89 \end{aligned}$	$\begin{gathered} 13 \\ 330 \end{gathered}$		\checkmark	reont and rear output lemminals, Is rack width package, dual-range oulput seiected by ironl-panal pushositions; other renge: $0.54 \mathrm{x}, 0.0 .5 \mathrm{a}$; variable current timul	$\begin{aligned} & 5164 \\ & \$ 184 \end{aligned}$
$\begin{aligned} & 0 \\ & 10 \\ & 32 \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 2 \end{aligned}$	6242Ap	-	322	$\begin{array}{\|c\|} \hline 3 \mathrm{mv} \\ 0 . \\ 0.02 \% \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 5 \mathrm{mv} \\ 0 \mathrm{og} \\ 0.03 \% \end{array}$	0.2	50	$\begin{aligned} & 105-125 \\ & t 0 \\ & 210-250 \end{aligned}$	$\begin{aligned} & 50 \\ & \text { to } \\ & 400 \end{aligned}$	v\&a	\checkmark	\checkmark	\checkmark	\checkmark	$\begin{gathered} 25 \\ 11,3 \end{gathered}$	$\begin{gathered} 30 \\ 3,5 \\ \hline \end{gathered}$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{aligned} & 163 / 1 \\ & 425 \end{aligned}$	\checkmark	\checkmark	plug-n prinles circuit selects dual. oulpul pange, other range: 0 -64 v. 0.1 a; varizble voltage and cutrent limit	\$435
$\begin{gathered} 0 \\ 10 \\ 10 \end{gathered}$	$\begin{gathered} 0 \\ 10 \\ 10 \end{gathered}$	6433A	SCR.1P	325			32	$\begin{gathered} 300 \\ m \leq e c \end{gathered}$	$105 \cdot 125$	$\begin{array}{\|l\|} \hline 57 \\ 10 \\ 63 \end{array}$	v 8 a	\checkmark	\checkmark		\checkmark	$\begin{gathered} 33 \\ 14,9 \end{gathered}$	$\begin{gathered} 44 \\ 19.8 \end{gathered}$	$\begin{array}{r} 19 \\ 483 \end{array}$	$\begin{aligned} & 31 / 2 \\ & 89 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{array}{l\|l\|} \hline 17 / 2 \\ 4 / 5 \end{array}\right.$	\checkmark	\checkmark	Migh efficiency; variable vollage and current limil	\$370
$\begin{aligned} & 0 \\ & 10 \\ & 10 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 100 \\ 100 \end{gathered}$	6456A	SCR-3	326	$\begin{gathered} 0.2 \% \\ \text { combi } \end{gathered}$	$\frac{1}{6 i n e d}$	150	$\begin{array}{r} 50 \\ (\mathrm{~ms} \theta) \end{array}$	$\begin{gathered} 3 \phi \\ 208 / 230 \\ 460 \pm 10 \% \end{gathered}$	$\left[\begin{array}{l} 57 \\ 10 \\ 63 \end{array}\right]$	v\&2	\checkmark	\checkmark		\checkmark	$\begin{array}{r} 238 \\ 207,1 \\ \hline \end{array}$	$\left\|\begin{array}{c} 275 \\ 123,8 \end{array}\right\|$	$\begin{gathered} 19 \\ 483 \end{gathered}$	$\begin{array}{r} 14 \\ 356 \end{array}$	$\begin{aligned} & 181 / 4 \\ & 464 \\ & \hline \end{aligned}$	-	\checkmark	high efficiency; variable voltage and current limil	\$1450
$\begin{aligned} & 0 \\ & 40 \\ & 36 \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ 10 \\ 0.15 \\ \hline \end{array}$	6346A	MOD	328	$\begin{array}{\|c\|} \hline 3 \mathrm{mv} \\ 0 \mathrm{or} \\ 0.02 \% \end{array}$	$\begin{array}{\|c\|} \hline 3 \mathrm{mv} \\ 0 \\ 0.02 \% \end{array}$	1	50	$\begin{array}{\|c\|} \hline 105 \cdot 125 \\ 0 \\ 210-250 \\ \hline \end{array}$	$\begin{aligned} & 48 \\ & 10 \\ & 40 \end{aligned}$	no	\checkmark	\checkmark		8	$\begin{aligned} & 3 \\ & 1,4 \end{aligned}$	$\begin{gathered} 5 \\ 2,3 \end{gathered}$	$\begin{aligned} & 3 \\ & 76 \end{aligned}$	$\underset{60}{21 / 4}$	$\begin{aligned} & 8 \\ & 203 \end{aligned}$		\checkmark	gluge.in module; all input, oulput and sontrol connections via il-pín plug: variable current limit	\$12
$\begin{aligned} & 0 \\ & 10 \\ & 36 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 0.3 \end{gathered}$	$\begin{aligned} & 6204 \mathrm{~A} \\ & 6204 \mathrm{AM} \end{aligned}$	LAB	315	$\left.\begin{gathered} 4 \mathrm{mv} \\ + \\ 0.01 \% \end{gathered} \right\rvert\,$	$\begin{aligned} & 4 \mathrm{mv} \\ & \mathbf{4} \\ & 0.01 \% \end{aligned}$	0.2	50	$\begin{gathered} 105 \cdot 125 \\ 05 \\ 210.250 \end{gathered}$	$\left\|\begin{array}{l} 50 \\ 100 \\ 400 \end{array}\right\|$	$\left\|\begin{array}{c} n 0 \\ v 8, ~ \end{array}\right\|$	\checkmark	\checkmark	\checkmark	8	$\begin{aligned} & 12 \\ & 5,4 \end{aligned}$	$\frac{16}{7,2}$	$\begin{aligned} & 81 / 4 \\ & 210 \end{aligned}$	$\begin{array}{\|l\|l\|} 312 \\ 89 \end{array}$	$\begin{aligned} & 10 \\ & 254 \end{aligned}$		\checkmark	front and rear output terminals, 1/2 rack width package, dual-range output selected by front-panel pushbuttoms; oliner ange: $0.18 \mathrm{v}, 0.0 .6 \mathrm{a}$; variable current limit	\$128
$\begin{aligned} & 0 \\ & 10 \\ & 36 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 10.5 \end{gathered}$	6.47A	M00	328	$\begin{gathered} 3 \mathrm{mv} \\ 0.02 \\ 0.02 \% \end{gathered}$	$\begin{gathered} 3 \mathrm{my} \\ 0.02 \% \end{gathered}$	1	50	$\left\|\begin{array}{c} 105 \cdot 125 \\ 01 \\ 210-250 \end{array}\right\|$	$\begin{aligned} & 48 \\ & 10 \\ & 63 \\ & \hline \end{aligned}$	no	\checkmark	,		R	$\begin{gathered} 7 \\ 3,2 \end{gathered}$	$\begin{aligned} & 10 \\ & 4,5 \end{aligned}$	$\stackrel{5}{127}$	$\begin{gathered} 3 \\ 76 \end{gathered}$	$\begin{gathered} 9 \\ 229 \end{gathered}$		\checkmark	pleg-in module: all Input, outoul and comrol connections via 11 -pln olus; variable current limit	\$165
	$\begin{aligned} & 10 \\ & 10 \\ & 1.5 \end{aligned}$	200A-2	-	318	5	5	0.2	100	105-125	$\left\{\begin{array}{l} 55 \\ 10 \\ 85 \end{array}\right.$	U\&d			\checkmark	R	$\begin{aligned} & 29 \\ & 13 \end{aligned}$	$\begin{gathered} 32 \\ 14,4 \\ \hline \end{gathered}$	178	$\begin{gathered} 9 \\ 229 \end{gathered}$	$\begin{aligned} & 101 / 2 \\ & 267 \end{aligned}$			2 sides can bo series'ed for 0-72 v al 0-1.5a; rach nounniline panels avalatie: flxed carrent limit	5580
$\begin{aligned} & 0 \\ & 10 \\ & 36 \end{aligned}$	$\begin{gathered} 10 \\ 10 \\ 1.5 \end{gathered}$	8028	-	338	$\left\|\begin{array}{l} 3.6 \mathrm{mv} \\ 0.01 \% \\ 0.01 \% \end{array}\right\|$	$\left\|\begin{array}{l} 3.5 \mathrm{mv} \\ 0.01 \\ 0.01 \% \end{array}\right\|$	0.2	100	105-125	50 10 400	y83		\checkmark		\checkmark	$\begin{aligned} & 28 \\ & 12,6 \end{aligned}$	$\begin{gathered} 34 \\ !5,3 \end{gathered}$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{aligned} & 15 \\ & 381 \end{aligned}$			2 sides can be series'oo for 0.7 ? v at 0. I. 5 : fixed cuirenl limit	\$580
$\begin{aligned} & 0 \\ & 10 \\ & 36 \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 1.5 \end{aligned}$	6226A	\cdots	319	$\begin{array}{\|c\|} \hline 2 \mathrm{mv} \\ o r \\ 0.02 \% \end{array}$	$\left.\begin{array}{\|c\|} \hline 2 \mathrm{mv} \\ \text { of } \\ 0.02 \% \end{array} \right\rvert\,$	0.5	50	$\begin{array}{\|c\|} \hline 105 \cdot 125 \\ 081 \\ 210-250 \end{array}$	$\begin{aligned} & 50 \\ & 10 \\ & 70 \end{aligned}$	v/a	v	\checkmark	\checkmark	R	$\begin{gathered} 15 \\ 6,8 \end{gathered}$	$\begin{gathered} 20 \\ 9 \end{gathered}$	$\begin{aligned} & 51 / 1 / 8 \\ & 130 \end{aligned}$	$\begin{aligned} & 61 / 8 \\ & 171 \end{aligned}$	$\frac{11}{279}$	\checkmark	\checkmark	front and rear oulput Ierminals, $1 / 3$ rack width packase; variabla vollage and current limil	\$325
$\begin{aligned} & 0 \\ & 10 \\ & 36 \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 10 \end{aligned}$	63484	1800	328	$\begin{gathered} 3 \mathrm{mv} \\ 0 . \\ 0.02 \% \end{gathered}$	$\begin{gathered} 3 \mathrm{mv} \\ 0 \mathrm{r} \\ 0.02 \% \end{gathered}$	1	50	$\begin{array}{\|c\|} \hline 105 \cdot 125 \\ 01 \\ 210-250 \end{array}$	$\begin{aligned} & 48 \\ & 10 \\ & 63 \end{aligned}$	no	,	\checkmark		R	$\begin{aligned} & 13 \\ & 5,9 \end{aligned}$	$\begin{aligned} & 19 \\ & 8.6 \end{aligned}$	$\begin{aligned} & 61 / 9 \\ & 159 \end{aligned}$	$\begin{gathered} 5 \\ 127 \end{gathered}$	$\underset{229}{9}$		\checkmark	plug.in madulez all inpul, oulpul and control connections yla 11-gin plug: variable cutrenilimit	S225
$\begin{aligned} & 0 \\ & 10 \\ & 36 \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 2.5 \end{aligned}$	8006-2	-	318	10 mv	5 \%	0.25	50	105-125	$\begin{gathered} 50 \\ 10 \\ 440 \end{gathered}$	+83			\checkmark	R	$\begin{gathered} 25 \\ 1.3 \end{gathered}$	$\begin{gathered} 30 \\ 13,6 \end{gathered}$	$\begin{gathered} 7 \\ 178 \end{gathered}$	$\begin{gathered} 9 \\ 229 \end{gathered}$	$\begin{gathered} 10 y / \\ 267 \end{gathered}$			rack mounting panel ayallable; fixed curfent limi:	5336
$\begin{aligned} & 0 \\ & \text { to } \\ & 36 \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 3 \end{aligned}$	6244A	-	322	$\begin{array}{\|c\|} \hline s m u \\ 0.02 \\ 0.02 \% \\ \hline \end{array}$	$\left\|\begin{array}{l} 2 m v \\ o v \\ 0.01 \% \end{array}\right\|$	0.5	50	$\left[\begin{array}{c} 105-135 \\ 01 \\ 210-2500 \end{array}\right]$	$\begin{array}{\|l\|} \hline 50 \\ 10 \\ 70 \\ \hline \end{array}$	48	\checkmark	\checkmark	\checkmark	\checkmark	$\begin{gathered} 25 \\ 11,3 \end{gathered}$	$\left.\begin{gathered} 41 \\ 18,5 \end{gathered} \right\rvert\,$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{aligned} & 16 Y_{4} \\ & 425 \end{aligned}$	\checkmark	\checkmark	variable voltage and curfent limit	\$460
$\begin{gathered} 0 \\ 10 \\ 36 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 10 \\ 3 \\ \hline \end{gathered}$	6265A	LVR	320	$\begin{array}{\|c\|} \hline 200 \mu 4 \\ +.01 \% \\ \hline \end{array}$	$\begin{gathered} 200 \mu \mathrm{v} \\ +\quad+1 \% \\ 0.01 \% \end{gathered}$	0.5	50	$\left[\begin{array}{c} 105-125 \\ 01 \\ 210 \cdot 250 \end{array}\right]$	$\begin{array}{\|l\|} \hline 48 \\ 10 \\ 63 \end{array}$	v\&s	\checkmark	\checkmark		\checkmark	$\begin{gathered} 36 \\ 16,2 \end{gathered}$	$\begin{array}{\|c\|} 47 \\ 21,2 \end{array}$	$\begin{aligned} & 19 \\ & 68 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{aligned} & 171 / 2 \\ & 445 \end{aligned}$	\checkmark	\checkmark	vsriable voitage and current simil	\$350
0 10 10 36	$\begin{gathered} 0 \\ 10 \\ 10 \end{gathered}$	WSSA	LVR	320	$\begin{array}{\|c\|} \hline 200 \mu \\ +0.01 \% \end{array}$	$\begin{aligned} & 200 \mu \mathrm{v} \\ & \mathbf{C}^{+} \\ & 0.01 \% \end{aligned}$	0.5	50	$\begin{array}{\|c\|} \hline 105-125 \\ 0 \\ 210.250 \end{array}$	$\begin{aligned} & 48 \\ & 10 \\ & 63 \end{aligned}$	no	\checkmark	\checkmark		\checkmark	$\begin{gathered} 34 \\ 15,3 \end{gathered}$	$\begin{gathered} 45 \\ 20,3 \end{gathered}$	$\begin{array}{r} 19 \\ 488 \end{array}$	$\left\lvert\, \begin{gathered} 31 / 2 \\ 89 \end{gathered}\right.$	$\begin{array}{\|} 171 / 2 \\ 445 \end{array}$		\checkmark	well-regulated, "sripged-down" version of 6265 A	\$279
0 10 36	$\begin{gathered} 0 \\ 10 \\ 5 \end{gathered}$	808A \dagger	-	322	$\left\|\begin{array}{l} 3.6 \mathrm{mv} \\ 0.01 \\ 0.01 \% \end{array}\right\|$	$\begin{aligned} & 3.5 \mathrm{mv} \\ & 0.01 \\ & 0.01 \% \end{aligned}$	0.5	50	105.125	57 to 63	V88	\checkmark	\checkmark		\checkmark	$\begin{gathered} 35 \\ 15,8 \end{gathered}$	$\left.\begin{gathered} 46 \\ 20,7 \end{gathered} \right\rvert\,$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{array}{\|l\|l\|} 31 / 6 \\ 89 \end{array}$	$\begin{aligned} & 16 \not 6 \\ & 425 \end{aligned}$	x	\checkmark	variable cuprent limit	5075
$\begin{aligned} & 0 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 50 \\ & 5 \end{aligned}$	6266A	LVR	320		$\begin{aligned} & 2004 \mathrm{H} \\ & 0.01 \% \end{aligned}$	0.5	3	$\begin{array}{\|c\|} \hline 105-125 \\ 010 \\ 210.250 \end{array}$	$\begin{aligned} & 48 \\ & 18 \\ & 63 \end{aligned}$	189	\checkmark	\checkmark		\checkmark	$\begin{array}{\|c} 36 \\ 16,2 \end{array}$	$\begin{gathered} 47 \\ 21,2 \end{gathered}$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{array}{\|l\|l\|} 31 / 2 \\ 89 \end{array}$	$\begin{gathered} 111 / 21 / 2 \\ 445 \end{gathered}$	\checkmark	\checkmark	varable vollage and curren limit	\$435
0 to 36	$\begin{aligned} & 0 \\ & 10 \\ & 5 \end{aligned}$	6366A	LVR	320	$\begin{gathered} 200 ~ \\ \hline \\ 0.01 \% \end{gathered}$	$\begin{array}{c\|} 200 \mu \mathrm{w} \\ +{ }^{+} \\ 0.01 \% \end{array}$	0.5	50	$\begin{array}{\|c\|} \hline 105 \cdot 125 \\ 01 \\ 210 \cdot 255 \end{array}$	$\begin{aligned} & 48 \\ & 10 \\ & 10 \\ & 63 \end{aligned}$	no	\checkmark	\checkmark		v	$\begin{aligned} & 34 \\ & 15,3 \end{aligned}$	$\begin{gathered} 45 \\ 20,3 \end{gathered}$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	8	$\begin{aligned} & 171 / 2 \\ & 445 \end{aligned}$		\checkmark	well-ragulated, "stripped-dowa" yer. sion al 6266A	\$359

HARRISON POWER SUPPLIES

Condensed listing

$\frac{\text { 参 }}{\frac{5}{5}}$		$\begin{aligned} & \text { 管 } \\ & \text { 亮 } \\ & \text { 品 } \\ & \text { 要 } \end{aligned}$	$\frac{1}{5}$					Hecovery that＊（ $\mu \mathrm{sec}$ ）		Itratif fino froqueny（ops）			\qquad					wld 4		doap			Speolal leatures	Prlas
$\begin{gathered} 0 \\ 10 \\ 36 \end{gathered}$	$\begin{aligned} & 0 \\ & 10 \\ & 10 \end{aligned}$	510A	SCR－I	324			360	$\begin{gathered} 50 \\ (\mathrm{msec}) \end{gathered}$	105－125	$\begin{aligned} & 57 \\ & 10 \\ & 63 \end{aligned}$	v82	\checkmark	\checkmark		\checkmark	$\begin{gathered} 48 \\ 21,6 \end{gathered}$	$\begin{array}{r} 58 \\ 26.1 \end{array}$	$\begin{gathered} 19 \\ 483 \end{gathered}$	$\begin{aligned} & 51 / 4 \\ & 133 \end{aligned}$	$\begin{gathered} 12 \\ 305 \end{gathered}$		\checkmark	high efficlency；variable current limil	2850
$\begin{aligned} & 0 \\ & 10 \\ & 36 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 10 \\ \hline \end{gathered}$	809A \dagger	－	322	$\begin{gathered} 7.2 \pi \% \\ o r \\ 0.02 \% \% \end{gathered}$	$\begin{gathered} 7.2 \mathrm{mu} \\ \mathrm{or} \\ 0.02 \% \\ \hline \end{gathered}$	0.5	50	$105 \cdot 125$	$\begin{aligned} & 57 \\ & 10 \\ & 63 \end{aligned}$	v\＆a	\checkmark	\checkmark		\checkmark	$\begin{gathered} 55 \\ 24,8 \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ 28,4 \\ \hline \end{gathered}$	$\begin{array}{r} 19 \\ 483 \end{array}$	$\begin{aligned} & 5 / 4 \\ & 133 \end{aligned}$	$\begin{aligned} & 163 / 2 \\ & 425 \end{aligned}$	\times	\checkmark	variable current limit	5575
$\begin{aligned} & 0 \\ & 10 \\ & 36 \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 10 \end{gathered}$	6267A	LVR	320		$\begin{gathered} 200 \mu v \\ + \\ 0.01 \% \end{gathered}$	0.5	50	$\begin{gathered} 105.125 \\ o p \\ 210-250 \\ \hline \end{gathered}$	$\begin{aligned} & 48 \\ & 10 \\ & 63 \\ & \hline \end{aligned}$	－\＆る	\checkmark	\checkmark		\checkmark	$\begin{gathered} 54 \\ 24,3 \\ \hline \end{gathered}$	$\begin{gathered} 66 \\ 29.7 \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 400 \end{gathered}$	$\begin{aligned} & 546 \\ & 133 \\ & 13 \end{aligned}$	$\begin{aligned} & 1748 \\ & 445 \end{aligned}$	\checkmark	\checkmark	variable voltage and current limit	\＄525
$\begin{aligned} & 0 \\ & 10 \\ & 36 \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	6367A	LVR	320			0.5	50	$\begin{array}{\|c\|} \hline 105-125 \\ 01 \\ 210-250 \\ \hline \end{array}$	$\begin{aligned} & 88 \\ & 10 \\ & 63 \\ & \hline \end{aligned}$	no	\checkmark	\checkmark		\checkmark	$\begin{gathered} 32 \\ 23,4 \end{gathered}$	$\begin{array}{r} 54 \\ 28.8 \\ \hline \end{array}$	$\begin{gathered} 19 \\ 483 \end{gathered}$	$\begin{aligned} & 51 / 4 \\ & 133 \end{aligned}$	$\begin{aligned} & 174 / 2 \\ & 445 \end{aligned}$		\checkmark	well regulated，＂stripped－down＂ver－ sion of 5257A	\＄450
$\begin{aligned} & 0 \\ & 10 \\ & 36 \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 25 \\ & \hline \end{aligned}$	520A	SCR－1	324			360	$\begin{gathered} 50 \\ (\mathrm{msec}) \end{gathered}$	105－125	$\begin{aligned} & \hline 77 \\ & 10 \\ & 63 \end{aligned}$	v\＆a	\checkmark	\checkmark		\checkmark	$\begin{gathered} 85 \\ 38,3 \\ \hline \end{gathered}$	$\begin{aligned} & 101 \\ & 65,5 \end{aligned}$	$\begin{aligned} & 19 \\ & 483 \end{aligned}$	$\begin{gathered} 7 \\ 178 \\ \hline \end{gathered}$	$\begin{gathered} 161 / 2 \\ 419 \end{gathered}$		v	high efficancy；variable current limit	\＄575
$\begin{aligned} & 0 \\ & 10 \\ & 36 \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 25 \end{aligned}$	814R \dagger	－	322	$\begin{array}{c\|} \hline 10 \mathrm{mv} \\ \mathrm{or} \\ 0.03 \% \end{array}$	$\begin{array}{\|c\|} \hline 10 \mathrm{mv} \\ 0 \mathrm{or} \\ 0.03 \% \end{array}$	1	100	105－125	57 10 63 6	v\＆a	，	\checkmark＇		\checkmark	$\begin{aligned} & 90 \\ & 40,5 \end{aligned}$	$\begin{gathered} 100 \\ 45 \end{gathered}$	$\begin{gathered} 19 \\ 487 \end{gathered}$	$\begin{gathered} 7 \\ 178 \\ \hline \end{gathered}$	$\begin{aligned} & 181 / 3 \\ & 467 \end{aligned}$	\checkmark	\checkmark	variable voltage and currend limil	\＄775
$\begin{aligned} & 0 \\ & 10 \\ & 36 \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 75 \end{aligned}$	6455A	SCR－3	326			180	$\begin{gathered} 50 \\ (m s e c) \\ \hline \end{gathered}$	$\begin{gathered} 3 \phi \\ 208 / 230 \\ \pm 10 \% \end{gathered}$	57 6 63 6	v\＆a	\checkmark	\checkmark		\checkmark	$\begin{gathered} 220 \\ 99 \end{gathered}$	$\begin{aligned} & 255 \\ & 114,8 \end{aligned}$	$\begin{gathered} 19 \\ 493 \\ \hline \end{gathered}$	$\begin{aligned} & 14 \\ & 356 \end{aligned}$	$\begin{array}{\|l} 17 \\ 432 \\ \hline \end{array}$		\checkmark	righ efficiency，variable carrent limit	\＄1450
$\begin{aligned} & 0 \\ & 10 \\ & 40 \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 0.5 \end{gathered}$	723A	－	322	20 mv	10 mv	0.15	－	$\begin{gathered} 115 / 230 \\ \times 10 \% \end{gathered}$	$\begin{array}{\|c} 50 \\ 10 \\ 1000 \\ 10 \end{array}$	V／s	\checkmark		\checkmark	R	$\begin{aligned} & 11 \\ & 5 \end{aligned}$	$\begin{aligned} & 21 \\ & 9,5 \end{aligned}$	$\begin{aligned} & 54 / 8 \\ & 130 \end{aligned}$	$\begin{aligned} & 6 y \\ & 171 \end{aligned}$	$\begin{aligned} & 12 \\ & 305 \end{aligned}$		\checkmark	variable current limut	\＄240
$\begin{aligned} & 0 \\ & t 0 \\ & 40 \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 0.5 \\ \hline \end{gathered}$	865C	－	332	$\begin{array}{c\|} \hline 25 \mu \mathrm{o} \\ + \\ 0.02 \% \\ \hline \end{array}$	$\begin{gathered} 25 \mu \theta \\ + \\ 0.02 \% \end{gathered}$	0.2	50	$\begin{gathered} 105-125 \\ 0 r \\ 210-250 \end{gathered}$	$\begin{gathered} 50 \\ 10 \\ 440 \\ \hline \end{gathered}$	v / s	\checkmark	\checkmark	\checkmark	R	$\begin{gathered} 18 \\ 6.3 \end{gathered}$	$\begin{array}{r} 16 \\ 7.2 \\ \hline \end{array}$	$\begin{array}{\|c\|} 7 . \\ 13 / 16 \\ 138 \\ \hline \end{array}$	$\begin{gathered} 5 \\ 1 / 16 \\ 129 \\ \hline \end{gathered}$	$\begin{aligned} & 81 / 2 \\ & 216 \\ & \hline \end{aligned}$	\checkmark	\checkmark	high－speed programming；useful as a low．Ireguency amolifior	\＄179
$\begin{gathered} 0 \\ \text { to } \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ 10 \\ 0.75 \end{gathered}$	6200A	LAB	315	$\begin{gathered} 4 \mathrm{mv} \\ + \\ 0.01 \% \end{gathered}$	$\begin{gathered} 4 \mathrm{mv} \\ 4 . \\ 0.01 \% \end{gathered}$	0.2	50	$\begin{gathered} 103-125 \\ \text { of } \\ 210.250 \end{gathered}$	50 10 400	vea	\checkmark	$\checkmark '$	\checkmark	R	$\begin{array}{r} 18 \\ 8,1 \end{array}$	$\begin{gathered} 20 \\ 9 \end{gathered}$	$\begin{aligned} & 83 \\ & 210 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \\ & \hline \end{aligned}$	$\begin{array}{r} 13 \\ 330 \\ \hline \end{array}$	\checkmark	\checkmark	dual－ranga output selected by front－ ganel pushbuttons；other range： 0.20 v，0－1．5 a；variable voltage and curreni limia	510
$\begin{aligned} & 0 \\ & 10 \\ & 40 \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 0.75 \\ \hline \end{gathered}$	6802A	LAB	315	$\begin{gathered} 4 \mathrm{mv} \\ + \\ 0.01 \% \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \mathrm{mv} \\ + \\ 0.01 \% \\ \hline \end{array}$	0.2	50	$\begin{gathered} 105.125 \\ \text { aI } \\ 210-250 \\ \hline \end{gathered}$	50 10 400 50	v／a	\checkmark	\checkmark	\checkmark	i	$\begin{aligned} & 18 \\ & 81 \end{aligned}$	$\begin{gathered} 20 \\ 9 \end{gathered}$	$\begin{aligned} & 81 / 9 \\ & 210 \\ & \hline \end{aligned}$	$\begin{aligned} & 342 \\ & 89 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 330 \end{aligned}$	\checkmark	\checkmark	fronl and reat oulpul terminals：K fach width gackage；varlable voltage and current limit	\＄179
$\begin{aligned} & 0 \\ & \text { to } \\ & 60 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 2 \end{gathered}$	726AR		322	5 mr	2.5 mv	0.25	200	$\begin{gathered} 115 / 230 \\ =10 \% \end{gathered}$	50 50 60	－\＆	\checkmark	\checkmark		\checkmark	$\begin{gathered} 25 \\ 11.3 \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ 17,1 \\ \hline \end{gathered}$	$\begin{array}{r} 19 \\ 483 \end{array}$	$\begin{aligned} & 5 / 1 \\ & 133 \end{aligned}$	$\begin{gathered} 12 \\ 305 \\ \hline \end{gathered}$			front and rear output terminals；vari－ able current limil	\＄595
$\begin{aligned} & 0 \\ & 10 \\ & 60 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 3 \end{gathered}$	6271A	LVA	320	$\begin{aligned} & 200 \mu \mathrm{~V} \\ & \dot{+} \\ & 0.01 \% \end{aligned}$	$\begin{array}{c\|} 200 \mu v \\ +0.0187 \end{array}$	0.5	50	$\begin{gathered} 105.125 \\ \text { of } \\ 210.250 \end{gathered}$	48 10 63 5	v\＆a	\checkmark	\checkmark		\checkmark	$\begin{gathered} 36 \\ 16.2 \\ \hline \end{gathered}$	$\begin{gathered} 47 \\ 21,2 \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 483 \\ \hline \end{gathered}$	$\begin{gathered} 31 / 2 \\ 89 \end{gathered}$	$\begin{gathered} 171 / 2 \\ 485 \end{gathered}$	V＇	\checkmark	variable voltage and cirrant limil	\＄435
$\begin{gathered} 0 \\ 10 \\ 60 \end{gathered}$	$\begin{gathered} \hline 0 \\ 10 \\ 3 \\ \hline \end{gathered}$	6371A	LVR	320	$\begin{gathered} 200 \mu \mathrm{y} \\ \frac{1}{4} \\ 0.018 \mathrm{~g} \end{gathered}$		0.5	50	$\begin{gathered} 105-125 \\ 0 r \\ 210.250 \\ \hline \end{gathered}$	$\begin{aligned} & 48 \\ & 10 \\ & 63 \end{aligned}$	no	\checkmark	\checkmark		\checkmark	$\begin{gathered} 34 \\ 15,3 \end{gathered}$	$\begin{gathered} 45 \\ 20,3 \\ \hline \end{gathered}$	$\begin{array}{r} 19 \\ 483 \\ \hline \end{array}$	$\begin{aligned} & 316 \\ & 89 \\ & \hline \end{aligned}$	$171 / 2$		\checkmark	well regulated，＂stripped－down＂ver． sion of 6271 A	\＄359
$\begin{aligned} & 0 \\ & \text { to } \\ & 60 \end{aligned}$	$\begin{gathered} 0 \\ \text { to } \\ 5 \end{gathered}$	6438A	SCR－IP	325	$\begin{aligned} & 45 \\ & \text { op } 0, \\ & \text { combl } \end{aligned}$		120	$\begin{gathered} 300 \\ \langle m s a c) \end{gathered}$	105－125	$\begin{aligned} & 57 \\ & 10 \\ & 63 \end{aligned}$	－83	\checkmark	\checkmark		\checkmark	$\begin{gathered} 32 \\ 14,4 \end{gathered}$	$\begin{gathered} 4 . \\ 19,4 \end{gathered}$	$\begin{array}{r} 19 \\ 483 \\ \hline \end{array}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{aligned} & 171 / 2 \\ & 445 \end{aligned}$	\checkmark	\checkmark	high efficiency；variable veltage and curfont Ilmit	3360
$\begin{aligned} & 0 \\ & t 0 \\ & 60 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 7.5 \\ \hline \end{gathered}$	81084	－	322	$\begin{array}{\|c\|} \hline 10 \mathrm{mv} \\ 0 \% \\ 0.02 \% \end{array}$	$\left[\begin{array}{c} 5 \pi v \\ 0 \\ 0.01 \% \end{array}\right.$	1	100	105．125	57 10 63	v\＆8	\checkmark	\checkmark		\checkmark	$\begin{aligned} & 60 \\ & 27 \\ & \hline \end{aligned}$	$\begin{gathered} 67 \\ 30,2 \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ 483 \end{gathered}$	$\begin{aligned} & 51 / 4 \\ & 133 \end{aligned}$	$\begin{gathered} 163 / 1 \\ 425 \end{gathered}$	\checkmark	\checkmark	variable voltage and current limit	5695
$\begin{array}{r} 0 \\ 10 \\ 60 \\ \hline \end{array}$	$\begin{aligned} & \hline 0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	6439A	SCR－1P	325	180 comb	mix	60	$\begin{gathered} 300 \\ (\text { msec }) \end{gathered}$	105．125	$\begin{array}{r} 57 \\ \text { to } \\ 63 \\ \hline \end{array}$	v\＆a	\checkmark	\checkmark		v＇	$\begin{array}{r} 60 \\ 27 \\ \hline \end{array}$	$\begin{gathered} 73 \\ 32.9 \\ \hline \end{gathered}$	$\begin{array}{r} 19 \\ 483 \\ \hline \end{array}$	$\begin{aligned} & 51 / 1 \\ & 133 \end{aligned}$	$\begin{aligned} & 163 / 1 \\ & 425 \end{aligned}$	，	\checkmark	high efficiency；variable vollage sont cyrrent limil	5550
$\begin{aligned} & 0 \\ & \text { to } \\ & 64 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 0.5 \end{gathered}$	$\begin{aligned} & \text { 6206A } \\ & 6206 A M \end{aligned}$	LAB	315	$\begin{gathered} 4 \pi v \\ 4 \\ 0.01 \% \end{gathered}$	$\begin{gathered} 4 \mathrm{mv} \\ + \\ 0.01 \% \end{gathered}$	0.2	50	$\begin{gathered} 105-125 \\ 01 \\ 210 \cdot 250 \end{gathered}$	$\begin{aligned} & 50 \\ & 10 \\ & 400 \end{aligned}$	$\left.\begin{array}{\|c\|} \hline n 0 \\ v \& a \end{array} \right\rvert\,$	\checkmark	\checkmark	\checkmark	8	$\begin{aligned} & 18 \\ & 8.1 \end{aligned}$	$\begin{gathered} 20 \\ 9 \end{gathered}$	$\begin{aligned} & 814 \\ & 210 \end{aligned}$	$\begin{aligned} & 31 / 2 \\ & 89 \end{aligned}$	$\begin{gathered} 13 \\ 330 \end{gathered}$		\checkmark	ront and rear output temminals，ys rack width package，dual－range oulput selected by front－panel pusfouttons： other range： 0.32 v． 0.1 a；varabie currenl limit	$\begin{aligned} & \$ 164 \\ & \$ 184 \end{aligned}$
0 to 64	$\begin{gathered} 0 \\ \text { to } \\ 1 \end{gathered}$	6242A ${ }^{\text {¢ }}$	－	322	$\begin{gathered} 3 \mathrm{mv} \\ 01 \\ 0.02 \% \end{gathered}$	$\begin{gathered} 5 \mathrm{mv} \\ \text { of } \\ 0.02 \mathrm{y} \end{gathered}$	0.2	50	$\begin{gathered} 105.125 \\ 01 \\ 210.250 \\ \hline \end{gathered}$	50 10 400	v\＆s	\checkmark	v	\checkmark	\checkmark	$\begin{gathered} 25 \\ 11,3 \end{gathered}$	$\begin{gathered} 30 \\ 13,5 \end{gathered}$	$\begin{array}{r} 19 \\ 483 \end{array}$	$\begin{aligned} & 31 / 4 \\ & 83 \end{aligned}$	$\begin{array}{\|c} 161 / 4 \\ 425 \\ \hline \end{array}$	\checkmark	\checkmark	plug－in printed circuil card seifels dual－ output range；other Isnge： $0.32 \quad \mathrm{~V}_{1}$ 0.2 a ；variable voltage and current limik	$\$ 4.3$
$\begin{gathered} 0 \\ 10 \\ 64 \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 10 \\ & 50 \\ & \hline \end{aligned}$	6459A	SCR－3	326	$\begin{aligned} & 0.2 \%+ \\ & \text { comoi } \end{aligned}$	$\begin{gathered} 10 \mathrm{mv} \\ \text { bined } \end{gathered}$	160	$\begin{gathered} 50 \\ \text { (misec) } \end{gathered}$	$\begin{array}{\|c\|} \hline 3 \$ \\ 208 / 230 / \\ 460 \times 10 \% \\ \hline \end{array}$	57 10 63 6	4\＆a	\checkmark	\checkmark		\checkmark	$\begin{gathered} 238 \\ 107.1 \\ \hline \end{gathered}$	$\begin{gathered} 275 \\ 123.8 \end{gathered}$	$\begin{gathered} 19 \\ 483 \end{gathered}$	$\begin{gathered} 14 \\ 355 \end{gathered}$	$\begin{array}{r} 181 / 4 \\ 454 \\ \hline \end{array}$	\checkmark	\checkmark	high efficiency；variable voltage and currem limit	51450
$\begin{aligned} & 0 \\ & \text { to } \\ & 72 \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ 5 \end{gathered}$	\＄05A	SCR－1	524	360 000	my	720	$\begin{gathered} 50 \\ (\text { mises }) \end{gathered}$	105－125	57 10 63	uka	\checkmark	\checkmark		\checkmark	$\begin{array}{r} 50 \\ 22,5 \\ \hline \end{array}$	$\begin{aligned} & 60 \\ & 27 \end{aligned}$	$\begin{array}{r} 19 \\ 493 \\ \hline \end{array}$	$\begin{array}{r} 51 / 2 \\ 133 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ 305 \\ \hline \end{array}$		\checkmark	high efficiency：variable current limit	\＄475

HARRISON POWER SUPPLIES

Condensed listing

1 year warranty; no turn-on, tum-ofl oversinool; shopt circuil proot, all seml-conoucsor exceDt as noted by \ddagger.
Soldd-state cupplifes: glass-apoxy orinled circuil board conshucton, fally ausonatic overload protection-short carcult proot.
Tome requirad for output voltage recovery to withim "Y" millivolts of the nomilal outpat voltage, where "Y" is of the same drdet as the load regulathon, and the nominal oulput voitage is defined as the mean between the no load and fulload voltages.
\dagger Chopoer stabilized units also avallableal $\$ 125$ exira.
 of irom constant current to constant voltage operalion by means of substututing plug-in pinted wirleg card and rearranging straps on rear barrier strip.
** Units with "R" in rack model column can te rack mounted utlizjng optional panels.

LAB SERIES DC POWER SUPPLIES

Compact, high-performance, multi-purpose supplies

These low-price, high-performance power supplies have a unique combination of electrical and mechanical features which make them the most versatile Jaboratory porwer supplies available. All units are highly regulated, feature low ripple and noise and freedom from drift. The supplies automatically regulate with respect to either the front or rear terminals, according to where the load is atlached.

All supplies are foating, and either the positive or negative output terminal may be connected to chassis through a separate terminal. Included on the reer barrier strip are terminals for cemote sensing, remote programming, AutoSeries, Auto-Parallel and Auto-Tracking operation. All power supply components are mounted directly on a single glass epoxy printed wiring board which is an integral part of the supply.

Further advantages include voltage ratings to 160 volts, current ratings to 3 amps , output wattage to 32 watts; Constant Voltage/Constant Current and Constant Voltage/Cur-

Volts	Amps	Harrtson model
0 to 7.5	0 to 3	6203 A
$\begin{aligned} & 01018 \\ & 01036 \end{aligned}$	0100.6 dual range 0 to 0.3 .	6204A, AM
0 to 20	0 to 1.5	6201A
$\begin{aligned} & 0 \text { to } 20 \\ & 0 \text { to } 40 \end{aligned}$	0 to 1.5 0100.75 dual range	6200 A
01040	0100.75	6202A
$\begin{aligned} & 0 \text { to } 32 \\ & 0 \text { to } 64 \end{aligned}$	0101 0 to 0.5 dual range	6206A,AM
010160	0100.2	6207A

6200A

6202A

6201A

6203A

Specifications, all models

Output terminals: front and cear panels.
Translent recovery time: less than $50 \mu \mathrm{sec}$ to within 10 mr . (20 mv for 6203A).
Maximum operating temperature: $50^{\circ} \mathrm{C}$.
remperature coefficient: less than $0.02 \%+1 \mathrm{mv} /{ }^{\circ} \mathrm{C}$.
Stability: less than $0.1 \%+5 \mathrm{mv}$ for 8 hours.

Clip-on accessories for LAB series supplies

Unique clip-together features, utilizing keyways and solder rivets, simplify rack mounting and accessory attach. ment. The illustrations indicate the versatility of the Harrison LAB supplies.

Part nee.	Dascyiptlon	Price
R6200-1	for mounting one unit	$\$ 20$
R $62003-2$	for mounting two units	$\$ 5$
620060	handle	$\$ 7$
620070	iwin carrier	$\$ 19$

Figurs 1. This block diagram is typical of all modals below 100 volts Dual-range oderation is accomplished by paralleling or serlesing fwo rectifier and power regulator clrcuits while using one comparison am. plifier and control circuit.

62044

6204AM

6206AM

Harrisan model		$\begin{gathered} \text { 6200A } \\ \text { (dual-rangs } \\ \text { outpuli) } \end{gathered}$	6201A	6202A	6203A	$\begin{gathered} 6204 A^{* *} \\ \text { (dual-range } \\ \text { output) } \end{gathered}$	$\begin{gathered} \text { 6206A }=\text { = } \\ \text { (duat-range } \\ \text { outpuf) } \end{gathered}$	6207A
Output	dc voltage	$\begin{aligned} & 0 \text { to } 20 \mathrm{v}, \\ & 0 \text { to } 40 \mathrm{v} \end{aligned}$	0 to 20 V	0 to 40 V	0 to 7.5 v	$\begin{aligned} & 0 \text { to } 18 v . \\ & 0 \text { to } 36 v \end{aligned}$	$\begin{aligned} & 01032 \mathrm{v}, \\ & 0 \text { to } 64 \mathrm{v} \end{aligned}$	0 to 160 V
	do current	$\begin{aligned} & 0 \text { to } 1.5 \mathrm{a}, \\ & 0100.75 \mathrm{a} \end{aligned}$	0101.53	0 to 0.75 a	0103 a	$\begin{aligned} & 0100.6 \mathrm{a} \\ & 0 \text { to } 0.3 \mathrm{a} \end{aligned}$	$\begin{aligned} & 0 \text { to } 1 \mathrm{a}_{1} \\ & 0 \text { to } 0.5 \mathrm{a} \end{aligned}$	0100.2 a
Input		105 co 125 or 210 to 250 vac , 50 to 400 cps						105 to 125 or 210 to 250 v 3 C .57 to 63 cD
Load	CV*	$0.01 \%+4 \mathrm{mv}$			5 mv	0.01\% + 4 mv	$0.01 \%+4 \mathrm{mv}$	$0.02 \%+2 \mathrm{mv}$
regulation	$C C^{*}$	0.03\% + 250 $\mu \mathrm{a}$				-	- -	0.05% or $200 \mu \mathrm{a}$
Line regulation	cV	$0.01 \%+4 \mathrm{mv}$			3 mv	0.01\% + 4 mv	0.01\% + 4 mv	0.02\% + 2 mv
	cc	0.01% or $250 \mu a$				-	-	0.05\% or $200 \mu \mathrm{a}$
Ripple and noise	cy				200 uV rms			500 mv rms
	cc	500 ua rms				-	- -	$200 \mu \mathrm{rms}$
Remote programming		300 ohms per $\mathrm{amp} /$100 ohms per amp $\quad 1000$ ohms/amp					300 ohms/volt	
	cc				500 ohms/a	---	———	3750 ohms/amp
Overload protection						fixed current limit for complele protection for any overload condition; this limit set al approx. 700 ma for the 18 v range and 350 ma for the 36 v range	fixed current limit for complete protection for any overload condition; this limit is set for approx. 1.2 a for the 32 V range and 600 ma for the $64 \vee$ range	same as 6200A
Controls		Iront-panel pushbuttons are used to turn supply on and select one of the two output ranges; coarse and fine vollage and current controls	front-panel pushbuttons turn supply on and are used to select whether meler monilors outpul voltage or output current; coarse and fine voliage and current controls			fronl-panel pushbuttons are used to turn supply on and select one of two oulput ranges; coarse and fine voltage controls		same as 6201A
Meters		$\begin{aligned} & 01040 \mathrm{~V} \\ & 0 \text { to } 1.8 \mathrm{a} \end{aligned}$	$\begin{gathered} 01020 \mathrm{~V} \\ 0102 \mathrm{a} \end{gathered}$	$\begin{gathered} 0 \text { le } 40 v_{1} \\ 0 \text { to } \mathrm{l} \end{gathered}$	$\begin{aligned} & 01010 \mathrm{v} \\ & 0 \text { to } 4 \mathrm{a} \end{aligned}$	$\begin{aligned} & 01040 \mathrm{~V} \\ & 0100.6 \mathrm{a} \end{aligned}$	$\begin{aligned} & 0 \text { to } 64 \mathrm{v} \\ & 0 \text { to } 1.2 \mathrm{a} \end{aligned}$	$\begin{aligned} & 0 \text { to } 200 \mathrm{v} \\ & 0 \text { to } 0.2 \mathrm{a} \end{aligned}$
Dimensions						$181 / 4^{4} \mathrm{~W}, 312^{\prime \prime} \mathrm{h}$. $10^{\prime \prime} \delta(210 \times 89 x$ $254 \mathrm{~mm})$	$\begin{aligned} & 81 / 4^{n} w, 31 / 2^{\prime \prime} h, 13^{n d} \\ & \left(210 \times 80^{2} \times 330 \mathrm{~mm}\right) \end{aligned}$	
Weight (nel/shipping)						$\begin{gathered} 12 / 161 \mathrm{bs} \\ (5,4 / 7,2 \mathrm{~kg}) \end{gathered}$	$18 / 20 \mathrm{lbs}(8,1 / 9 \mathrm{~kg})$	
Price		$\begin{gathered} \text { Marrison } \\ 6200 \mathrm{~A}, \$ 210 \end{gathered}$	$\begin{gathered} \text { Harrison } \\ 6201 \mathrm{~A}, \$ 179 \end{gathered}$	$\begin{gathered} \text { Harrison } \\ 6202 \mathrm{~A}, \$ 179 \end{gathered}$	$\begin{gathered} \text { Harrison } \\ 6203 \mathrm{~A}, \$ 179 \end{gathered}$	Harrison 6204A (without meters), \$124; 6204AM (with meters), \$144	Harrison 6206A (without meters), \$164; 6206AM, (with melers) $\$ 184$	$\begin{gathered} \text { Harrison 6207A, } \\ \$ 194 \end{gathered}$

iv = constant voltage; $C C=$ constant current. $\quad "$ constant current/current limiting.

Double rack mounting in $31 / 2 "$ (89 mm) utilizing Part No. R6200.2 rack adapter.

Single rack mounting in $31 / 2^{\prime \prime}$ (89 mm) utilizing Parl No. R6200.1 rack adapter.

Dual supply utllizing Part No. 620070 Twin Carrier accessory.

800A-2, 800B-2, 880, 802B, 801C POWER SUPPLIES

Heavy-duty bench supplies; dual supplies; strain gage supply

800A-2, 800B-2, 880

These three Harrison models are highly regulared solid-state power supplies intended for general lab use. All are short circuit proof and exhibit no output overshoot when the ac power is turned on or of at any line voltage or load current. Model 800A. 2 contains two identical power supplies which are completely independent except for the common ac power input. Model 800 B .2 is a 2.5 amp supply which provides a continuously adjustable output of 0 to 36 volts. Model 880 is a compact supply providing 0 to 100 volts at 0 to 1 amp .

Rack-mounting panels

The mounting panels listed below permit the 800A-2, 800B-2 or 880 to be adapted to relay rack use. Both panels are $19^{\prime \prime}$ wide and $101 / 2^{\prime \prime}$ high ($483 \times 267 \mathrm{~mm}$). Price: Harcison $800 \mathrm{R1}$, allows one supply to be mounted in center of panel, $\$ 20$; Harrison 800R2, allows two supplies to be mounted side by side, $\$ 20$.

802B Twin Solid-State Power Supply

The 8028 fumishes two independent outputs, 0 to 36 volts at 0 to 1.5 amps. These units have provision for remote error sensing, as well as full protection against a direct short across the output of the power supply. Front and rear output terminals are provided for each of the two supplies.

801C Strain Gage Supply

Designed to operate primarily as a power supply for strain gage applications, the 801 C is a solid-state power supply whose design. construction and size permit extreme isolation from ground and the ac power line-greater than 10,000 megohms to ground or ac input and less than 1 pf capacity from output terminals to inpur power line. Remote error sensing prevision is included. Usiag many supplies to feed a large number of strain gages provides excellent isolation capabilities, and the shorting of a single strain gage will not disrupt the entire test setup.

A rack mounting panel $51 / /^{\prime \prime}$ high and $19^{\prime \prime}$ wide ($133 \times 483 \mathrm{~mm}$) permits nine 801C modules to be rack mounted side by side. All necessary hardware for mounting nine supplies is included. Provision is made on this panel for a label for each power supply. This label receives rear illumination for the pilor light when ac power is applied. Price: Harrison R.801C Rack Mounting Panel, \$18.

Specifications

Hartisan modet	800A.2		8008-2	880			801 C
Output	2 independent supplies		0 to 36 v	0 to 100 v	2 independent supplies		0 to 25 v
	0 to 36 v	0 to 38 v			01036 v	0 to 36 v	
	010 L. 5 a	0 to 1.5 a	0102.5 a	$0 ¢ 018$	0101.5 a	0 to 1.5 a	0 to 0.2 a
Input	105 to $125 \mathrm{v}, 50$ to 65 cps		105 to 125 v .5010440 cps				105 to $125 \mathrm{v}, 55$ to 65 cps
Load regulation	5 mv		10 mv	0.02% or 5 mv	0.01\%	3.6 mv	2 mv
Line regulation	5 mv		5 mv	0.02% or 5 mv	0.01%	3.6 mv	2 mv
Ripple and noise	$<200 \mu \vee$ rms		$<250 \mu \mathrm{vms}$	$<500 \mu v \mathrm{rms}$	<200	vims	$<100 \mu \mathrm{vrms}$
Maximum ambient operating temperature	$50^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$
Stability	less than 0.05\%, plus 10 mv drift tor 8 hours after 30 -min. warm-up						0.1% plus 5 mv
Controls	coarse and fine voltage control: metar switch		coarse and fine voltage control	corrse and fine voltage control	coarse and fine voltage control: meter switch		$\begin{gathered} \text { cosise and fine voitage } \\ \text { control } \end{gathered}$
Meters	0 to 40 vand 0 to 1.8 a		0 to 36 vand 0 to 3 a	0 to 100 v and 0 to 1 a	0 to 40 v and 0 to 1.8 a		-
Dimensions	$\begin{aligned} & 7^{\prime \prime} w \times 9^{\mu} \mathrm{h} \times 101 / 2^{\nu}{ }^{\prime} \\ & (177 \times 228 \times 266 \mathrm{~mm}) \end{aligned}$				$\begin{gathered} 19^{\prime \prime} W \times 31 /{ }^{\prime \prime} h \times 15^{\prime \prime} d \\ (483 \times 88 \times 381 \mathrm{~mm}) \end{gathered}$		$\begin{gathered} 188^{4}{ }^{W}-5 \times 5^{4} \mathrm{~h} \times \mathrm{x} \\ 15 \cdot 56^{6} \mathrm{~d} \\ (41 \times 127 \times 389 \mathrm{~mm}) \end{gathered}$
Weight (net/shigping)	$\begin{gathered} 29 / 32 \mathrm{los} \\ (13 / 14,4 \mathrm{~kg}) \end{gathered}$		$\begin{gathered} 25 / 30 \mathrm{lts} \\ (11,2 / 13,5 \mathrm{~kg}) \end{gathered}$	$\begin{gathered} 25 / 30 \mathrm{Ibs} \\ (11,2 / 13,5 \mathrm{~kg}) \end{gathered}$		$\begin{aligned} & 4 \mathrm{bs} \\ & 15,3 \mathrm{~kg}) \end{aligned}$	$\begin{gathered} 4 / 8 \mathrm{lbS} \\ (1,8 / 3,6 \mathrm{~kg}) \end{gathered}$
Price	\$580		\$399	\$375			\$149

721A, 723A, 6224A, 6226A POWER SUPPLIES

Low-voltage, medium-power supplies

721A Power Supply

The hp 721A Power Supply is designed to produce de voltages for transistor investigation. Its fully regulated output voltages of 0 to 30 volts are sufficient for most rypes of transistors in use roday, It has a three-terminal output, so that either the positive or negative termina! may be grounded, or the supply may be stacked on another voltage, giving the hp 721A maximem output versatility. An outstanding feature of the hp 721 A is a circuit which limits the output current to a nominal value determined by a front-panel switch. In case of accidental overloads, this feature can prevent costly damage to transistors under test.

723A Power Supply

Low noise and sipple make the 723 A partizularly useful in low. level applications. Output terminals are isolated from the chassis and power line ground, so that you may ground either the positive or negative terminal, or operate several units in cascade or parallel for higher voltages, currents. Output voltage of Model 723A may be changed by a front-panel control or simply by changing the value of an external resistance. Thus, output voltage may be programmed remorely by using stepping switches to change the value of the external cesistance in accordance with programmed tests. A meter
which monitors volage or current allows you to set output voltage and observe load conditions conveniently. The variable current-limit control may be set to any value from 60 to 600 ma to protect test circuits from damage.

6224A, 6226A Bench Supplies

These two Harrison medium-power de laboratory supplies are specifically packaged as $1 / 3$ width modules for use in the hp enclosure system (pages 13,14). The 6224A is a 0 -to-18 volt supply at 3 amps and the 6226 A is a $0-10.36$ volk supply at 1.5 amps . Both front and rear output terminals are provided. All interconnections for Auto Series, Auto-Parallel, remote programming and remote error sensing operation are made entirely on the rear barner strip terminals. The front-panel meter is especially easy to read.
Ocher advantages include Constant Voltage/Constant Current operation with automatic crossover; continuous one-knob oukput control, with no range switching; no overshoot on turn-on, turn-off or ac power removal; short circuit proof in constant voltage use; opencircuit proof in constant ourrent use; maximum operating temperature of $50^{\circ} \mathrm{C}$: temperature coefficient of $0.01 \%+2 \mathrm{mv} /{ }^{\circ} \mathrm{C} ; 0.05 \%$ +10 mv stability.

Specifications

hp Mobal	121A	1284
Output voltages:	0 to 30 yde. continuousiy variable	0 to $\$ 0 \times d c$, continuously varigble
Full losa outpul everent:	1150, ma over britie voltage langa	500 ma over entre voltage range
Ripple and noise:	less than $150 \mu \mathrm{rams}$	less than $150 \mu \mathrm{vmas}$
Regulstion:	loas: less than 30 mv : Ine: ioss then 15 mv covef entire voltage range and $=10 \%$ power line fluctuation)	load: less than 20 mv : lina: less than 10 mv (over enilire volige rango and $=10 \%$ power line fluctuation)
Outpu impedance:	less than 0.2 shm in seriss with $30 \mu \mathrm{~h}$	40 milliohms in series with $20 \mu \mathrm{~h}$
Meterins:	current meler: four ranges, o to 300 ms , 0 lo $100 \mathrm{ma}, 0$ to 30 ma , 0 lo 10 na; valtage meter: two ranges. 0 to +10 volts. 0 to +30 volts	cufrent meter: three ranges $010500 \mathrm{ma}, 0$ to $203 \mathrm{mz}, 0$ to 100 ms , woltsge meter: three ranges. 0 to +50 v .0 to +20 v .0 to $0+10 \mathrm{v}$
Overload grotection:	maximum carrent selectad by liont-panel switch; $25 \mathrm{ma}, 50 \mathrm{ma} .100 \mathrm{ma}$, 225 ma; current limiter	miaximum curfent selected by front- Danal control varisole Irom 60 to 600 ms ; cuffent limiter
Dimensions:		
Weight.	net 4 lbs (1.8 kg); shippling 7 libs (3.2 kg)	nel $11 \mathrm{lbs}(4,9 \mathrm{~kg}$) ; shioping $21 \mathrm{lbs}(9,5 \mathrm{Mg})$
Price:	no 721A, S145	hp 723A. 5240
Hastinon madot		
	82244	82294
Output $\frac{\text { voltags }}{\text { current }}$	$010: 8$ volts	01036 volis
	0103 amps	0 to 1.52 mps
Inplal 105 to 125 or 21010250 v .		70 cos, singla phasa
Loadregulation$\mathrm{CV}^{*}$$\mathrm{CC}^{*}$	0.03% or 2 mv	0.028 of 2 mv
	0.05% or $600 \mu 6$	0.05\% or 300μ
$\underset{\text { regulation }}{\text { Line }} \frac{\mathrm{CV}}{\mathrm{CC}}$	0.02% or 2 mv	0.02% or 2 mv
	0.039 or $250 \mu \mathrm{a}$	0.03% or $250 \mu 8$
Rlpdie andnolse $\quad \frac{\mathrm{CV}}{\mathrm{CC}}$	$500 \mu \mathrm{cms}$	$500 \mu^{\mu v} \mathrm{ram}_{5}$
	$200 \mu \mathrm{ma} \mathrm{mls}$	$200 \mu \mathrm{arms}$
RemaleDrogramming $\frac{c V}{c \mathrm{C}}$	2000 hms /velt	200 ohms/voll
	150 ohms/amp	300 ohms/9mp
Controls both coarse and ling vollage and eursent controls are providedi a meter swit		ahas posslble the monitoring of either outpul voltage or curreat
Meters		$01040 \mathrm{v}, 0 \mathrm{taza}$
		$8 \mathrm{P}(6) \times 171 \times 279 \mathrm{~mm})$
Wsight - -		DDing $20105(9 \mathrm{~kg})$
Price	Harrison 6224A, $\$ 350$	Hariston 5226 A. 3325

* cv Indicales constant voltage operation; cé indicsiess constant curfent operalton

LVR SERIES POWER SUPPLIES

High-performance, low voltage, rack mounting supplies

The Harrison LVR Series ponver supplies are versarile, compact, high-performance supplies designed for both lab and system use. Design and construction of these two groups of supplies are similar except for constant current features, front-panel concrols and meters. They offer $0.01 \%+200$ μv regulation, and ripple less than 500 microvolts.

Advantages include Auto-Series, Auto-Parallel and AutoTracking operation; remote programming (voltage and current can be programmed by resistance or control voltages) ; remote error sensing; continuously variable voltage and current adjustments, no range switching; superior output impedance over a wide frequency band; differential amplifier
front end; use of silicon transistors where leakage and stability are critical; transient recovery time of less than 50 microseconds (in constant voltage operation) to within 10 millivolts of the nominal output voltage; operating temperarure range of 0 to $50^{\circ} \mathrm{C}$ (storage -20 to $+71^{\circ} \mathrm{C}$).

In addition, the following features are included on the 6263A, 6264A, 6269A, 6266A, 6267A and 6271A: Constant Voltage/Constant Current with automatic crossover; coarse and fine controls on the front panel; silicon differential amplifier packages in the constant current and constant voitage circuics; sharp cutover from constant voltage to constant current operation.

6264A
6267A

Specifications, LVR Series

Harrison model	6263A	6363 A	6284A	6354A	6285A	6368 A
DC output	0 to 18 volts at 0 to 10 amps		0 to 18 volts at 0 to 20 amps		0 to 36 volls at 0 to 3 amps	
AC input	105 to 125/2) 0 to 250 y ac , 48 to 63 cps					
Load regulation ${ }^{\text {cc* }}$	$0.01 \%+200$ 少					
	$0.02 \%+500 \mu \mathrm{a}$	\square	$0.02 \%+500 \mu 8$	- -	$0.02 \%+500 \mu$ a	-
Line regulation	$0.01 \%+200 \mu \mathrm{v}$					
	$0.02 \%+500 \mu \mathrm{a}$	\square	0.02\% +500 $\mu 9$	-	$0.02 \%+500 \mu \mathrm{a}$	-
Ripple and noise \quad CV	500 microvolts rms					
	3 milliamos mms	- -	5 milliamps rms	-	3 milliamps rms	-
Temperalure coefficient (output chsnge per derree C CV	$0.01 \%+200 \mu \mathrm{~V}$	$0.02 \%+500 \mu \mathrm{~V}$	$0.01 \%+200 \mu \mathrm{~V}$	$0.02 \%+500 \mu v$	$0.01 \%+200 \mu \mathrm{~V}$	$0.02 \%+500 \mu v$
change in ambient follow. Cc ing 30 min warm-up)	$0.01 \%+2 \mathrm{ma}$	-	$0.01 \%+2 \mathrm{ma}$	-	$0.01 \%+1 \mathrm{ma}$	-
Stability (under constant ambient conditions total drift CV	0.03\% + 2 mv	$0.05 \%+5 \mathrm{mv}$	0.03\% +2 mv	0.05\% + 5 mv	$0.03 \%+2 \mathrm{mv}$	0.05\% + 5 mv
for 8 he following 30 min cc warm-up)	$0.03 \%+5 \mathrm{mb}$	\longrightarrow	$0.03 \%+5 \mathrm{ma}$	- -	0.03\% + 2 ma	-
Remote programming (all programming terminals are	200 ohms/volt					
located on rear barrier cc strips	100 ohms/amp		25 ohms/amp		$300 \mathrm{ohms} / \mathrm{amp}$	- -
Meters	$\begin{aligned} & 0 \text { to } 20 \mathrm{v} \text { and } \\ & 0 \text { to } 12 \mathrm{gmp} \end{aligned}$	no meters	$\begin{aligned} & 01020 \mathrm{v} \text { and } \\ & 0 \text { to } 20 \mathrm{mp} \end{aligned}$	no meters	$\begin{aligned} & 0 \text { to } 40 \mathrm{v} \text { and } \\ & 0 \text { to } 3 \mathrm{gmp} \end{aligned}$	no meters
Controls	front panel coarse and fine	rear panel voltage	front panel coarse and fine	rear panel voltage	front panel coarse and fine	rear panal voltage
Dimensions	$\begin{gathered} 19^{\prime \prime} w, 31 / \%^{\prime \prime} \hbar, 171 / 2^{*} \mathrm{~d} \\ (483 \times 88 \times 444 \mathrm{~mm}) \end{gathered}$		$\begin{gathered} 19^{\prime \prime} \mathrm{w}, 51 / \mathrm{s}^{8} \mathrm{~h}, 171_{2}^{2} \mathrm{~d} \\ (483 \times 133 \times 444 \mathrm{~mm}) \end{gathered}$		$\begin{gathered} 19^{*} w, 31 / 2^{2} h, 171 / 2^{v} \mathrm{~d} \\ (483 \times 88 \times 444 \mathrm{~mm}) \end{gathered}$	
Weight (net/shipping)	$\begin{gathered} 36 / 47 \text { Ibs } \\ (16,2 / 21,2 \mathrm{~kg}) \end{gathered}$	$\begin{gathered} 34 / 45 \mathrm{lbs} \\ (15,3 / 20,2 \mathrm{~kg}) \end{gathered}$	$\begin{gathered} 54 / 86 \mathrm{Ibs} \\ (24,3 / 29,7 \mathrm{~kg}) \end{gathered}$	$\begin{gathered} 52 / 64 \mathrm{lbs} \\ (23,4 / 28,8 \mathrm{~kg}) \end{gathered}$	$\begin{gathered} 36 / 47 \mathrm{lbs} \\ (16,2 / 21,2 \mathrm{~kg}) \end{gathered}$	$\begin{gathered} 34 / 45 \mathrm{lbs} \\ (15,3 / 20.2 \mathrm{~kg}) \end{gathered}$
Price	Harrison 6263A, $\$ 435$	$\begin{gathered} \text { Harrison } \\ 6363 A, \$ 359 \end{gathered}$	Harrison 6264A, \$525	$\begin{gathered} \text { Harrison } \\ 6364 A, \$ 450 \end{gathered}$	$\begin{gathered} \text { Herrisun } \\ 6265 \mathrm{~A}, \$ 350 \end{gathered}$	$\begin{gathered} \text { Harrison } \\ 6355 \mathrm{~A} . \$ 279 \end{gathered}$

Specifications, LVR Series

Harrison modil	82664	83868	6267A	8367A	6271A	63714
DC outpul	0 to 36 volts at 0 to 5 amps		0 to 36 volis at 0 to 10 amps		0 to 60 volts at 0 to 3 amps	
AC input	105 to 125/210 to 250 v ac, 48 to 63 cps					
Load regulation	$0.01 \%+200 \mu \psi$					
	$0.02 \%+500 \mu \mathrm{a}$			-	$0.02 \%+500 \mu \mathrm{~d}$	-
Line regulation $\quad \frac{\mathrm{cv}}{\mathrm{cc}}$	$0.01 \%+200 \mu \mathrm{v}$					
	$0.02 \%+500 \mu$ z	-	$0.02 \%+500 \mu$ 亿	-	0.02\% + 500μ	--
Ripple and noise $\quad \frac{\mathrm{CV}}{\mathrm{CC}}$	500 microvalts rms					
	3 milliamps rms	-	3 milliamps rms	-	3 milliamps rms	-
Temperature coefficient (outDut change per degree $\mathbb{C} \mathrm{cv}$	$0.01 \%+200 \mu v$	$0.02 \%+500 \mu v$	$0.01 \%+200 \mu \nu$	$0.02 \%+500 \mu \nu$	$0.01 \%+200 \mu v$	$0.02 \%+500 \mu v$
change in ambient follow. Cc ing 30 min warm-up)	$0.01 \%+2 \mathrm{ma}$	-	$0.01 \%+2 \mathrm{ma}$	-	$0.01 \%+1 \mathrm{~ms}$	-
Stability (under constant ambient conditions, total drift cv	$0.03 \%+2 \mathrm{mv}$	0.05\% +5 mv	$0.03 \%+2 \mathrm{mv}$	$0.05 \%+5 \mathrm{mv}$	0.03\% +2 mv	0.05\% +5 mv
for 8 hr following 30 min cc warm-up)	0.03\% +5 ma	-	$0.03 \%+5 \mathrm{ma}$	-	0.03\% + 2 m	-
Remote programming (all programming terminals are cv localed on rear barrier cc strips)	200 ohms/volt				$300 \mathrm{ohms/volt}$	
	200 ohms/amp	-	100 ohms/amp	-	$300 \mathrm{ohms} / \mathrm{smp}$	-
Meters	$\begin{aligned} & 0 \text { to } 40 \mathrm{v} \text { and } \\ & 0 \text { to } 6 \mathrm{amps} \end{aligned}$	no meters	$\begin{aligned} & 01040 \mathrm{v} \text { and } \\ & 0 \text { to } 10 \mathrm{amps} \end{aligned}$	no meters	$\begin{aligned} & 01060 \mathrm{vand} \\ & 0103 \mathrm{mps} \end{aligned}$	no meters
Controls	front panel coarse and fine	rear panel voltage	front panal coarse and fine	rear panel voltage	front panel coarse and fine	rear panel voltage
Dimensions	$\begin{aligned} & 19^{7} \mathrm{w}, 31 / 2^{*} \mathrm{n}, 1712^{\prime \prime} \mathrm{d} \\ & \left(483^{\circ} \times 88 \times 444 \mathrm{~mm}\right) \end{aligned}$		$\begin{aligned} & 19^{\nu} w, 51 / 4^{v} h_{h} 171 / /^{v} d \\ & (483 \times 133 \times 444 \mathrm{~mm}) \\ & \hline \end{aligned}$		$19^{\prime \prime} \mathrm{w}, 31 / 2^{2} \mathrm{~h}, 17 \mathrm{~K}^{12} \mathrm{~d}$ ($483 \times 88 \times 444 \mathrm{~mm}$)	
Weight (net/shipping)	$\begin{gathered} 36 / 47 \mathrm{lbs} \\ (16,2 / 21,2 \mathrm{~kg}) \end{gathered}$	$\begin{gathered} 34 / 45 \mathrm{lbs} \\ (15,3 / 20,2 \mathrm{~kg}) \end{gathered}$	$\begin{gathered} 54 / 66 \mathrm{lbs} \\ (24,3 / 29,7 \mathrm{~kg}) \end{gathered}$	$\begin{gathered} 52 / 64 \mathrm{lbs} \\ (23,4 / 28,8 \mathrm{~kg}) \end{gathered}$	$\begin{gathered} 36 / 47 \mathrm{lbs} \\ (16,2 / 21,2 \mathrm{~kg}) \end{gathered}$	$\begin{gathered} 34 / 45 \mathrm{fbs} \\ (15,3 / 20,2 \mathrm{~kg}) \end{gathered}$
Price	$\begin{gathered} \text { Harrison } \\ 626 \$ \mathrm{~A}, \$ 435 \end{gathered}$	$\begin{gathered} \text { Harrison } \\ 6366 A_{i} \$ 359 \end{gathered}$	$\begin{gathered} \text { Harrison } \\ 6267 \mathrm{~A}, \$ 525 \\ \hline \end{gathered}$	$\begin{gathered} \text { Harrison } \\ 6367 \mathrm{~A}, \$ 450 \\ \hline \end{gathered}$	$\begin{gathered} \text { Harrison } \\ 6271 \mathrm{~A}, \$ 435 \end{gathered}$	$\begin{gathered} \text { Harrison } \\ 6371 \mathrm{~A}, \$ 359 \end{gathered}$

[^32]
726AR, 808A, 809A, 810B, 814A, 881 A, 6242A, 6244A SUPPLIES

Rack mounted dc power supplies

These eight general-purpose rack-mounting power supplies provide highly regulated do outpur suitable for a variety of instrumentation and system applications. Three use a plug-in card to determine whether operation is in the constant voltage or the constant current mode. One is a constant voltage supply with current limiting, and four have automatic crossover between constant voltage and constant current operation, depending upon the settings of the frontpanel controls as compared with the load resistance value.

Harrison 808A, 809A, 881A

These precision power supplies require only the insertion of a printed circuit plug-in card for determination of constant voltage or constant current mode of operation. Plug-in circuit cards furnished with each instrument provide for selecting the mode of operation and for AuroSeries and Auto-Parallel operation.

Units provide remote programming, remote error sensing and a continuously adjustable current limit control. Output of the 808 A is 0 to 36 volt, 0 to 5 amp ; of the $809 \mathrm{~A}, 0$ to 36 volt, 0 to 10 amp ; of the $882 \mathrm{~A}, 0$ to 100 volt, 0 to 1 amp .

hp 726AR

Two-ampere current capacity and remote programming make this 0.60 v dc power supply ideal for large scale component and module testing. Continuously adjustable current limiter protects external components. Floating output, voltage and current continuously metered.

Harrison 810B, 814A, 6242A, 6244A

Offered in rack-mount enclosures, these power supplies provide automatic crossover between constant voltage and constant current operation, no overshoot on turn-on and tum-off, short circuit and open circuit protection, remore programming, remote error sensing, continuously adjustable limit controls, optional chopper amplifier for improved stability.

The 6242 A provides two ranges, 0 to 32 volts at 0 to 2 amps or 0 to 64 vols at 0 to 1 amp, selectable by changing a single plug-in printed circuit card. Model 6244A provides a standard output of 0 to 36 volts, 0 to 3 amps. The 810 B fumishes 0 to 60 volts at 0 to 7.5 amps , and the 814 A is a heavy-duty instrument providing 0 to 36 volts at 0 to 25 amps. Common to the supplies is the automatic crossover feature. Each includes a continuously adjustable constant current control which, when the supply is being used as a constant voltage source, allows the maximum output current ro be set at any value up to the maximum current rating. All may be used in Auto-Series, Auto Parallel operation to increase toral voltage and current output, with one-knob master control, automatic current and voltage equalizing and foll range control from any selected instrument in the series.

Specifications

Model	808A	B09A	8814	726AR	G242A	6244A	810 B	8144
DC output	$\begin{aligned} & 01036 \mathrm{v} \\ & 0105 \mathrm{~g} \end{aligned}$	$\begin{aligned} & 0 \text { to } 36 \mathrm{v}, \\ & 0 \text { to } 10 \mathrm{a} \end{aligned}$	$\begin{aligned} & 010100 \mathrm{v}, \\ & 010 \mathrm{l}, \end{aligned}$	$\begin{aligned} & 0 \text { to } 60 \mathrm{~V}, \\ & 0 \text { to } 2 \mathrm{a} \end{aligned}$	$\begin{aligned} & \text { o to } 32 \mathrm{v} \\ & \text { at } 0 \text { 102 } \\ & \text { or } 0 \text { to } 04 \mathrm{a} \\ & \text { at } 0 \text { v } 1 \mathrm{a} \\ & \text { selectable by } \\ & \text { plug-in cir- } \\ & \text { cuit card } \end{aligned}$	$\begin{aligned} & 0 \text { to } 36 \mathrm{v} \\ & \text { at } 0 \text { to } 3 \mathrm{a} \end{aligned}$	0 to 60 v at 0 to 7.5 a	$\begin{aligned} & 0 \text { to } 36 \mathrm{v} \\ & \text { at } 0 \text { to } 25 \text { a } \end{aligned}$
$\begin{aligned} & \text { Load ov } \\ & \text { regulation co } \end{aligned}$	0.01% or 3.5 mv 0.1% or 5 ma	$\begin{aligned} & 0.02 \% \text { or } 7.2 \mathrm{mv} \\ & 0.2 \% \text { or } 10 \mathrm{ma} \end{aligned}$	$\begin{aligned} & \hline 0.02 \% \text { or } 5 \mathrm{mv} \\ & 0.02 \% \text { or } 200 \mu \mathrm{a} \end{aligned}$	<5 mv	$\begin{gathered} 0.02 \% \text { or } 3 \mathrm{mv} \\ 0.1 \% \text { or } 2 \mathrm{ma} \end{gathered}$	0.02% or 5 mv 0.1% or 3 ma	$\begin{aligned} & 0.02 \% \text { or } 10 \mathrm{mv} \\ & 0.05 \% \text { or } 3.5 \mathrm{ma} \end{aligned}$	$\left\|\begin{array}{l\|} 0.03 \% \text { or } 10 \mathrm{mv} \\ 0.05 \% \text { or } 12 \mathrm{ma} \end{array}\right\|$
$\begin{aligned} & \text { Line cV } \\ & \text { regulation cc } \end{aligned}$	0.01% or 3.6 mv 0.1% or 5 ma	$\begin{aligned} & 0.02 \% \text { or } 7.2 \mathrm{mv} \\ & 0.2 \% \text { or } 10 \mathrm{ma} \end{aligned}$	$\begin{aligned} & \hline 0.02 \% \text { or } 5 \mathrm{mv} \\ & 0.05 \% \text { or } 100 \mu \mathrm{a} \end{aligned}$	$<2.5 \mathrm{mv}$	$\begin{gathered} 0.03 \% \text { or } 5 \mathrm{mv} \\ 0.1 \% \text { or } 2 \mathrm{ma} \\ \hline \end{gathered}$	$\begin{aligned} & 0.01 \% \text { or } 2 \mathrm{mv} \\ & 0.1 \% \text { or } 3 \mathrm{ma} \end{aligned}$	0.01% or 5 mv 0.05% or 3.5 ma	$\begin{aligned} & 0.03 \% \text { or } 10 \mathrm{mv} \\ & 0.05 \% \text { or } 12 \mathrm{mz} \end{aligned}$
Ripole cy and noise cc (rms)	$\begin{gathered} 500 \mu \mathrm{~V} \\ 3 \mathrm{ma} \end{gathered}$	$\begin{gathered} 500 \mu v \\ 5 \mathrm{ma} \end{gathered}$	$\begin{aligned} & 200 \mu v \\ & 100 \mu \mathrm{a} \end{aligned}$	$<250 \mu v$	$\begin{gathered} 200 \mu v \\ 2 \mathrm{ma} \end{gathered}$	$\begin{aligned} & 1 \mathrm{mv} \\ & 3 \mathrm{mv} \end{aligned}$	$\begin{aligned} & 1 \mathrm{mv} \\ & 3 \mathrm{ma} \end{aligned}$	$\begin{array}{r} 1 \mathrm{mv} \\ 15 \mathrm{ma} \end{array}$
Max. operating temperature	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
Overload protection	current limiter provides protection against overload, including direct short; front-panel control permits continuous adjusıment of current from 0 to 110% of current rating (100 ma 102 amps on hp 726AR)							
Controls	coarse and fine vollage controls; coarse current control				coarse and fine vollage and current controls		coarse and tine voltage conlrols; coarse current control	
Meters	$01040 \mathrm{v}$ $\text { and } 0 \text { to } 6 \text { a }$	$\begin{gathered} 0 \text { to } 40 \mathrm{v} \\ \text { and } 0 \text { to } 10 \mathrm{a} \end{gathered}$	$\begin{array}{r} 010100 \mathrm{~V} \\ \text { and } 0101.2 \mathrm{a} \end{array}$	$\begin{gathered} 0 \text { to } 60 \mathrm{v} \\ \text { and } 0 \text { to } 2.5 \text { a } \end{gathered}$	0 to $84 v$ and 0 to 2.4 a	$\begin{gathered} 01040 \mathrm{~V} \\ \text { and } 0 \text { to } 3 \text { a } \end{gathered}$	$\begin{gathered} 0 \text { to } 60 \mathrm{~V} \\ \text { and } 01010 \mathrm{a} \end{gathered}$	$\begin{gathered} 0 \text { to } 40 \mathrm{~V} \\ \text { and } 0 \text { to } 25 \text { a } \end{gathered}$
Error sensing	normally accomplished at output terminals; extra terminals permit remote sensing				rear- or front-panel terminals or remote		rear terminal or remote	
Remole programming (rear terminal strip)	200 ohms/v $200 \mathrm{ohms} / \mathrm{s}$	$200 \mathrm{ohms} / \mathrm{v}$ 100 ohms/a	200 ohms/v	$100 \mathrm{hms} / \mathrm{v}$	$\begin{aligned} & 300 \text { ohrms } / v \\ & 125 / 250 \\ & \text { ohms } / \mathrm{a} \end{aligned}$	$200 \mathrm{hms} / \mathrm{v}$ 80 ohms/a	$\begin{aligned} & 300 \text { ohms } / v \\ & 20 \text { to } 25 \\ & \text { ohms/as } \end{aligned}$	$\begin{aligned} & 200 \mathrm{ohrms} / \mathrm{v} \\ & 10 \mathrm{hmms} / \mathrm{a} \end{aligned}$
Power	105 to $125 \mathrm{v}, 57$ to 53 cps , single phase			$\begin{aligned} & \text { I15 or } 230 \% \\ & \pm 10 \%, 5080 \\ & 60 \text { GDS } \end{aligned}$	$\begin{aligned} & 105 \text { to } 125,210 \\ & \text { t0250 vac, } 50 \text { to } \\ & 400 \mathrm{cos} \end{aligned}$	$\begin{aligned} & 105 \text { to } 125,210 \\ & \text { to } 250 \mathrm{v} \text { ac, } 50 \\ & \text { to } 70 \mathrm{cDS} \end{aligned}$	10510125 vac, 571083 cps	
Dimensions	$\begin{aligned} & 31 / 2^{*} \text { high } x \\ & 16^{3 / 4}{ }^{*} \text { deep } x \\ & 19^{n} \text { widg (} 88 \times \\ & 425 \times 483 \mathrm{~mm} \text {) } \end{aligned}$	5\%/4 high x $16^{3 / 4}{ }^{\prime \prime}$ deesp x 19^{μ} wide $\{132 \times$ $425 \times 483 \mathrm{~mm})$		$\begin{aligned} & 51 / /^{\prime \prime} \text { high x } x \\ & 12^{\prime \prime} \text { deep x } \\ & 19^{\prime \prime} \text { wide (} 132 \times \\ & 305 \times 483 \mathrm{~mm}) \end{aligned}$		$\begin{aligned} & 31 / 2^{\prime \prime} \text { high } x \\ & 16^{3 / 4} \text { deep } \mathrm{x} \\ & 19^{*} \text { wide (88x } \mathrm{x} \text {) } \end{aligned}$	$\begin{aligned} & 51 / x^{*} \text { high } x \\ & 15^{3 / 4} \text { deep } x \\ & 19^{4} \text { wide (} 132 \times \\ & 425 \times 483 \mathrm{~mm}) \end{aligned}$	$7{ }^{\prime \prime}$ high x $183 / 8^{\circ}$ deep x 19^{7} wide (177) $487 \times 483 \mathrm{~mm}$)
Weight (nel/shipping	$\begin{aligned} & 35 / 4210 \mathrm{~s} \\ & (15,7 / 18,9 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \hline 55 / 63 \mathrm{lbs} \\ & (24,7 / 28,3 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 35 / 42 \text { los } \\ & (15,7 / 18,9 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 25 / 38 \mathrm{lbs} \\ & (11,2 / 17,1 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 25 / 30 \mathrm{lbs} \\ & (11,2 / 13,5 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 25 / 30 \mathrm{lbs} \\ & (\mathrm{IL}, 2 / \mathrm{l} 3,5 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 60 / 67 \mathrm{lbs} \\ & (27 / 30,1 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 90 / 100 \mathrm{los} \\ & (40,5 / 45 \mathrm{~kg}) \end{aligned}$
Price	Harrison 808A*, $\$ 475$	$\begin{aligned} & \text { Harrison } \\ & 809 A^{*}, \\ & \$ 575 \end{aligned}$		$\begin{aligned} & \mathrm{hp} 726 \mathrm{AR}, \\ & \$ 595 \end{aligned}$	$\begin{aligned} & \text { Harrison } \\ & 6242 A^{*}, \\ & \$ 435 \end{aligned}$	$\begin{aligned} & \text { Harrison } \\ & 6244 A^{*}, \\ & \$ 460 \end{aligned}$	$\begin{aligned} & \text { Harrison } \\ & 810 \mathrm{~B}^{*} \\ & \$ 695 \end{aligned}$	Harrison 814A*, $\$ 775$

*Models available with chopper-stabilizer amplifier and cascaded reference diode for improved stability; chopper stabillation improves only constant voltage oper. atlon in 6242A, 62444 and 810 B , and designation " X " should be added to model number when ordering; on Bl4A, either designation " XV " or " XC " should be used to indlcate whether improvement in performance is desired́ in constant voltage operation or constant operation; designate " X " on model number (i.e., go8AX), add $\$ 125$,
Key; cy Indicates constant vollage operatlon cc Indicates constant current operatlon

6242A
6244A

SCR-1 SERIES POWER SUPPLIES

505A, 510A, 520A Supplies

The Harrison SCR-I Series consists of three compact, highourrent, regulated power supplies intended for applications which require a fixed or continuously variable de source with a moderate degree of regulation, combined with high effciency and reliability. In this series, silicon-controlled rectiGers located on the secondary of the power transformer per-
form simultaneously the rectifier and series regulating functions, with resulting regulation of less than 0.5%. The unique "Ramp-Lock" control circuitry has a degree of immunity to line voltage teansieats and sudden load changes far in excess of conventional Magamp power supplies.

505A, 510A

520A

Specifications

Hacriman madal	635A	E104	620A
DC wolts out	0 to 72 y	0 to 36 V	01036 y
OC amps out	$0 \mathrm{t} 5 \mathrm{5a}$	0 to 10 a	0 to 25 a
AC oower in	105 to 125 vac ; single phase, 57 to 63 cps		
Combined load and constant voltage	360 mv (0.5\%)	$180 \mathrm{mv}(0.5 \%)$	$180 \mathrm{mv}(0.5 \%)$
line regulation constant current	50 ms (1\%)	100 ma (I\%)	$250 \mathrm{ma} \mathrm{(1} \mathrm{\%)}$
Ripple and noise (rms max., specified as $\%$ of max, output voltage)	1%	1%	1%
Remote programming (all programming terminals are located on rear barrier strips)	1000-0inm polentiometer	1000-ohim potentiomeler	1000-ohm potentiometer
Transient recovery time (< 50 msec is required for output voltage recovery to within A mv of the nomisnal output vollage following a losd change from full load to half loas or half load to full load)	$A=400$	$A=200$	$A=200$
Meters	80 y and 5 a	40 v and 10 a	$40 \vee$ and 25 a
Input terminals	3.wice power cord	3-wire power cord	barrier strip
Output terminals	barrier strip	barrier strip	barsier strip
Coolling	convection	convection	infermal fan
Dimensions	$\begin{gathered} 51 / 4^{\sigma} h \times 12^{\prime \prime} \delta \times 19^{\prime \prime} w \\ (132 \times 305 \times 483 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 51 /{ }^{\prime \prime} \mathrm{h} \times 12^{51} \mathrm{~d} \times 19^{15} \mathrm{w} \\ (132 \times 305 \times 483 \mathrm{~mm}) \\ \hline \end{gathered}$	$7^{\circ} \mathrm{h} \times 1811^{7} \mathrm{~d} \times 19^{p} w$
Waight (net/shipping)	$50 / 50 \mathrm{lbs}(22,5 / 27 \mathrm{~kg})$	$48 / 58 \mathrm{lbs}(21,6 / 26,1 \mathrm{~kg})$	85/101 lbs (38,3/45,5 kg)
Price	\$475	\$4SO	\$575

SCR-1P POWER SUPPLIES

Compact, lightweight supplies

The Harrison SCR-1P Series of regulated power supplies are suitable for medium power applications requiring a fixed or variable de source with a moderate degree of regulation. Silicon-controlled rectifiers in series with the primary of the power transformer perform the series regulating functions-with resulting voltage regulation of less than 0.25% for combined line and load changes. The following features are found in the SCR-1P Series:

Minimum size, reduced weight; useful in systems with limited space; all-silicon circuitry; Constant Voltage/Con-
stant Current with automatic crossover; continuously variable to zero volts for gradual turn-on of delicate load devices and for continuous curve plotting; excellent line transient immunity; short circuit proof; continuously variable current limit control; remote programming of constant current and constant voltage by resistance, voltage or current; remote error sensing; Auto-Series and Auto-Parallel operation; up to 75% efficiency at full load assures operating economy in large systems; fow ripple.

6428A, 6439A

6427A, 6433A, 643BA, 6443A

Harrtion moded	B427A	6428A	6453A	64F8A	64980	84434
DC volts out	0 to 18 v	0 to 18 V	0 to 32 V	0 to 60 V	01060 v	0 to 120 v
OC amps out	0 to 15 a	0 to 45 a	0 to 10a	0 to 5a	0 to 15 a	0102.5 a
AC power in	105 to $125 \mathrm{vac}, 57$ to 83 cps					
Combined load and CV^{*}	0.15\% or 15 mv	54 mv	0.15% or 24 mv	0.15\% or 45 mv	180 mv	0.15% or 90 mv
line regulation $\overline{\text { cc** }}$	150 ma (1\%)	450 ma (1\%)	$100 \mathrm{ma}(1 \%)$	50 ma (1\%)	$150 \mathrm{ma} \mathrm{(1} \mathrm{\%)}$	$25 \mathrm{ma}(1 \%)$
Ripple and nolse (rms max., spacified as per cent of max. output voltage)	0.2\%	0.2\%	0.1\%	0.2\%	0.1\%	0.2\%
Remote programming (all programming terminals lo- \qquad	200 ohms/volt	200 ohms/volt	200 ohms/volt	$300 \mathrm{ohms} / \mathrm{volt}$	300 ohms/voll	300 ohms/volt
cated on rear barrier cc strips)	15 ohms/amp	$5 \mathrm{hms} / \mathrm{mmp}$	25 Ohms/amp	50 ohms/amp	15 ohms/amp	$100 \mathrm{ohms} / \mathrm{amp}$
Transient reconvery time <300 msec required for output voltage recovery to within Amvof nominal output voltage following y load change from full toad to half load or half load to full hoad)	$A=180 \mathrm{mv}$	$A=180 \mathrm{mv}$	$A=180 \mathrm{mv}$	$A=300 \mathrm{mv}$	$A=600 \mathrm{mv}$	$A=600 \mathrm{mv}$
Melers	20 vand 168	$20 \vee$ and 50 a	40 v and 12 a	$64 v$ and 6 a	60 v and 158	120 v and 3 a
Input terminals	5' cord	barrier strip	5'cord	$5^{\prime} \cos d$	barrier strip	5^{\prime} cord
Output terminals	barrier strip					
Cooling	conv.	1 an	conv.	conv.	¢ап	conv.
Dimensions	$\begin{gathered} 31 / 2^{*} h, 19^{*} w \\ 17 y^{\prime \prime} \mathrm{d} \\ (89 \times 483 \times \\ 445 \mathrm{~mm}) \\ \hline \end{gathered}$		$\begin{gathered} 31 / 2^{*} h_{1} 19^{\circ} w_{1} \\ 171 / 2^{\prime \prime} \mathrm{o}^{2} \\ 89 \times 483 \mathrm{x} \\ 445 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 312^{N} h, 19^{6} w_{1} \\ 17 y^{2} 2^{2} d \\ (89 \times 483 \times \\ 445 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 514^{\circ N} h_{1} 19^{4} w_{1} \\ 16 y^{\prime \prime} d \\ (133 \times 483 \times \\ 425 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 31 / 2^{4} h_{1}, 19^{\prime \prime} w_{1} \\ 171 /{ }^{*}{ }^{\prime \prime} \mathrm{d} \\ (89 \times 483 \times \\ 445 \mathrm{~mm}) \\ \hline \end{gathered}$
Weight (net/shipping)	$\begin{gathered} 35 / 46 \mathrm{lbs} \\ (15,7 / 20,7 \mathrm{~kg}) \\ \hline \end{gathered}$	$\begin{gathered} 65 / 78 \mathrm{lbs} \\ (29,2 / 35,1 \mathrm{~kg}) \\ \hline \end{gathered}$	$\begin{gathered} 33 / 44 \mathrm{lbs} \\ (14,9 / 19,8 \mathrm{~kg}) \\ \hline \end{gathered}$	$\begin{gathered} 32 / 43 \mathrm{lbs} \\ (14,4 / 19,4 \mathrm{~kg}) \end{gathered}$	$607 / 73 \mathrm{lbs}$ $(27 / 32,9 \mathrm{~kg})$	$\begin{gathered} 32 / 43 \mathrm{lbs} \\ (14,4 / 19,4 \mathrm{~kg}) \end{gathered}$
Price	$\begin{gathered} \text { Hartison 6427A } \\ \$ 380 \end{gathered}$	$\begin{gathered} \text { Harrison 6428A } \\ \$ 550 \end{gathered}$	$\begin{gathered} \text { Harrison 6433A } \\ \$ 370 \end{gathered}$	$\begin{gathered} \text { Harrison 6438A } \\ \$ 360 \end{gathered}$	$\begin{gathered} \text { Harrison 6439A } \\ \$ 550 \end{gathered}$	$\begin{gathered} \text { Harrison 6443A } \\ \$ 360 \end{gathered}$

[^33]
SCR-3 POWER SUPPLIES

3 kilowatt dc output

The Harrison SCR. 3 Series of regulated supplies are suit. able for high-power applications which require up to 300 amps output current and up to 3.2 kilowatts output power. These supplies can be connected in Auto-Series and AutoParallel for higher power applications. In this series of supplies, silicon-controlled rectifiers perform simultaneously the rectifying and series regulating functions with resulting voltage regulation of less than 0.5%. This series of supplies is similar to the SCR-1 Series (505A, 510A, 520A, page 324), except for three-phase ac input transformer and rectifier circuit.

Advantages include the following features: Constant Voltage/Constance Current with automatic crossover; minimum size, reduced weight, useful in systems with limited space; continuously variable to zero volts, for gradual rurn-on of delicate load devices and for continuous curve plotting; excellent line transient immunity, no "poke-through" lasting 5 to 10 cycles; 50 millisecond recovery for load current changes, instead of the 100 to 200 milliseconds typical of Magamp supplies; short circuit proof, continuously variable current limit control (useful for battery charging applications); remote programming; remote error sensing; AutoSeries and Auto-Parallel operation; 75% efficiency at full load, for operating economy in large systems.

Specifications, SCR-3 Series

Harrisen model	6450A	6453A	8455A	8466A	6469A
DC volts out	0 to 8 v	0 to 15 v	01036 V	0 to 32 v	0 to 64 V
DC amps out	0 to 300 a	0 to 200 a	0 to 75 a	0 to 100 a	0 to 50 a
AC power in	208/230/460 $=10 \%$, 3 phase, 57 to 63 cos		$\begin{aligned} & 208 / 230=10 \% \\ & \text { phase. } 57 \text { to } 63 \mathrm{cps} \end{aligned}$	208/230/460 $+10 \%$, 3 phase, 57 to 63 cps	
Combined load and line regulation Cl^{*} Cc^{*}	25 mv	$0.2 \%+10 \mathrm{mv}$	180 mv	$0.2 \%+10 \mathrm{mv}$	$0.2 \%+10 \mathrm{mv}$
	3 a (1\%)	2 a (1\%)	750 ma (1\%)	$1 \mathrm{f}(1 \%)$	$500 \mathrm{ma} \mathrm{(1} \mathrm{\%)}$
Ripplo and noise (rms max,, specified as percent of max. output woilage)	1\%	1\%	0.5\%	0.5\%	0.25\%
Remote programming (all programming terminals Cv^{*}	200 ohms/volt	200 ohms/volt	1000 ohms pot	200 ohms/volt	300 ohms/volt
located on rear barier cc* strips)	2/3 ohm/amp	$1 \mathrm{ohm} / \mathrm{mp}$	3.3 ohms/amp	$2 \mathrm{ohms} / \mathrm{mmp}$	$40 \mathrm{hms} / \mathrm{amp}$
Transient recovery time (less than 50 msec required for output voliage recovery to within A mv of nominal output voitage following a load change from full load to half load or half load to full load)	$A=150$	$A=150$	$A=200$	$A=300$	$A=600$
Meters	10 v and 300 a	20 v and 200 a	40 v and 80 a	40 v and 100 a	80 v and 50 a
Input termingls	4-terminal "twist-lock" connector				
Output terminals	tapped rectangular bus bars				
Cooling	internal fan				
Dimensions	$\begin{aligned} & 19^{\prime \prime} \mathrm{w}_{1} 14^{\prime \prime} \mathrm{h}, 181 \mathrm{~s}^{\prime \prime \prime} \mathrm{d} \\ & (356 \times 483 \times 476 \mathrm{~mm}) \\ & \hline \end{aligned}$	$\begin{aligned} & 19^{\circ} \mathrm{w}, 14^{*} \mathrm{~h}, 181 / \mathrm{m}^{\prime \prime \prime} \mathrm{d} \\ & (356 \times 483 \times 476 \mathrm{~mm}) \\ & \hline \end{aligned}$	$\begin{gathered} 19^{n} \mathrm{w}, 14^{\prime \prime} \mathrm{K}_{1}, 17^{\prime \prime} \mathrm{o} \\ \left(356 \times 483 \times 431^{\prime} \mathrm{mm}\right) \\ \hline \end{gathered}$	$\begin{aligned} & 19^{\prime \prime} \mathrm{w}, 14^{n} \mathrm{~h}, 181 / /^{d} \mathrm{~d} \\ & (356 \times 483 \times 476 \mathrm{~mm}) \end{aligned}$	
Weight (net/shipping)	$\begin{aligned} & 238 / 275 \mathrm{lbs} \\ & (107 / 124 \mathrm{~kg}) \end{aligned}$	$\begin{aligned} & 238 / 275 \mathrm{lbs} \\ & (107 / 124 \mathrm{~kg}) \\ & \hline \end{aligned}$	$\begin{aligned} & 220 / 255 \mathrm{lbs} \\ & (99 / 114 \mathrm{~kg}) \\ & \hline \end{aligned}$	$\begin{array}{r} 238 / 275 \mathrm{lbs} \\ (107 / 124 \mathrm{~kg}) \\ \hline \end{array}$	$\begin{array}{r} 238 / 275 \mathrm{lbs} \\ (107 / 124 \mathrm{Kg}) \\ \hline \end{array}$
Price $\quad \begin{aligned} & 208 / 230 v \text { input } \\ & 460 \vee \text { input }\end{aligned}$	$\begin{aligned} & \hline \text { Harrison } 6450 \mathrm{~A} \\ & \$ 1550 \\ & \$ 1590 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Harrison } 6453 \mathrm{~A} \\ \$ 1550 \\ \$ 1590 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Harrison 6455A } \\ & \$ 1450 \end{aligned}$	$\begin{aligned} & \hline \text { Harrison } 6456 \mathrm{~A} \\ & \$ 1450 \\ & \$ 1490 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Har rison } 6459 \mathrm{~A} \\ & \$ 1450 \\ & \$ 1490 \\ & \hline \end{aligned}$

*cc $=$ constant current, $\mathrm{cv}=$ constant voltage
Indicate indul se voltage when ordering 208, 230 or $460 \vee$ ac (460 vac ipput not avaliable on 6455A).

HVR AND MVR SERIES POWER SUPPLIES

High-, medium-voltage supplies

Advantages, HVR Series:

All solid.satt. compact rack mounting
200 watt output
Short circuit proof
I output-grounded on Goating up 102 kv off ground
Decade voltage switching with 0022% resolution
Transient recovery time: less than 90 seconds to within 0.005% or 20 mv , whichever is greater
1% calibration accuracy

Advantages, MVR Series:

All solid-state
Short-circuir proof
Remote programming, remole error sensing
The Harrison HVR Series consists of three high voltage supplies utilizing all silicon semiconductor circuitry-no tubes. All three supplies are tighly regulated and provide sufficient output cucrent for many devices not capable of being porvered from conventional low-curent, high-volage supplies. These supplies feature Constans Voltage/constant Cureent operation with aviomatic crossover. Elimination of large series dissipating tube elements allow's these supplies to have effieiencies approaching 80%.

The Harrison MVR Series of three de power supplies features a unique "Piggr-Back" circuit; low voltage series power uransistors, which are required 10 dissipare only, a fration of their power rating. provide high regulation-pet the supply ean withstand a direct shore circuit actoss the output terminals.

Speciticatlant HYR Earlas		$\begin{gathered} \text { Harrlaan } \\ \text { GG21i } \end{gathered}$	$\begin{aligned} & \text { Harringon } \\ & \operatorname{cosech} \end{aligned}$	$\begin{gathered} \text { Harison } \\ \text { efz6A } \end{gathered}$
DC, dutput	voltage	0 to 1000 v	0 to 2000 y	0 0 4000 v
	current	0 to 200 ms	010100 ma	0 to 50 ms
AC input		105 lo 125 y ac. 50 to 30 cps		
Losd regulalion	Consiant voltage	0.005\% or 20 mv		
	consianl current	2\% or 1 ma		
Line regulation	constant voliage	0.005% or 20 miv		
	conslant currenl	1 ma		
Ripple and noise	constant voltage	Imvims		
	constant infrent	2 ma	1 \%	$500 \mu 3$
7emp. coefficiont (outout change per ${ }^{\circ} \mathrm{C}$ changa In ambient following 30 min watm-up)	constanl voltars	0.02% dus 2 mv	0.02% plus 4 my	0.02% plus 8 mv
	constant cuirent	0.2% olus 0.7 ms	0.7% plus 0.1 ma	0.2% plus 0.05 ma
Stabitity (under constant amblent conditions. total arite for 8 hours following 60 man wapm-ip)	conslant voltage	0.05\% plus 5 mv	0.05\% plus 10 mv	0.05% plus 20 mv
	constant current	0.25% pliss 0.5 md	0.25 \% plus 0.25 ma	0.25% plus 0.12 ma
Meters		0 to t ku and 0 to 200 ma	0 to 2 kvand 010100 ma	0 to 4 kv and 0 to 50 ma
Controls		voltage control-3 decade thumbwheel switches. plus thumbwell vernier: currenl contual-singlo-turn polentioneter		
Olmensions		$51 / 4^{*} \mathrm{~h} \times 18^{4} \mathrm{dx} 19^{*} \mathrm{w}(132 \times 457 \times 483 \mathrm{~mm})$		
Weight (net/shipging)		$50 / 50 \mathrm{lbs}(22.5 / 27 \mathrm{~kg})$		
Price		\$750	\$750	\$750

Gechilontlosi MVR Imias	$\begin{gathered} \text { Hartion } \\ \text { B90Am } \end{gathered}$	$\begin{gathered} \text { Harrlasn } \\ \text { OAGA** } \end{gathered}$	Herrian
DC oulput volls	0 to 320	0 to 320	75 to 160
8 mos	0 to 0.6	0101.5	0 to 2.5
Lre or load regulalion	0.007% or 10 mv		
Ripple and noise (ams miaximum)	1 mv		
Maters	$320 \vee$ and 0.8 a	320 v and 1.5 s	$200 \times$ sind 3 a
otmensions	$\begin{gathered} 31 / 8^{N} \mathrm{~h} \times 16411^{N} \times 19^{N} w \\ (88 \times 425 \times 483 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 51 / 7 \mathrm{~h} \times 16 \mathrm{~K}^{4} d \times 19^{4} \mathrm{w} \\ (133 \times 425 \times 483 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 55{ }^{\circ} \mathrm{h} \times 164 \times \mathrm{f} \times 19^{7 \prime} \\ (133 \times 425 \times 483 \mathrm{~mm}) \\ \hline \end{gathered}$
Welchi (net/shloping)	35/43 lbs (15,8/19,4kg)	50/66 16s ($72,5 / 29.7 \mathrm{~kg}$)	50/66 lbs ($22.5,29.7 \times \mathrm{l}$)
Price	\$445	\$525	3575

All MVR models

Short elreuif proof: all.elertronic, concinuousl; actirg cuarent fimit sircuic procects re supply for all overlosd loads, includining direct short placed aceoss the output terminals: in addetion. z fure with blaw when severe overload conditions occur.
Maximum operating temperature: $50^{\circ} \mathrm{C}$.

Tomperature coefflctent: less than 0.03%. plus $1.5 \mathrm{mv}{ }^{\circ} \mathrm{C}$.
Stabllity: better than 0.t. plus 5 mv.
Transient recovery Jme: less than 100 meroseconds.
Output terminala; ourput terminal strip is located on the rat of the chassis.
Input ac: 105 to 125 V .971063 cps .

MOD SERIES REGULATED PLUG-IN POWER SUPPLIES

Highly regulated, fixed or variable

The Harrison MOD Series of plug-in modular power supplies has been designed to neet the need for well regulated, inexpensive chassis-mounting supplies and the need for a line of de supplies of low power rating capable of being efficiently grouped on rack panels. All input, output and control connections are accomplished via the 11 -pin plug mounted at one end of the supply. Since the output voltage is determined by the value of a resistor connected between two of these terminals, these supplies can be made to be continuously variable over their entire output voltage range, or variable over some limited range, or fixed at some predetermined value - depending upon the manoer in which the external rheostats and/or resistors are connected to the progranming terminals.

A ourrent limiting overload prorection circuit is used in all MOD Series supplies. The current limit can be set at any value from zero to some value slightly greater than the current rating of the supply. This current setting is accomplished by means of a screwdriver adjustment slot accessible through a small hole in the side of the supply, thus permitting readjustment of the current limit value without remooving the power supply module's cover.

The supply is thus fully protected for any overload condition, including a direct short circuit across the output terminals, and the current limit control can be set to the exact value necessary for optimum protection of the load device. No fuses are contained in the MOD Series supplies.

Specifications, MOD Series

Harricon model	Output rating	Losd requitation	Lne repulation	Inpur power	872e	Welght (net/hhlpplag)	Price
6343A	0 to 18 v at 0 to 300 ma	3 mb or 0.03\%	3 mv or 0.03\%	$\begin{gathered} 105 \text { to } 125 \text { or } 210 \text { to } 250 \mathrm{vac}, \\ 48 \text { to } 440 \mathrm{cDs} \end{gathered}$	A	$3 / 5 \mathrm{los}(1,4 / 2,3 \mathrm{~kg})$	\$120
6344A	0 to 18 vat 0 to la	3 mv or 0.03\%	3 mv or 0.03\%	$\begin{gathered} 105 \text { to } 125 \text { or } 21010250 \mathrm{vac}, \\ 48 \text { to } 63 \mathrm{cps} \end{gathered}$	B	7/10 1bs (3,2/4,5 kg)	\$165
6345A	0 to 18 vat 0 to 2.5 a	3 mv or 0.03\%	3 mv or 0.03\%	$\begin{aligned} & 105 \text { to } 125 \text { or } 210 \text { to } 250 \vee 8 \mathrm{c}, \\ & 48 \text { to } 63 \mathrm{cps} \end{aligned}$	c	13/19 lbs ($5,9 / 8,6 \mathrm{~kg}$)	\$225
6346A	0 to 36 vat 0 to 150 ma	3 my or 0.02\%	3 mv or 0.02\%	$\begin{gathered} 105 \text { to } 125 \text { or } 21020250 \times a c, \\ 48 \text { to } 440 \mathrm{cps} \end{gathered}$	A	$3 / 5 \mathrm{lbs}(1,4 / 2,3 \mathrm{~kg})$	\$120
6347A	Oto 36 vat 0 to 500 ma	3 mv or 0.02\%	3 mv or 0.02\%	$\begin{gathered} 105 \text { to } 125 \text { or } 210 \text { to } 250 \mathrm{vac}, \\ 48 \text { to } 63 \mathrm{cps} \end{gathered}$	B	7/10 lbs ($3,2 / 4,5 \mathrm{~kg}$)	\$165
6348A	0 to 36 vat 0 to 1.5 s	3 mv or 0.02\%	3 mv or 0.02\%	$\begin{gathered} 105 \text { to } 125 \text { or } 210 \text { to } 250 \mathrm{vac}, \\ 48 \text { to } 63 \mathrm{cps} \end{gathered}$	c	$13 / 19 \mathrm{lbs}(5,9 / 8.6 \mathrm{~kg})$	\$225
6354A	$0 \mathrm{to} 160 \mathrm{vat0to} 400 \mathrm{ma}$	$0.005 \%+2 \mathrm{mv}$	$0.005 \%+1 \mathrm{mv}$	105 to 125 or 210 to $250 \vee a c$. 48 to 63 cps	C	13/19 lbs (5,9/8,6 hg)	\$259
6357A	0 to 320 v at 0 to 200 ma	$0.005 \%+2 \mathrm{mv}$	0.005\%+1 mv	$\begin{aligned} & 105 \text { to } 125 \text { or } 210 \text { to } 250 \mathrm{vac}, \\ & 48 \text { to } 63 \mathrm{cps} \end{aligned}$	c	13/19 $\operatorname{lbs}(5,9 / 8,6 \mathrm{Kg})$	\$259

Specifications, all models

Ripple and noise: less than 1 mv rms for any combination of line voltage, output voltage and load current.
Operating temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{C}\right.$ for 6354 A and 6357 A).
Temperature coefficient less than 0.033%. plus $2 \mathrm{mv} /{ }^{\circ} \mathrm{C}$. Stability: less than 0.1% plus 10 mv total drift for 8 hours (after 30 minutes' warm-up) at a constant ambient.
Transient response: less than $50 \mu \mathrm{sec}$ is required for output voltage recovery to within 10 mv of the nominal output voltage following a full-load change in output current.

Remote orror sensing and remote programming: sensing terminals are brought out through the header pins; for local sensing, these terminals are strapped to the output terminals; for remote sensing, leads are connected from the sensing terminals to the remote load terminals; the output voltage is determined by the value of resistance connected between terminals 1 and 2, 1 v out for each 200 ohms connected between these terminals (300 obms for 6354 A and 6357A).
Programming accuracy: 5%.
Cooling: convection cooling is employed.
Finish: light gray.

Efficient rack mounting

Dimensions and efficient mounting techniques are shown in the illustration for Harrison MOD Series plug in supplies.

The drawing shows $\mathrm{R} 6340-5$ rack mounting assembly; R6340.3 is similar except for height- $31 / 2^{\prime \prime}$ (88 mm) instead of $51 / 4^{\prime \prime}(133 \mathrm{~mm})$-and the fact that it has holes for six 11 -pin sockets. Wheceas R6340-5 can accommodate " A ", " B " or " C " size units as shown, the $31 / 2$ " high rack mounting assembly can only accommodate " A " and " B " size units. On the $31 / 2$ " panel these " A " and " B " size modules are rotated 90 degrees along the longest axis as compared with this drawing.

Specifications

Part No. R6340-3: $3 \mathrm{l} / 2^{\prime \prime}$ high (88 mm) assembly capable of accommodating up to six " A " size modules or one " B " and four " A " modules, or two " B " and two " A " modules, or three " B " modules.
Price: Hacrison R6340-3, \$19.
Part No. R6340-5: $51 / 4^{\prime \prime}$ high (133 mm), $19^{\prime \prime}$ wide (483 mm) rack assembly for accommodating up to 10 " A " size modules or any combination of " A ", " B " and " C " size modules having the same equivalent mounting area as 10 " A " modules.
Price: Harrison R6340-5, \$29.

711A, 712B, DC SUPPLIES; 6910A, 6916A CROWBARS

Easy-to-use lab supplies; overvoltage protectors

711A, 712B DC Supplies

The hp 711 A and 7128 are easy-to-use, general-purpose laboratory supplies particularly suited to powering experimental setups and other basic bench applications. They offer very high regulation and
a wide, variable voltage range extending from 0 to 500 volts dc. There are separate current and voltage meters with additional ranges to permit accurate measurement of small power outputs. Full overload protection is provided to protect the instrument even undes short-circuit output conditions.

Specifications

hap Model	7114	818
Output valiages:	0 to $+500 \mathrm{v}, 100 \mathrm{ma} \mathrm{max}. \mathrm{load;} 6.3 \mathrm{v} \mathrm{mms}$ at 6 smps or 12.6 y rms ct at 3 amps	0 to +500 v. 200 ma msximum load
Regulation:	0.5% or 1 v change, whichever is grester, no load to full load, or lor line vollage changos of $=10 \%$	lass then 50 mv, no load to pull load, at any output voltape; loss than $x 100 \mathrm{mv}$ for tine voltage changes of $\times 10 \%$
Ripgle:	Tass than 1 mv	lass than $500 \mu \mathrm{~V}$
Matering:	current meter: iwo ranges 0 to 100 ms ; 0 to 10 ma : voltage mater: two ranges 0 to $+500 \mathrm{v}, 0$ to +50 v	Culfent meter: 010200 ma (ingh-voliafe only); voltage meler: thrae renges 0 to $+500 \mathrm{v}, 0$ to +150 , 0 to -150 v
Power:	115 or 230 v $=10 \%$, 50 to 1000 cps ; approx. 185 W	
Overload:	ac line fused	ac line fused, de
Protection:	relay prevents de oulput irom exceading current rating of milliameter probecting instrument from overloads	regulated hifin voltage, de regulated fixed bias and filament supply separately fused: high voltage drods to a safe value it bias huse blows
Dimenstons:		10-15/32" high. $19^{\circ \prime}$ wide. $13^{7 x} 00 e \mathrm{p}(266 \times 483 \times 330 \mathrm{~mm}$)
Weight:	n01 $20 \mathrm{lbs}(9 \mathrm{~kg})$. shloping $26 \mathrm{Ibs}(11,7 \mathrm{~kg})$ (cabinet); $\mathrm{net} 24 \mathrm{lbs}(10,2 \mathrm{~kg})$, shilpping 35 los (15.8 kg) (rack)	shlpping 77 los (34, kg) (rack)
Prica:	ha 7114.8275 (cabinet); 71/AR, \$280 (rack)	hp 712B, s4s0 (cablint): hp 712日R. 5475 (1ack)

6910A, 6916A Crowbars

The Harrison 6910A and 6916A overvoltage units protect expensive or irreplaceable load devices from overvoltages caused by accidental manipulation of concrols or power supply failure. After an overvoltage condition occurs, the voltage to the load is quickly reduced to zeco by means of a silicon-controlled rectifier. A test button permits verification that the overvoltage protector is ready to detect the occurrence of any overvoltage condition withour actually introducing an overvoltage across the load device or initiating action which would short circuit the output. Output terminals allow these units to be interconnected with other overvoltage protectors for bandem friag or for fring of an external SCR.

The 6916A, a compact inexpensive overvolrage protection device, is factory installed (only) directly on the rear of any Harrison power supply with outpur ratiags of 5 amps or Iess. Final factory test is made after supply and crowbar have been connected and wired together. In many cases, the 6916A caa be modifed at factory for combination with supplies having greater current ratings-cootact your local hp sales office for price and delivery information.

The Model 6910A, which can be used on the beach or rack mounted, provides two identical but independear overvoltage prorection circuits in one package. Protection action is similar to the 6916 A except that (1) power for the 6910A ciccuitry is derived from the ac line rather than the power supply being protected, and (2) ac input power to the supply being protected hows tarough the 6910A.

Specifications, 6910A

Protectlon actlont a virtual short circuir is placed across the load within 3 asee after the overvoleage matgin is exceeded; ac to the power supply and any other measuring devices plugged into the 6910A is removed, and a trip indicstor light is acervated.
Dperating range: 6910 $\begin{gathered}\text { will protect units with an output voltage of less than }\end{gathered}$ 72 volts and in output power of leas than 490 watts; the 6910 AM option provides for the heavier input power requirements of the 320 A and 814 A .
Overvoltage margin: adjustable 0 to 6 volks from panel conisol.
AC power Input: 105 to 129 y ac , 38 to 63 cps : curcent input is deterouined by requirement of protected device plugged into the 6910A.
Dimenslans: $31 /^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $1144^{\prime \prime}$ desp ($88 \times 483 \times 228 \mathrm{~mm}$); mounk. ing: unit may be used on the bench or mounted in a standard $10^{\prime \prime}$ celay rack. Weight: net 20 lbs (9 kg); shipping 26 (bs (11.7 kg).
Price: Harsison 6910A, s3ds: Harrison 6910AM, s37s.

Specifications, 6916A

Protactlon actlon: s virtual shoft circuit is placed across the lond within 10 asec of the time when overvoltage coargin is exceeded: if pozier suppiy has suftered severe failure, the de fuse in secies with the power supply output will open.
Oparaling iange: 10 to 80 v dc at 5 2mps max.
Overvoltage margin: 1 to 4 volts, screwdriver adjustable.
Power: is ma continuous drain derived from the dc power supply being monitored; 50 ma momentarily required when "Push-to-Test" button is depressed. Dimensions: $2^{\prime \prime}$ high, $77 / 8^{\prime \prime}$ wide, $4^{\prime \prime} \operatorname{dec}(91 \times 200 \times 102 \mathrm{~mm})$.
Weight: net $1 / 2 \mathrm{lbs}(0.7 \mathrm{~kg})$: shipping \& $\mathrm{lbs}(1.8 \mathrm{~kg})$.
Price: Hartison 5916A, \$9s.

715A, 716B KLYSTRON POWER SUPPLIES
 Versatile power sources for wide range of klystrons

The hp 716B Supply offers superior regulation, noise, ripple and hum characteristics, plus the broad capability of powering at least 250 types of klystrons. Beam and reflector voltages are closely regulated and continuously adjustable, using calibrated controls accurate to within $\pm 2 \%$ on beam voltage and to within $0.5 \% \pm 1$ volt on repeller voltage. In addition, a regulated dc filament supply minimizes residual $F M$ and $A M$ from the klystrons.

The reflector supply can be internally modulated with a sawtooth for FM or with a square wave for on-off operation. The positive excursion of the square wave is clamped to the reflector voltage, simplifying setup and minimizing double moding. Sawtooth and external modulation are accoupled to the reflector. A protective diode prevents the klystron reflector voltage from becoming positive with re-
spect to the cathode. Special circuitry eliminates turn-on transients that could be harmful to the klystron. Relays disconnect the beam supply to prevent klystron failure should the filament voltage drop below 1 volt or rise above 9 volts. The flament circuit in the 716 B is protected against voltage surges up to 800 volts. These relays also disconnect the supplies whenever a klystron filament short circuits.

The hp 715A, designed to operate many types of low. power klystrons, offers a regulated $250-$ to 400 volt beam voltage, a 0 -to-900 volt regulated refiector supply and a 6.3 volt ac filament supply. The refector supply can also be square-wave modulated internally at the nominal frequency of 1000 cps , externally modulated or sine-wave modulated at the power line frequency. Klystron protection is built in.

Specifications, 715A
Specifications, 716B

Reflector supply	$010900 \vee$ neg. with respect to beam supply, calibrated voltage conrrols; regulation within $1 \%=10 \%$ line voitage variation; ripple $<10 \mathrm{mv}$	010800 v neg. with respect to beam supply, accuracy $=0.5 \%$ of dial reading $=1 \quad v$; line regulation better than 0.05%; ripple $<500 \mu v$
Beam supply	250 to 400 v negative with respect to chassis ground, calibrated voltage controls; current 30 ma max. at 250 v. 50 ma max. at 400 y; reguation better than 1%, no load to fuli load or for $=10 \%$ nominal line voltage variation; rippie less than 7 mv	250 to 800 v negative with respect to chassis ground, accuracy $=2 \%$ of dial reading: current 100 ma max.; line regulation better than 0.1%; load regulation better than 0.05%; ripple less than 1 mv
Filament supply	6.3 v ac, 1.5 amp maximum	6.3 vdc adjustable nominally between 5 and 9 volts. isolated from ground; current 0 to 2 amps; 2 amps max. available to 6.5 v , decreasing to approx. 150 ma at $\mathrm{g} v$; ripple $<2 \mathrm{mv}$; line regulation belter than 1% with $\pm 10 \%$ line change
Internal modulation	square wave: $1000=100 \mathrm{cps}$, adjustable: 0 to $110 \vee \mathrm{p}-\mathrm{p}$, negative from reflector voltage; less than $10 \mu \mathrm{sec}$ rise and decay fimes; sinusoidal power line frequency, oto 350 v p-p	square wave: 400 cps to $2.5 \mathrm{kc} ; 0.1 \%$ short-term stability; 10 to at least 150 v p-p, negative from reflector voltage: 5μ sec rise time; external sync of internal square wave 10 v peak, 500 K nominal imput impedance; sawtooth: 75 cps nominal, 0 to at least 150 v nominal p-p. ac-coupled to reflector
External modulation	terminals provided: input impedance 100 K	max. input 200 v p-p; input impedance $500 \mathrm{~K}, 100$ pf nominal
Oscilloscope output		with internal square-wave modulation: I v $\cdot \mathrm{p}$ min, for scope sync, 600 ohms output impedance; with internal sawtooth modulation: 10 v p-p min. for scope sweep, 50 K output impedance
Meter	monitors beam current 01050 ma	monitors beam current 010100 mz
Power	115 or $230 \mathrm{v}=10 \%, 50$ to $60 \mathrm{cos}, 200 \mathrm{w}$	115 or $230 v=10 \%$, 50 to $60 \mathrm{cps}, 200$ to 350 w
Dimensions	$73 / 3^{\prime \prime}$ wide, $111 / 2^{\prime \prime}$ high, $131 / 4{ }^{\text {" deep (}}$ ($187 \times 292 \times 349 \mathrm{~mm}$)	$163 / 4^{\prime \prime}$ wide, $6-25 / 32^{\prime \prime}$ high. $183 / \mathrm{s}^{\circ}$ deep ($425 \times 172 \times 467 \mathrm{~mm}$); hardware furnished for rack mounting ($5050-0776$)
Weight	net $19 \mathrm{lbs}(8,6 \mathrm{~kg}$); shipping $24 \mathrm{lbs}(10,8 \mathrm{~kg})$	nel $46 \mathrm{lbs}(20,7 \mathrm{~kg}$) ; shipping $63 \mathrm{lbs}(28.3 \mathrm{~kg})$
Accessories furnished	715A-16C Shielded Output Cable, for connection to klystron	6^{\prime} cable, terminated end mates with 716B cone furnished with instrument) hp Stock No. 00716-61601, \$25
Price	hp 715A, \$365	hp 716B, $\$ 875$

855C, 865C DC POWER SUPPLIES

Supplies offering high-speed programming

Advanłages:

High-speed voltage programming by resistance, voltage or current
Useful as an ac or de power amplifer
Constant Voltage - Constant Current operation with automatic crossover
Auto-Series, Auro-Parallel operation; remote sensing
Short circuit proof in constant voltage use
Open circuit proof in constant current use
Uses:
Automatic test sers
$A C$ power amplification

DC porver amplification
Lab research and developmenc
New versatility and fexibility are featured in the 855C and 865C. Besides being useful as a general-purpose highly regulated taboratory supply, the 855C and 865C can be used in high-speed programming applications and as amplifiers. The unique aspect of the supplies is that a transistor shunced across the outpur terminals discharges the output capacitance when programming downward (reducing the output voltage). The down-programming speed thus is comparable with the upprogramming speed, resulting in faster response for amplifier and high-speed programming applications.

855C

865C

Specifications

Output: $855 \mathrm{C}: 0$ to $18 \mathrm{vdc} ; 0$ to $1.5 \mathrm{adc} ; 865 \mathrm{C}: 0$ to $40 \mathrm{vdc} ; 0$ to 0.5 a dc.

Load and IIne regulation: constant voltage, $0.01 \%+2 \mathrm{mv}$; constant current $0.02 \%+250 \mu \mathrm{a}$.
Rlpple and nolse: constant voltage, 200 microvolts rms; constant current, 200 microamps ms.
Temperature coefficient: constant voltage, less than $0.015 \%+$ 1 mv ; constant current, less than $0.02 \%+500 \mu \mathrm{a}$.
Stability: total drift for 8 hrs. following 30 minute warm-up; constant voltage, $0.1 \%+5 \mathrm{mv}$; constant current, $0.05 \%+1 \mathrm{ma}$.
Transient recovery time: $<50 \mu \mathrm{sec}$ required for output voltage recovery to within 10 mv of the nominal output voltage.
Maximum operating temperature: $50^{\circ} \mathrm{C}$.
Klgh-speed programming: by simply changing a few rear-terminal straps, the power supplies achieve high-speed programming by resistance, voltage or current inputs.

At no load

Rise time: 0 vole to maximum, 30 volts/millisecond.
Fall time: maximum to 1 volt, 30 volts/millisecond; 1 volt to 0 volt, 0.5 volt/avillisecond.
Ripple and nolse: 2 millivolts rms.

At full rated fload

Rise tlme: 0 volt to maximum, 20 voles/millisecond.

Fall time: maximum to 1 volt, 40 volts/millisecond; 1 voll to 0 volt, 0.7 volt/millisecond.
Ripple and noise: 2 millivolts mis.
Power 105 to 125 or 210 to $250 \mathrm{vac}, 50$ to 440 cps .
Dlmenslons: $7.13 / 16^{\prime \prime}$ wide, $5 \cdot 1 / 16^{\prime \prime}$ high, $81 / 2^{\prime \prime}$ deep ($198 \times$ $129 \times 216 \mathrm{~mm}$).
Welght: net $14 \mathrm{lbs}(6,3 \mathrm{~kg}$) ; shipping $16 \mathrm{lbs}(7,2 \mathrm{~kg})$.
Rack mounting paners: R855/865-1B (one unit) or R855/865-2B (two units) rack mounting panels, $\$ 20$ each.
Price: Harrison 855C of 865C, $\$ 179$ (add $\$ 12$ for slipover case, standard unit at $\$ 179$ bas top and bottom cover plates and is a completely enclosed power supply).

Typical amplifier specifications

By the addition of several resistors and a small input coupling capacitor connected to the rear terminals, Models 855C and 865C can be used as de and ac power amplifiers:
Usetul frequency range: ac-coupled, 10 cps to 1 kc ; dc.coupled, de to 1 kc (single-ended ourpur only-cannor go through zero).
Voltage galn: equals $-50,000 / R_{\mathbf{x}}$, where $\mathrm{R}_{\mathbf{x}}$ is an externally added "feed-ía" resistor.
Input Impedance: up to 50,000 ohms; gain-input impedance produce equals 50.000 ohms.
Output power: dc amplifier, 27 watts peak (855 C), 20 watts peak (865 C) ; ac amplifier, 5 watts peak (2.5 watc rms).

PULSE AND SQUARE WAVE GENERATORS

Pulse and square wave generators most often are used with an oscilloscope as the measuring device. Waveform shapes as seen by the oscilloscope, either at the output or at pertinent points with. in a system under test, provide both qualitative and quantitative evaluations of system or device performance.

Square waves or pulses

The fundamental difference between pulse and square wave generators concerns the signal duty cycle. Square arave generators have equal "on" and "off" periods, this equality being reaained as the repetition frequency is varied. The duration of a pulse generator "on" period, on the other hand, is independent of pulse repetition rate. The duty cycle of a pulse generator can be made quite low so that these instruments are generally able to supply more power during the "on" period than square wave genera. tors. The hp 214 A , for instance, supplies up to 200 wates in its output puise.

Short pulses reduce power dissipation in the component or system under test. For example. measurements of transistor gain are made with pulses short enough to prevent junction heating and the consequent effect of heat on transistor gain.

Square wave generators are used where the low-frequency characteristics of a system are important, such as in the testing of audio systems. Square waves also are preferable to short pulses if the transient response of a system requires some time to settle down.

Pulse generators

In the selection of a pulse generator, the quality of the output pulse is of primary imporrance. High-quality test

Figure 1. Carefully controlled oulse shapes insure aecurate measuremonts.
pulses insure that degradation of the displayed pulse may be attributed to the test circuit alone.

The pertinent characteristics of a rest pulse, shown in Figure 2, are controlled and specifed accurarely in hp pulse generators. Rise and fall rimes should be signifcantly faster than the circuits or systems to be tested. Any overshoot. ringing and sag in the test pulse should
be known, so as not to be confused with similar phenomena caused by the cest circuit.

The range of pulse width control should be broad enough to fully explore the range of operation of a circuit. Narrow pulse widihs are useful in determining the minimum trigger energy required by some circuits.

Maximum pulse amplitude is of prime concern if appreciable input power is required by the rested circuit, such as a magnetic core memory. At the same time, the attenuation range should be broad enough to prevent overdriving the test circuits, as well as to simulate actual circuit operating conditions.

The range of pulse repectition rates is of concern if the tested circuits can operare only within a certain range of pulse rates, or if a variation in the rate is needed. The hp 216 A is capable of rep rates to 100 mc for testing fast circuits and has a pulse burst feature which al. lows trains of pulses rather than a continuous output to be used to check sys. rems more thoroughly.

Triggering

The trigger requirements for synchronizing a pulse generator should be evaluated in light of the triggers available in anticipated measurement set-ups. Late model hp pulse generators have versavile trigger circuits similar to oscilloscopes. These circuits synchronize on most waveforms of more than i v amplitude.
Hew:lett-Packard pulse generators also supply fast rise outpur triggers for operation of external equipment. The output uriggers may be cimed to occur either before or after the main output pulse.

Source impedance

Generator source impedance is an important consideration in fast pulse sys. tems. This is because a generator which has a source impedance matched to the connecting cable will absorb reflections resulting from impedance mismatches in the external system. Without this match, refections arould be re-reflected by the generator, resulting in spurious pulses or perturbations on the main pulse.

DC coupling of the output circuit is necessary when retention of de bias levels in the test circuit is desired in spite of variations in pulse width, pulse amplitude or repetition sate.

Applications of pulse and square wave generators

Pulse generators with fast rise times are widely used in the development of digital circuitry. Teamed with a suitably fast oscilloscope, these generators enable
evaluation of transistor and diode switch. ing times.

Pulse generators are used as modula. rors for klystrons and other of sources to obtain high peak power while maintaining low average power.

figure 2. Test pulse description in terms of primary characteristles.

Pulse generators also are used for im. pulse testing. A very short pulse is rich in harmonic erequency components, so that impuise testing amounts to simul. taneous frequency response testing of components or systems.

A relatively new application of fast pulse instruments is the testing of transmission lines, discussed in more decail on page 279. Very fast pulse generators (hp Models 2138, 215A) used with an equally fast ascilloscope (hp Model 189B) also can measure the stray inductances and capacitances of components.

Tests of linear systems with pulse or square wave generarors and oscilloscopes are dynamic tests which quickly analyze system performance. Because of the Fourier transtorm relacionships betwicen the transient response of a system and its frequency and phase characteristics, overall system response can be evaluated by observing the pulse response on an oscilloscope.

Herlett-Packard designs pulse generators with the fast rise times, marched source impedance, flexible pulse width and amplitude control, and versatile triggering capabilities required by a wide range of measurements. Particular attention has been paid to the quality of the outpur pulse, with all aspecrs of pulse shape carefully controlled and specified in derail.

211A SQUARE-WAVE GENERATOR

Convenient audio, video testing 1 cps to 1 mc

The hp Model 211A Square-Wave Generator is a versatile, wide-range instrument particularly designed for testing video and audio amplifier performance, ${ }^{1}$ or for use as a trigger generator. It provides complete coverage of all frequencies from 1 cps to 1 mc , and has a rise time of 0.02 microsecond. There are two separately variable outputs - a 3.5 volt peak 75 -ohm impedance circuit for television measurements, and a 27 volt peak 600 -ohm output for high-level work. The generator may be operated free-running or externally synchronized.

Model 211 A is ideal for testing amplifiers and networks and for modulating signal generators. It will measure time constants, check oscilloscope sweep circuits and generate harmonics for frequency muitiplication. It offers a simple means of controlling an electronic switch or intensity-modulating an oscilloscope. The generator also is a convenient instrument for indicating frequency response and transient effects.

[^34]

Specifications

Frequency range: 1 cps to 1 mc , continuous coverage.
Low-impedance output: -3.5 volts peak across 75 -ohm load; -7 volts open circuit, zero level clamped to chassis; rise time less than $0.02 \mu \mathrm{sec}$.
High-lmpedance output: -27 volts peak across 600 ohm load; -55 volts open circuit, zero level clamped to chassis; rise time less than $0.1 \mu \mathrm{sec}$.
Relative phase: 180° phase difference between high- and low-impedance output signals.
Amplitude control: low-impedance output - potentiometer and 60 db attenuator, variable in 20 db steps; high-impedance output - potentiometes.
Frequency control: dial calibrated " 1 to 10 " and decade multiplier switch; six bands.

Symmetry control: allows exact square-wave balance.
Sync input: positive-going pulse or sine wave signal, minimum amplitude 5 volts peak.

Power: 115 or 230 volts $\pm 10 \%, 50$ to $60 \mathrm{cps}, 225$ watts.
Dimensions: cabinet: $93 / 4^{\prime \prime}$ wide, $151 / 4^{\prime \prime}$ high, $145 / 8^{\prime \prime}$ deep ($238 \times 388 \times 372 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $83 / 4^{\prime \prime}$ high, $133 / 8^{\prime \prime}$ deep behind panel ($483 \times 222 \times 340 \mathrm{~mm}$).

Weighti net $26 \mathrm{lbs}(11,7 \mathrm{~kg})$, shipping $29 \mathrm{lbs}(13,0 \mathrm{~kg})$ (cabinet) ; net $25 \mathrm{lbs}(11,3 \mathrm{~kg})$, shipping $34 \mathrm{lbs}(15,3$ kg) (rack mount).

Price: hp 211A, $\$ 350$ (cabinet); hp 211AR, $\$ 355$ (rack mount).

212A, 213B PULSE GENERATORS

High power and fast rise pulses

The hp 213B Pulse Generator provides 0.1 nsec in rise time pulses at repetition rates to 100 kc for testing sampling oscillo. scopes or other fast circuits. The pulse has minimum overshook and is flat for 100 nsec after the very fast rise. Since the rise time of the 2138 is much faster than that of most circuits, step response of these circuirs may be measured directly, without considering the rise time of the 2138. External trigger capabilities from 0 to 100 kc and a free-run rate above 100 kc give more versatility to this fast-pulse source.

The fast rise, low overshoot and 50 ohm source impedance of this compact instrument provide matched system capabilities for all fast pulse work. With the hp 185 B Sampling Oscilloscope (pages 295-290), this pulse generator may be used to determine cable impedances, locate and measure connector or cable discontinuities and evaluate cable terminations.

Specifications, 213B

Output

Rise time: less than 100 picoseconds.
Top droop: less than 2% in first 100 nsec following the rise. Width: approximately $2 \mu \mathrm{sec}$.
Amplitude: grearer than 175 mv into 50 ohms, 350 mv open circuit, either polarity.
Source impedance: 50 ohms.
Jitter: less than 20 picoseconds when triggered with the 185A or 185 B sync pulse.
Repetition rate: free runs at a rare greater than 100 kc , or may be triggered.
Trigger Input
Amplitude: 0.5 volt peak, either polarity.
Rise time: 20 nsec or faster.
Width: at least 2 nsec.
Maximum current: 200 ma peak.
Impedance: 200 ohms for signals less than 0.35 volt peak; limiting lowers impedance to larger signals.
Repetition rate: 0 to 100 kc .

General

Power: 115 or 230 volts $\pm 10 \%$. 50 to 1000 cps , approximately 1 watt.
Dimenslons: $11 / 2^{\prime \prime}$ high, $51 / g^{n}$ wide, $5^{\prime \prime}$ deep ($38 \times 130 \times 127$ mm).
Welght: net $2 \mathrm{lbs}(0,9 \mathrm{~kg}$); shipping $3 \mathrm{lbs}(1,4 \mathrm{~kg})$.
Price: hp 213B, \$215.

A basic test instrument for raciar, or and other fast circuits, the hp 212A Pulse Generator provides positive or negative pulses and may the synchronized to other equipment through built-in delay and advance sync out circuits. It offers pulse lengths continuously vasiable from 0.07 to 10 microseconds, has a direct-reading pulse length control and provides pulses of 50 watts peat power. Pulses are of high quality, with very fast 0.02 microsecond rise and decay, flat top and minimum overshoot. Double pulses can be obtained by connecting a stub line across the oulput of the generator.

In addition ro radar, to and nuclear work, the generator is useful for testing response of of amplifiers, fhleers, handpass circuits, oscilloscopes, as well as for checking peak-measuring equipment, modulating rf carriers for pulse-modulating ulhf signal generators.

Specifications, 212A

Pulse: length continuously variable 0.07 to $10 \mu \mathrm{sec}$: amplitude 50 v peak, positive or negative, into 50 ohm load (50 watts peak).
Arnplitude control: 50 db attenuator, variable in 10 db steps; continuously variable amplitude control, 10 ob range.
Puise shape: rise and decay time each approximately 20 nsec; crest variation less than $\pm 5 \%$.
Jitter: less than 10 nsec.
Internal lmpedance: 50 ohms or less, either pulse polarity.
Repetition rate: internal sync, so to 5000 pps: external sync, approx. 2 to 5000 pps .
Sync in: ± 5 v peak minimum.
Sync out: +25 v or -15 v into 2000 ohen load; approx. 1 usec duration at half voltage; rise time approx. $0.25 \mu \mathrm{sec}$.
Pulse position: referenced to Sync Out pulse; delay, 0 to 100 $\mu \mathrm{sec}($ to 2500 PPs), 0 to $50 \mu \mathrm{sec}$ (to 5000 Pps) : advance, 0 to $10 \mu \mathrm{sec}$ (to S 000 pps).
Power: 115 or 230 volts $\pm 10 \%, 50$ to 60 cps. 380 watts.
Dimensions: cabinet: $203 / 4$ "wide, $123 / 4^{" h}$ high, $14.3 / 16^{\prime \prime}$ deep ($527 \times 324 \times 362 \mathrm{~mm}$) ; rack mount: $19^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $133 / 8 /{ }^{\prime \prime}$ deep behind panel ($483 \times 267 \times 345 \mathrm{~mm}$).
Weight: net $56 \mathrm{lbs}(25.2 \mathrm{~kg})$, shipping $68 \mathrm{lbs}(30.6 \mathrm{~kg})$ (cabiner) ; net $50 \mathrm{lbs}(22,5 \mathrm{~kg}$), shipping $65 \mathrm{lbs}(29.3 \mathrm{~kg})$ (rack mount)
Accessories available: 10503 A BNC Cable Assembly, $\$ 6.50$; 11500 A Type N Cable Assembly, 815.
Price: hp 212A, $\$ 775$ (cabinet); hp 212AR, $\$ 775$ (rack mount).

222A PULSE GENERATOR

Economical general-purpose testing

The 222A combines many features normally found only on more expensive instruments to provide an easy-to-use, yet versatile, general-purpose pulse generator. The 5 nsec rise time and full complement of controls permit a wide variety of pulse testing, including square wave testing. Os-cilloscope-type triggering, variable pulse width, repetition
cates to 10 mc , closely specified pulse shape and many other features provide accurate, dependable measurements. The 222 A , like other hp pulse generators, has a 50 -ohm output impedance for eliminating error-producing refections. The output pulse may be delayed from the trigger output by up to 5 msec for further measurement convenience.

Tentative specifications

Output pulse

Source impedance: so ohms shunted by approximately 15 pf throughout specified output voltage tange.
Amplitude
Peak voltage: 10 volts across 50 ohms; approximately 12 volts maximum.
Amplitude control: step attenuator provides $0.1,0.2,0.5$, $1,2,5,10$ volts across 50 ohms; continuously variable between steps; minimum output less than 0.05 voits.
Polarity: positive or negative.
Pulse width
Range: 20 nsec to 5 msec in 6 ranges, continuously variable berween ranges.
Duty cyele: maximum dury cycle $>50 \%$ from 100 cps to 10 mc ; for maximum stability at high duty cycles, select width range which allows maximum clockwise rotation of width vernier; duty cycle from 10 to 100 cps limited by 5 msec maximum pulse width.
Width litter: $<0.2 \%$ of maximum range width.
Pulse shape
Leading edge only
Rise time: <s nsec.
Overshoot and ringing: < 4% peak of puise amplitude.
Corner rounding: occurs no sooner than 95% of pulse amplitude.
Tlme to achleve fiat top: approximately 20 nsec.
Preshoot: < 3%.
Tralling edge only
Fall time: <s nsec.
Overshoot and ringing: <4\% peak of pulse amplitude. Corner rounding: occurs no sooner than 95% of pulse amplitude.
Mime to settle within 2% of base Une: approximately 20 nsec.
Preshoot: $<5 \%$.

Perturbations on flat top: $<3 \%$ of pulse amplitude.
Pulse delay: pulse delayed from trigger output by 100 nsec
to 5 msec in s ranges, continuously variable between ranges.
Delay jitter: $<0.2 \%$ of maximum delay.
Repetition rate and trigger
Internal
Repetition rate: 10 cps to 10 mc in 6 ranges, contiouously variable between ranges.
Jitter: period jitter in any frequency range $<0.3 \%$ of maximum period of that range.
Manual: pushbutton single puise.
External
Triggering: ac coupled; sine wave from 10 cps to 10 mc , pulse from 0 to 10 mc , eirher positive or negative slope.
Sensitivity: 1 volt p•p minimum; external pulses must be at least 10 nsec wide: maximum inpur 20 volts peak; 0.25 watt maximum average power.

Input Impedance: approximately 300 ohms.
External trigger delay: approximately is nsec between leading edge of external trigger input puise and leading edge of trigger output pulse.
Trigger output pulse
Width: approximately 10 nsec at 50% points.
Amplitude: >1 volt into 50 ohms .
Rise time: <10 nsec.
Polarlty: positive.

General

Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to $60 \mathrm{cps}, 80 \mathrm{w}$.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $51 / 2^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep ($425 \times$ $140 \times 336 \mathrm{~mm}$); hardware furnished for quick conversion to $51 / 4^{\prime \prime} \times 19^{\prime \prime}$ rack mount, $113 / 4^{\prime \prime}$ deep behind panel $(133 \times 483 \times 298 \mathrm{~mm})$.
Welght: net $18 \mathrm{lbs}(8 \mathrm{~kg}$) ; shipping $24 \mathrm{lbs}(11 \mathrm{~kg})$.
Pilce: on request.

214A PULSE GENERATOR

Delivers 200 watts pulse power

The hp Model 214A features 200 watts pulse power, controlled pulse shape, external trigger slope and level selection, and a 50 -ohm source impedance for general. purpose lab and production measurements.

The 200.watt (2 amps peak) pulse power is particularly suited for testing current-driven devices such as magnetic memory cores, as well as high-power modulators. At output levels below 50 volts, the pulse generator has a matched source impedance of 50 ohms, eliminating error-producing reflections. The pulse characteristics are carefully controlled, and pulse rate, width and delay jitter are kept to a minimum
to insure accurate, dependable test results.
The 214A offers an extremely wide range of trigger control for syncing on external signals. In addition, slope and level may be selected so that triggering occurs at a given point on the trigger waveform. Also provided is a variable delay or advance rrigger output signal for use in synchronizing external equipment.

The pulse generator may be gated to provide bursts of pulses. This feature is especially useful for computer logic measurements. Also, a double pulse feature is provided for pulse resolution tests of amplifiers and memory cores.

Specifications

Output pulse

Source impedance: 50 ohms on the 50 y and lower ranges; approximately 1500 ohms on the 100 v range.

Puise shape:

Rise and fall time: <13 nsec on the 20 v and lower ranges and the -50 v range, $<15 \mathrm{nsec}$ on the +50 v range; typically <10 nsec with the vernier set for maximum attenuation, and typically 15 nsec on 100 v range.
Pulse amplitude: 100 v inco 50 ohms; an atrenuator provides 0.2 to 100 v in a $1.2,5$ sequence (9 ranges); vernier reduces outpur of 0.2 v setting to 80 mv and provides continuous adjustment between ranges.
Polarity: posituve or negative.
Dvershoot: < 5%, both leading and trailing edges.*
Pulse top variations: $<4 \%$.
Droop: $<6 \%$.
Preshoot: $<2 \%$,
Pulse width: 50 nsec to 10 msec in 5 decade ranges; continuously adjustable vernier.
Width iitter: $<0.05 \%$ of pulse width +1 nsec.
Pulse position: 0 to 10 msec advance or delay with respect to trigger output (s decade ranges) continuously adjustable vernier.
Position jitter, < 0.05% of advance or delay setting +1 nsec (between trigger pulse and output pulse).

Repetition rate and trigger

Internal
Repetition rate: 10 cps to 1 mc (s ranges), continuously adjustable vernier.

Rate jitter: $<0.5 \%$ of the period.
Manual: pushbutton single pulse, 2 sps maximum rate.

External

Reperition rate: dc to 1 mc .
Sensitiviry: <0.5 v peak.
Slope: positive or negative.
Level: adjustable from -40 v to +40 v .
External gating: +8 v signal gates pulse generator on; maximum input. 40 v peak.

Double pulse

Minimurn spacing: $1 \mu \mathrm{sec}$ on the 0.05 to $1 \mu \mathrm{sec}$ pulse width range and 25% of upper limit of width range for all other ranges.
Trigger output
Amplitude: >10 v open circuit.
Source impedance: approximately 50 ohms.
Width: $0.05 \mu_{\text {sec }}$, nominal.
Polariy: positive or negative.

General

Maxlmurn duty cycle: 10% on 100 and 50 v ranges; 25% an 20 v range; 50% on 10 v and lower ranges.
Power: 115 or $230 \mathrm{v} \pm 10 \%$, 50 to $60 \mathrm{cps}, 325 \mathrm{~m}$.
Dimenslons: $163 / 4^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ high, $183 / 8^{\prime \prime}$ deep overall ($425 x$ $184 \times 466 \mathrm{~mm}$) : hardware furnished for quick conversion to $7^{\prime \prime} \times 19^{\prime \prime}$ rack mount, $163 / 8^{\prime \prime}$ deep behind panel ($178 \times 483 \times$ 416 mm).
Welght: net $35 \mathrm{lbs}(15,8 \mathrm{~kg})$; shipping $48 \mathrm{lbs}(19,6 \mathrm{~kg})$.
Price: hp 214A, 5875.

[^35]
215A PULSE GENERATOR

Controlled, fully specified output pulses

The Model 215A Pulse Generator combines in one compact unit the many capabilities desired for fast pulse testing. The fast rise and fall time and extremely low pulse jitter make the 215A particularly useful in measuring transition storage times of semiconductors, logic circuits and thin film memory units.

The output pulse of the 215 A is carefully controlled to approximate an ideal pulse shape and is specified in every respect for accurate, dependable measurements. One nano-
second rise and fall time pulses of either polarity with nearly an ideal pulse shape, combined with calibrated pulse width and delay controls, adjustable pulse amplitude, variable pulse rate to 1 mc and a true $50-\mathrm{ohm}$ source impedance provide maximum measurement capabilities.

The true 50 -ohm source impedance insures clean output pulses, regardless of the load impedance, since any reflection from the circuit under test will be absorbed by the 50 -ohm generator impedance.

Specifications

Source Impedance: 50 ohms; 3% maximum refection when driven
by a pulse with 1 nsec rise time from an external 50.0 hm system. Leading edge only

Rise time: <1 nsec (10 to 90%).
Overshoot and ringing: < 5% peak, less than 10% peak to peak of pulse amplírude.
Corner rounding: occurs no sooner than 95% of pulse amplitude.
Time to achieve flat top: <6 nsec.
Tralling edge only
Fall time: <1 nsec (10 to 90%).
Overshoot: $<5 \%$.
Rounding: occurs no sooner than 95% of fall.
Time to settle withio 2% of baseline; 10 to 25 nsec, varies with width setting.
Baseltne shlft: $<0.1 \%$ under all conditions.
Preshoot: < 1%.
Perturbations on flat top: < 2% of pulse smplitude.
Paak voltage: >10 volts into 50 ohms; >20 volts open circuit.
Polarity: positive or negative.
Attenvator: 0 to 12 db io 1 db steps, absolute accuracy within $\pm 0.1 \mathrm{db}$.
Pulse width (between 50% points): continuously adjustable to 100 nsec; dial accuracy within $\pm 5 \% \pm 3$ nsec, width jitter less than 50 psec.
External bias: up to $\pm 100 \mathrm{ma}$ (± 5 v dc) may be safely applied to the output; at 0 db attenwator setting, up $1010 \mathrm{ma}(0.5 \mathrm{v} \mathrm{dc})$ may be applied without significant change in pulse shape (5% droop), increasing to 40 ma at 12 db ; in most cases, adjusting the front-panel pulse-shape controls will restore original pulse shape.
Repetlive rate sources
Internal repetition rate: $<100 \mathrm{cps}$ to $>1 \mathrm{mc}$ in 4 ranges, cootinuously varjable between ranges; period jitter $<3 \times 10^{-3}$ of one period.
Manual: pushbutton single pulse.
THgger timing: adjustable from 10 nsec delay to 140 nsec advance with respect to leading edge of output pulse; dial accuracy withid $\pm 10 \% \pm 3$ nsec; jitter < 50 picoseconds.

External triggering; ac coupled, sine waves from 10 cps to 1 mc ; pulses from 0 to 1 mc ; either positive or negative slope.
Trigger level: external trigger level continuously variable, from approximately +8 to -8 volts.
Sensitivity: 1 v peak to peak min.; external pulses must be at least 30 nsec wide; max. input 50 v peak, 0.5 w max. average power.
Input impedance: approx. 50 ohms or High Z available by frontpanel switch; High Z is approx. 100 K for negative slope setting. approx. 5 K for positive slope setting.
Countdown: counts down from frequencies to $100 \mathrm{mc}, 2 \mathrm{v} \mathrm{ms}$ amplitude; resulting pulse repetition rate is always $<1.3 \mathrm{mc}$; jitter is $<10 \%$ of one period of the triggering signal.
External trigger delay: approximately 250 nsec between leading edge of trigger pulse (2 voit step, 2 nsec rise time into 50 ohms) and leading edge of output pulse; <50 psec jitter.
External gating: gates on with a +1 volt pulse; maximum input 50 v peak, 20 v mms .
Trigger output pulses
Width: so nsec, nominal.
Amplitude: >1 volt peak into 50 ohms.
Rise time: <6 nsec.
Polsrity: positive or negative.
Power, 115 or 230 volts $\pm 10 \%, 50$ to $60 \mathrm{cps}, 60$ water
Dimensions: $51 / 2^{\prime \prime}$ high, $163 / 4$ "wide, $183 / \mathrm{g}^{\prime \prime}$ deep ($175 \times 425 \times 466$ mm) ; hardware furnished for quick conversion to $51 / 4 \times 19^{\prime \prime}$ rack mount, $163 / 8^{\prime \prime}$ deep behind panel ($134 \times 483 \times 416 \mathrm{~mm}$).
Weight: aet $33 \mathrm{lbs}(15,3 \mathrm{~kg})$; shipping $49 \mathrm{lbs}(22,1 \mathrm{~kg})$.
Accessarles furnlshed; 10120A cable, 3 feet, BNC-to-BNC, so ohms ± 0.5 ohm.
Accessorles avaliable: 10122A cable, 3 feet, BNC-to-Type N, 50 ohms ± 0.5 ohm, $\$ 10 ; 908 \mathrm{~A}, 50$-ohm Coaxial Termiaation, $\$ 35$; 10451A Multipulser generates pulse bursts to simulate is to 200 me rep rate, $\$ 95$; 10204 A Blocking Capacitor, $0.1 \mathrm{\mu f}$, isolates $215 A$ from up 10200 v de, $\$ 70$.
Price: hp 215A, $\$ 1875$.

216A PULSE GENERATOR

Fast-rise 100 mc pulses

The Model 216 A offers pulse reperition rates up to 100 mc for testing fast circuits, yet retains a nearly ideal pulse shape with 2.5 nsec rise time for accurate, dependable measurements. In addition, burses of pulses may be produced internally to simulate pulse trains for logic circuit testing.

Pulse height is continuously variable, allowing exact pulse amplitudes to be selected for precise testing. The de-coupled ourput eliminates baseline shift with changes in rep rate, and the 50 -ohm output impedance prevents multiple reflections, insuring clean, easy-to-inierpret waveforms.

NEW

Tentative specifications

Source Impedance: approximately 50 ohms shunted by 10 pi throughout specified output volvage range.
Leading edge only (at max. rated output)
Rise time: <2.5 nsec (approx. $11 / 2 \mathrm{nsec}$ with amplitude vernier set to 50% or less of max. output).
Overshoot and ringing: overshoor $<4 \%$ peak, ringing $\pm 4 \%$ $\mathrm{p}-\mathrm{p}$ of pulse amplitude.
Corner rounding: occues no sooner than 96% of pulse am. plitude.
Time to achieve flat top: approximately 20 nsec .
Preshoot: $<3 \%$.
Tralling edge oniy (at max. rated output)
Fall time: <2.5 nsec (approx. $11 / 2$ nsec with amplitude vernier set to 50% or less of max. outpur).
Overshoot: <4\%.
Corner rounding: occurs no sooner than 96% of fall.
Time to settle within 2% of base line: approx. 20 nsec .
Preshoot: < 5%.
Perturbations on flat top: $<3 \%$ of pulse amplitude.
Peak voltage: >10 volts into 50 ohms to $50 \mathrm{mc},>9$ volts to 100 me (15 volts maximum amplitude).
Attenuator: 1, 2, 5, 10 volk steps.
Polarity: positive or negarive.
Vernier; provides continuous adjustment from approximately 0.3 volts to 10 volts.

Pulse width: concinuously variable in two sanges, from s nsec to 25 nsec and from 25 nsec to $100 \mathrm{nsec} ;$ pulse width independent of rep rate up to 50 mc ; width jitter $<100 \mathrm{psec}$ $+0.05 \%$ of pulse width.
Maximum duty cycle: $>50 \%$ up to 50 mc for 10 volts out or less; $<40 \%$ between 50 mc and 100 mc .
Internal repetition rate: 1 mc to 100 mc in 3 ranges.
External triggering
Frequency: sine waves from 1 mc to 100 mc , pulses from 0 to 100 mc ; pulse rise time $<100 \mathrm{nsec}$.
Sensitivity: at least 0.5 volt peak minimum; maximum input. 10 volt peak.
Input Impedance: approximately 50 ohms, ac coupled.

External trlgger delay: approximately $140 \mathrm{nsec} \pm 10 \%$ be. tween leading edge of input trigger pulse and leading edge of output pulse.
Trigger output pulse
Width: $3.5 \mathrm{nsec} \pm 1 \mathrm{nsec}$.
Amplitude: >0.5 volts peak into 50 ohms.
Polarity: negative.
Trigger timing: approximately 130 nsec $\pm 10 \%$ advance with respect to leading edge of output pulse.
Countdown trigger output
Amplltude: >0.5 volr peak into 50 ohms.
Polarity: positive.
Countdown frequency: variable from approximately 250 kc to 450 kc .
Gating of pulse bursts
internal
Gate width: variable from approx. 20 nsec to 750 nsec
Gate repetition rate: variable from approximately 250 kc to 450 kc .
Externalk gates on with +2 volk pulse having rise and fall times of <5 nsec; maximum inpur, 10 volts.
Perturbations: for 10 voles out or less inco 50 ohms and rep rate up to 70 mc , perturbations on gate envelope $<8 \%$; for 5 volts our or less into 50 ohms and rep rate up to 100 mc , perturbations $<8 \%$; above 50 mc width varies s!ightly from pulse to pulse.

General

Power: 115 or 230 volts $=10 \%, 50$ to $60 \mathrm{cps}, 120$ watts.
Dimenslons: $51 / 2^{\prime \prime}$ high, $163 / 4$ " wide, $183 / 8^{\prime \prime}$ deep ($175 \times 425 \times$ 466 mm), hardware furnished for quick conversion to $51 / \mathbf{s}^{\prime \prime} \times 19^{\prime \prime}$ rack mount, $163 / s^{\prime \prime}$ deep behind panel (134 \times $483 \times 416 \mathrm{~mm})$.
Weight: net $25 \mathrm{lbs}(11 \mathrm{~kg})$; shipping $31 \mathrm{lbs}(14 \mathrm{~kg})$
Accessories avallable: 10120 A Cable, 3 feet, BNC-ro-BNC, 50 ohms ± 0.5 ohm, $\$ 10: 10122 \mathrm{~A}$ Cable, 3 feet, BNC-to-Type $\mathrm{N}, 50$ ohms ± 0.5 ohm, $\mathrm{s} 10 ; 908 \mathrm{~A} 50$ ohm Coaxial Termina. tion, \$35: 10204A Blocking Capacitor, 0.1μ, isolates 216 A from up to $200 \mathrm{vdc}, \$ 70$.
Price: hp 216A, \$1775.

218AR DIGITAL DELAY GENERATOR

± 1 count ambiguity eliminated in digital time interval, pulse generation

The hp 218AR Digital Delay Generator is designed to generate precise time intervals and single, double or superimposed pulses. It is useful as a general-purpose laboratory pulse generator and because of its versatile plug-in pulse generators, it often can take the place of several specialpurpose instruments.

The 218AR consists of (1) a pulsed crystal oscillator which is started in known phase by the initial trigger (start) pulse, eliminating the ± 1 count error; (2) a dual-preset digital counter which counts the crystal or externally applied frequency, and operates (3) two preset gates which pass the selected pulses.

Plug ins include the 219A Dual Trigger Unit to supply
trigger pulses for controlling auxiliary equipment, \$125; the 2198 Dual Pulse Unit to deliver fast-rise-time, highpower pulses that are digitally delayed, $\$ 490$; and the 219 C Digital Pulse Duration Unit, which produces a high-power output pulse whose delay and duration may be digitally controlled, $\$ 375$. Output pulses of the 219 A are identical to the sync output of the 218 AR . The 2198 pulses are individually adjustable, 0 to $\pm 50 \mathrm{v}$ peak open circuits from a 50 -ohm source. Pulses from the 219 C are 90 v peak (or more), open circuit, from a 500.0 hm source or adjustable from 0 to 15 v peak from a 90 -ohm source. The positive excursion of the pulses is clamped to ground, and both posi-tive- and negative-going pulses are available simulcaneousiy.

Specifications

(Plug-in necessary to operate)

Time Interval range: (T_{0} to T_{1} and T_{0} to T_{2}) 1 to 10,000 $\mu \mathrm{sec}$; accuracy $\pm 0.1 \mu \mathrm{sec} \pm 0.001 \%$ of time interval selected.

Digltal adjustment: 1 to $9999 \mu \mathrm{sec}$ in $1 \mu \mathrm{sec}$ steps.
Interpolation: continuously adjustable; adds 0 to $1 \mu \mathrm{sec}$ to digital setting.
Input trigger: internal: 10 cps to $10 \mathrm{kc}, 3$ decade ranges; external: sine wave, 10 to $100 \mathrm{cps}, 2$ to $40 \mathrm{v} \mathrm{mms}, 100 \mathrm{cps}$ to $10 \mathrm{kc}, 2$ to 40 v ms ; pulse, 0 to 10 kc , positive or nega. tive, 2 to 40 v peak; for trigger rise time of $0.05 \mu \mathrm{sec}$ or less, delay between external trigger and T_{0} is less than $0.5 \mu \mathrm{sec}$; manual; pushbutton operation.
Jitter: $0.02 \mu \mathrm{sec}$ or less.
Recovery time: $70 \mu \mathrm{sec}$ or 10% of selected interval, whichever is greater.
Sync output: positive pulse, 50 to 70 v peak, open circuit,
$0.1 \mu \mathrm{sec}$ rise time; width more than $1.5 \mu \mathrm{sec}$; available at T_{0}, T_{1}, or T_{2}.
1 me output 1 mc positive pulses (1 v from 500 -ohm source) provide timing comb synchronized to start pulses; available at panel connector for duration of longer delay when counting internal 1 mc oscillator.
External counting: external sine waves, 100 cps to $1 \mathrm{mc}, 2 \mathrm{v}$ rms minimum; 10 to $100 \mathrm{cps}, 5 \mathrm{v} \mathrm{mms}$ minimum, and positive pulses, periodic or random, 0 to $1 \mathrm{mc}, 2 \mathrm{v}$ peak, can be counted instead of internal standard; time interval range becomes 1 to 9999 periods in 1-period steps, and accuracy is $\pm 0.1 \mu \mathrm{sec} \pm 1$ period.
Power: 119 or $230 \mathrm{v} \pm 10 \%$, 50 to $60 \mathrm{cps}, 555 \mathrm{w}$.
Dimenslons: $1^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $213 / 4^{\prime \prime}$ deep behind panel ($355 \times 483 \times 524 \mathrm{~mm}$) .
Weight net 74 lbs (34 kg); shipping 103 lbs (47 kg).
Price: hp 218AR, $\$ 2250$ (requires hp 219A,B,C Series plug-in units).

X-Y RECORDERS

The Cartesian coordinate graph is one of the most efincient means ever devised to portray related dara clearly. Modern $x \cdot y$ recorders speed data interpretation by producing such graphs quickly. An $x \cdot y$ recorder automatically and conveniently plots the value of an independent variable versus a dependent variable, directly on conventional graph paper, working from readily derived electrical signals. When equipped with a curve follower, an $x-y$ recorder also can read a previously recorded graph. feeding our a pair of analog signals.

The presene generation of Moseley graphic recorders is the result of many years of pioneering experience. This experience provided accessories which make Moseley instruments the most useful of their kind. Among adranced features are:

AUTOGRIPB electric paper hold. down, with no moving parts
inputs with 1-megohm null loading
calibrated multi-scale ranges
ds sensitivity to $100 \mu \mathrm{v}$ /irch
ac sensitivity to 5 mv /inch
zero offset up to 4 scale lengths
140 db de common mode rejection
120 db ac common mode rejection
The range of accessories offered for Moselcy recorders exceeds thar offered by any other manufacturer and is constantly being augmented. The user may be suse his Moseley recorder will be adaprable to the widest possible variery of future needs, without added initial cost.

Basic operation of $x-y$ recorders

The $x-y$ recorder uses electrical servo systems to produce a pair of crossed mo. tions, moving a pen 50 as to write precise $x \cdot y$ plots. It consists of basic balancing circuits, plus auxiliary elements to make the instrument versatile.

The self-balancing porentiometer circuit (A) compares an unknorn external voltage with a scable internal reference voluage. The difference between these volrages is amplified and applied to a servo motor to drive a potentiometer in a direction that wrill null any difference or error voltage. Accuracy of plots made by this principle is typically 0.1%. The full-scale range of the recorder for each axis is obrained with input signals as low as fractions of a millivolt. Thus, the outpu: of many low.level devices, such as thermocouples and strain-gages, may be ploted directly without additional amplification.

A stepped attenuator or range selector (B) is included for each axis, so voltages as high as 500 may be handled directly. Input resistance is at least 200,000 ohms per volt, with higher values, including
constant 1-megohm input resistance, available on some models. Sensitivity may be as high as $100 \mu v$ per inch for $d c$. 5 mv per inch for ac. The feedback potentioneter, R_{1}, is critical, and its manufacture at Moseley is a highly refined process, so that self-generated noise will not appear on the uace. New Moseley multi-contact flar mandrel potentiom. eters have greatly reduced noise and ex. tended life.

A chopper (C) converts the de error signal into a reversible-phase alternating current, which is fed into a servo amplifier. The amplified signal is then applied to the control phase of the servomotor.
Servo damping (D) is commonly applied. A phase-lead netrork anticipares electrical balance or null just before mechanical balance is achieved. preventing overshoor. Full scale traverse time for most $x \cdot y$ recorders is in the range 0.5 to 1 second.

Zeroing potentiometers (E) permit the user to locate the plotting origin as desirtd by inserting an offset voltage. With these controls the zero of either axis, or bonth, can be extended or suppressed up to four full-scale lengths on some models. so ploting may be carried out in any desired quadrant.

To fir the range of the recorder's response exactly to the coordinates of the paper in use, or to the anits of measure.

ment desired, a continuously adjustable range control (F) may be swisched in as a substicute for the calibrated control. Thus, the response range of the recorder can be adjusted smoothly to match, for example, some calibrated maximuny from a uransducer, so the paper's coordinates directly correspond to the desired units of measurement ($\mathrm{psi},{ }^{\circ} \mathrm{C}$, etc.).

Since is is ofren desitable to plot a function against time, a time base or sweep circuit (G) is a valuable feature. To accomplish this. the charging rate of a capacitor is kepr constant by continuously changing the applied voltage. The voltage created by the constant charging current is balanced against a manually selected reference voltage, whose value determines the sweep time. The difference, an error signal of constant magnirude. is then applied to the chopper, thus driving one axis of the recorder at a constant rate.

Options and accessories

Moseley x-y recorders may be selected among models in three basic sizes, those for paper of maximum size $81 / 2^{\prime \prime} \times 11^{\prime \prime}$, 1!" x $17^{\prime \prime}$ or 32" x $32^{\prime \prime}$. Two-pen models are available, capable of simultaneously plotting two curves. Certain models have high sensitivity, high common mode rejection and high input resistance. Models are available with and without ac capability. Options include rack mounting, merric calibration and scaling, special input characteristics, rear connecsions and others. Single-character or melti-char. acter automatic prinrers for point plotting are offered for use with $11^{\prime \prime}$: $17^{\prime \prime}$ recorders.

Available accessories include line fol. lowers, ac-de converters, logarithmic converters, waveform translators to enable plorting of scope traces, and keyboard control for ploting of tabular data in point graph form.

7030A HIGH-SENSITIVITY X-Y RECORDER, 81/2" $\times 11^{\prime \prime}$

Most sensitive range 100 microvalts per inch

Assembled on a sturdy aluminurn cast frame, the Moseley 7030A X-Y Recorder accepts dc signals with much greater sensitivity and higher common mode rejection than previously possible in one instrument. Guarded and shielded input circuitry has 1 -megohm resistance at null on each of 17 ranges, with continuous flexibility of each range for arbitracy full-scale voltages. The lowest range is sensitive to $100 \mu \mathrm{v} /$ inch, and the 5 most sensitive ranges also may be operated in potentiometric mode which draws no current at null.

Special multi-contact flat mandrel balancing potentiometers maintain trouble-free operation without frequent
cleaning. Zero offset controls for each axis are calibrated in continuously adjustable s-inch steps which cover 3 full scale lengths on x and 4 full scale lengths on y. Recording accuracy is better than 0.2% of full scale on all ranges, this accuracy being maintained from range to range. Extremely good retrace performance assures high dynamic accuracy and resectability.
The paper holddown system is the new exclusive Moseley AUTOGRIP which operates on an electronic principle, has no moving parts, is quiet, reliable and effective on any paper size up to the capacity of the platen.

Specifications

Input circults: de, floating guarded and shielded; may be operated up to 500 v de above ground.
DC voltage ranges (each axis): 7030A (standard, inch): 17 calibrated ranges: $0.1,0.2,0.5,1,2,5,10,20,50 \mathrm{mv} / \mathrm{in}: 0.1$, $0.2,0.5,1,2,5,10,20 \mathrm{v} / \mathrm{in} ; 7030 \mathrm{AM}$ (metric) : $0.05,0.1$. $0.25,0.5,1,2.5,5,10,25 \mathrm{mv} / \mathrm{cm} ; 0.05,0.1,0.25,0.5,1.2 .5$. $5,10 \mathrm{v} / \mathrm{cm}$; each range continuously variable.
input resistance: one megohm at null on all calibrated ranges; potentiometric input on six most sensitive ranges by discon. necting strap on input attenuaror.
Interference rejection: dc common mode rejection is 140 db ; ac common mode rejection is 120 db at line frequency.
Slewing speed: $20 \mathrm{in} / \mathrm{sec}$, each axis.
Time sweaps: may be applied to x or y axis in 8 ranges: 7030A (standard, inch): $0.5,1,2,5,10,20,50,100 \mathrm{sec} / \mathrm{in}$; 7030AM (metric): $0.25,0.5,1,2.5,5,10,25,50 \mathrm{sec} / \mathrm{cm}$; sweep length is adjustable and may be reset at any point of operation either manually or automatically.
Accuracy: 0.2% of full scale; resettability and lineariry 0.1% of full scale; time sweeps; 2% of full scale with linearity 1% of full scale.
Repeatability: 0.1% of full scale.
Position transducer: multi-contact, flat mandrel potentiometers in each axis.
Zero offser: zero suppression may be established in 5 -inch cali. brated steps with continuous control on each step up to 3 full scales on x and 4 full scales on y.

Refarence voltage: zener-controlled continuous supply.
Paper holddown: AUTOGRIP electric; no moving parts; equally effective on all size charrs $81 / 2^{\prime \prime} \times 11^{\prime \prime}$. or smallec.

Servo motors; acceleration constant is a minimum of 22,800 radians/sec.

Power, 115 or 230 volts, 50 to $60 \mathrm{cps}, 75$ volt-amps.
Dimensions: bench model: $161 / 8^{" l}$ long, $101 / 2^{\prime \prime}$ wide, $41 / 2^{\prime \prime}$ deep ($407 \times 267 \times 114 \mathrm{~mm}$) ; rack model: $1618_{8}^{\prime \prime}$ inside rack clearance, $191 / 2^{\prime \prime}$ panel widrh, $41 / 2^{\prime \prime}$ maximum depth ($407 \times 495 \times$ 114 mm).

Welght: net $20 \mathrm{lbs}(9 \mathrm{~kg})$; shipping $32 \mathrm{lbs}(14,4 \mathrm{~kg})$.
Compatible accossories: 60D Logarithmic Converter; Type A. 1 AC-to-DC Converter; 101 Waveform Translator.

Price: Moseley 7030A (standard bench) $\left.\begin{array}{l}\text { Moseley 7030AR (standard rack) } \\ \text { Moseley 7030AM (metric bench) } \\ \text { Moseley 7030AMR (metric rack) }\end{array}\right\} \$ 1795$

Options

1. Potentiometric switch for five most sensitive ranges
2. Zero check switch on each axis Prices on request
3. Automatic recycling for time sweep

04 . With both carrying handle and rack brackets, add $\$ 15$.

135 SERIES X-Y RECORDERS, $\mathbf{8 " ~}^{\prime \prime}$ 11" $^{\prime \prime}$

Multi-range, portable or rack, general-purpose plotter

Available in two basic models, these Moseley $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ $x-y$ plotters are adaptable to almost any laboratory, field or system application. In the first group, the 135 and the 135 M (metric) feature 16 dc input ranges on each axis with a minimum input resistance of 200,000 ohms/volt full scale ($10^{\prime \prime}$) ; in the second group, the 135A and 135AM (met. ric) feature 11 calibrated ranges with 1 -megohm resistance at null.

Unique construction permits instant adaptation to desk or bench positioning in a horizontal, inclined or vertical plane, or rack mounting by the addition of brackets in only $101 / 2^{\prime \prime}$ of panel space. A detachable handle doubles as a tilt support or carrying aid. Standard features include advanced transistor circuitry, calibrated time base on the x-axis, zero set and zero suppression, potentiometric input mode, scale factor vernier and new AUTOGRIP electric paper
holddown, which has no moving parts, holds any chart $11^{\prime \prime} \times 17^{\prime \prime}$ or smaller, is quiet and maintenance-free.

Modular construction of major assemblies insures maximum fiexibility and ease of maintenance. The control module incorporates all input circuitry with conveniently grouped operating controls. A panel group for each axis includes input terminals which accept either open wire or banana plugs, ground terminal, range selector with scale factor vernier, function switch and zero control. High-gain servo amplifers are plug-in units, isolated and free of ground. Special Moseley servo motors control the ink pen through a "drafting machine" type mechanism which is accurate and non-interacting. The pen may be controlled locally or remotely by an electric lift. The "drop-in" pen mounting facilitates easy changing or cleaning. Calibrated scales along each axis align with standard paper markings.

Specifications

Recording mechanism: independent servo-actuated drives for x and y axes; isolated and free of ground.
Paper slze: standard $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ graph paper with $7^{\prime \prime} \times 10^{\prime \prime}$ recording area; metric paper has $18 \times 25 \mathrm{~cm}$ recording area.
Paper holddown; AUTOGRIP elextric, no moving parts; holds chacts $11^{\prime \prime} \times 17^{\prime \prime}$ or smaller.
Slewing speed: 20 in/sec ($50 \mathrm{~cm} / \mathrm{sec}$) maximum pen speed, each axis.
DC voltage ranges (each axis): 135 (standard, inch): 16 ranges, $0.5,1,2,5,10,20,50 \mathrm{mv} / \mathrm{div} ; 0.1,0.2,0.5,1,2,5,10,20,50$ $\mathrm{v} / \mathrm{div} ; 135 \mathrm{M}$ (metric): 16 ranges, $0.2,0.5,1,2,5,10,20,50$. $100 \mathrm{mv} / \mathrm{cm} ; 0.2,0.5, \mathrm{~L}, 2,5,10,20 \mathrm{v} / \mathrm{cm} ; 135 \mathrm{~A}$ (1-megohm, inch): 11 ranges, $0.5,1,5,10,50 \mathrm{mv} / \mathrm{div} ; 0.1,0.5,1,5,10$, $50 \mathrm{v} / \mathrm{div}$; 135 AM (1 -megohm, metric): 11 ranges $0.2,0.3,2,5$. $20,50 \mathrm{mv} / \mathrm{cm} ; 0.2,0.5,2,5,20 \mathrm{v} / \mathrm{cm}$; on all models, continuous range expansion control, potentiometric mode on y axis (obeain. able on x by removing strap on input circuit board); operates on most sensitive range on 135 and 135 M and on four most sensitive ranges of 135A, 135AM.
Time base Intervals: 135 (standard, inch): 7 calibrated sweeps on x axis, $0.5,1,2,5,10,20,50$ sec/div; 135 M (merric): 7 calibrated soreeps on x axis, $0.2 .0 .5,1,2,5,10.20 \mathrm{sec} / \mathrm{cm}$; 135A (1-megohm, inch): 5 calibrated sweeps on x axis, $0.5,1,5$, 10, $50 \mathrm{sec} / \mathrm{div} ; 135 A M$ ($1 \cdot \mathrm{meg}$ ohm, metric) : 5 calibrated sweeps on x axis, $0.2,0.5,2,5,20 \mathrm{sec} / \mathrm{cm}$.
Input reslstance: 135 (standard, inch): 200,000 ohms/volt, full
scale ($10^{\prime \prime}$) through $1 \mathrm{v} /$ div range. 2 megohms on all higher ranges: 135 M (metric) : 200,000 ohms/vole, full scale (25 cm) ihrough $0.5 \mathrm{v} / \mathrm{cm}$ range; 2.5 megohms on all higher ranges; 135A. 135AM (1 -megohm, inch and 1 -megohm, metric): 1 megohm at null on all calibrated ranges; when in variable range control mode, 100,000 ohms on four most sensitive ranges and inegohm on all others; potentiometric input draw's essentially zero current at null.
Accuracy: better than 0.2% of full scale with 0.1% resetmbility; time base accuracy better than 5% of full scale, adjustable to 1%.
Standardization: continuous electroaic reference from zener-reguJated power supply.
Power. 115 or 230 volts $\pm 10 \%, 50$ to 60 cps , approximately 80 volt-amperes.
Dimenstons: $161 / 8$ " long, $101 / 2^{\prime \prime}$ wide, $41 / 2^{\prime \prime}$ deep ($410 \times 267 \times 114$ mm)
Welght: net $25 \mathrm{lbs}(11,3 \mathrm{~kg})$; shipping 32 lbs ($14,4 \mathrm{~kg}$).
Price: Moseley 135 (bench) and 135R (rack), standard Moseley 135 M and 135 MR . metric
Moseley 135A and 135AR 1 -megohm, standard Moseley 135AM and 135AMR 1-megohm, metric

OptJons

1. With both handle and rack brackets, add $\$ 15$.
2. With rear inputs (rack unjs only). add $\$ 15$.
3. With mechanical paper holddown in place of AUTOGRIP. no extra charge.
4. With cartridge ink supply, no extra sharge.

135C X-Y RECORDER

Modified version of the 135 for maximum utility at lower cost

The Model 135 C is a lower cost version of the Moseley 135 X.Y Recorder (page 343). It has six fewer input ranges with a lower maximum voltage acceptance, slightly lower slewing speed, manual pen lift and mechanical instead of electric paper holddown for standard $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ graph sheets. Physical construction is identical to the 135 , ultracompact and instantly adaptable to horizontal, inclined or vertical positioning, as well as being convertible to rack mounting.

Many other desirable features of the more versatile 135 are retained, including full-scale zero adjustment and suppression, continuous expansion controls for arbitrary fullscale cange settings and potentiometric input capability.

Electrically isolated, all solid-state amplifiers control spe. cial Moseley high-performance 2 -phase servo motors mechanically coupled to balance potentiometers and a cartridge fed ink pen. Input filters in each axis reject undesirable noise in applied do signals to produce smooth recordings. Accuracy up to 0.1% of full scale may be obtained on any one range by an easily accessible control, the most sensitive range being factory adjusted to this figure.
Slightly extra cost options include rear-mounted input terminals, electric pen lift with local and remote control, installed retransmitting potentiometers and AUTOGRIP electric paper holddown. Metric calibrated models are avail. able at no extra cost.

Specifications

Recording mechanism: independent servo-actuated drives for x and y axes, non-interacting, transformer lisolated, free of ground; liquid ink pen with cartridge ink supply, manual pen lift: local and remote electric pen lift optional at extra cost.

Slewing speed: 15 in $/ \mathrm{sec}(38 \mathrm{~cm} / \mathrm{sec}$) maximum pen speed, each axis.
Paper size: standard $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ graph paper with $7^{\prime \prime} \times 10^{\prime \prime}$ writing area ($18 \times 25 \mathrm{~cm}$); mechanical paper holddown.
input voltage ranges: 10 ranges, each axis: $0.5,1,5,10,50$ mv/div (inch), 0.1, 0.5, 1.5, 10, v/div (inch); metric unit: $0.2,0.5,2,5,20,50 \mathrm{mv} / \mathrm{cm}, 0.2,0.5,2,5 \mathrm{v} / \mathrm{cm}$; continuous range control mode allows arbitrary fuli-scale voltage setting; removal of internal linkage permits potentiometric operation on most sensitive range.
Input resistance: $200,000 \mathrm{ohms} / \mathrm{v}$, full scale ($10^{\prime \prime}$) on all calibrated ranges; potentiometric operation draws essentially zero cursent at null.
Standardizatlon: long•life mercury cell.
Accuracy: factory adjusted to 0.1% of full scale on the most sensitive range ($0.5 \mathrm{mv} / \mathrm{div}$) ; any one range may be adjusted
to 0.1% accuracy by an easily accessible concrol; resettability is 0.1% of full scale.
Interference rejection: de common mode rejection berter than 10^{6} to 1 on most sensitive range.
Power: 215 or 230 volts $\pm 10 \%$, 50 to 60 cps , approximately 55 voil-amperes.
Dimenslons: bench model: $161 / 3^{\prime \prime}$ long, $101 / 2^{\prime \prime}$ wide, $41 / 2^{\prime \prime}$ deep ($410 \times 267 \times 114 \mathrm{~mm}$) ; rack mount: $161 / 8^{\prime \prime}$ inside rack clearance, $191 / 2^{\prime \prime}$ panel width, $41 / 2^{\prime \prime}$ maximum depth ($410 x$ $267 \times 114 \mathrm{~mm})$.
Welght: net 18 lbs ($8,1 \mathrm{~kg}$) ; shipping $25 \mathrm{lbs}(11,2 \mathrm{~kg}$).
Price: Moseley 135C (standard bench)
Moseley 135CR (standard tack)
Moseley 135CM (metric bench) $\} \$ 1190$ Moseley 135CMR (metric rack)

Options

ol. With local and remore electric pen lift, add $\$ 60$.
02. With rear input connectors (rack models only), add $\$ 15$.
03. With retransmitting potentiometers on each axis, add $\$ 100$.
05. With AUTOGRIP electric instead of mechanical paper holddown, and $\$ 95$.

136A TWO-PEN X-Y \mathbf{Y}_{1} RECORDER, 81/2" $\times 11^{\prime \prime}$

A three-axis graphic recorder for plotting two curves simultaneously

The Moseley Model 136A is a two-pen, three-axis (x, y_{1}, y_{2}) version of the Model $135 \mathrm{~A} 81 / 2^{\prime \prime} \times 11^{\prime \prime} \mathrm{X} \cdot \mathrm{Y}$ Recorder (page 343), identical electrically and physically except for the added second pen with its associated circuitry and controls. The two pens traverse the full vertical axis independently with not less than 0.1 inch horizontal separation, and the horizontal axis simultaneously over the complete record. ing area of the paper. Input circuitry and controls for each axis are constructed in modular form, electrically isolated and free of ground. Advanced transistor circuitry insures high accuracy and stability.

Input ranges

The controls for each axis are conveniently grouped with input connectors accepting either banana plugs or open wire. Eleven calibrated steps cover voltage ranges from 0.5
$\mathrm{mv} /$ div (inch) to $50 \mathrm{v} / \mathrm{div}$ (inch) with continuously variable expansion control for fitting arbitrary voltage limits within the paper margins. One-megohm input resistance at null is a feature of all calibrated ranges. Five time sweeps are provided on the x axis and porentiometric mode on the four most sensitive ranges of both y axes. Potentiometric operation on the x axis is obtainable by removing an in ternal strap. Zero controls operate without affecting cali. bration and provide full scale zero set and one full scale of zero suppression.

Reliable paper holddown is provided by the new ALiTO. GRIP electric platen, which has no moving parts, is quiet and effective on any size chart $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ or smaller. Pens are capillary fed from a generous reservoir, are "drop-in" mounted, easily changed for color variation or cleaning.

Specifications

Recording mechanism: independent servo-actuated dives on three axes, x, y_{1} and y_{2}, free of ground.
Paper size: standard $8 \frac{1}{2}$ " $\times 11^{\prime \prime}$ graph paper with $7 " \times 10^{\prime \prime}$ reriting area ($18 \times 25 \mathrm{~cm}$): AUTOGRIP electric paper hold. down.
Slewing speed: $20 \mathrm{in} / \mathrm{sec}$, maximum pen speed, each axis.
Ingut voltage ranges: 11 ranges, each axis: $0.5,1,5,10,50$ $\mathrm{mv} /$ div (inch), $0.1,0.5,1,5,10,50 \mathrm{v} / \mathrm{div}$ (inch) ; continuous range control mode ailows arbitrary full-scale voltage serting; potentiomerric mode for y_{1} and y_{3} axes, also available on x axis by removal of internal linkage on attenuator; this mode effective when attenuator is in most sensitive range.
Input resistance: 1 megohm at null on all calibrated ranges: when in continuous range control mode, 100,000 ohms on the four most sensitive ranges and 1 megohm on all others; operation in potentiometric mode draw's essentially zero cur. rent at null.

Time Intervals: 5 calibrated sweeps on x axis only: $0.5,1,5,10$, $50 \mathrm{sec} /$ div (inch); these speeds correspond to full-scale times of $7.5,15,75,150,750$ seconds.
Accuracy: betrer than 0.2% of full scale, with resettability better than 0.1% of full scale; time base accuracy better than 5% of full scale, adjuscable to 1%.
Standardization: continuous electronic reference, zener-diode controlled.
Power: 115 or 230 volts $\pm 10 \%$, 50 to 60 cps, approximately 85 volt-amperes.
Dimenstons: bench model, $17 \% /^{" 1}$ long, $14^{\prime \prime}$ wide, $43 / 4^{\prime \prime}$ deep ($554 \times 356 \times 121 \mathrm{~mm}$).
Weight: net $39 \mathrm{lbs}(17.5 \mathrm{~kg})$; shipping $47 \mathrm{lbs}(21 \mathrm{~kg})$
Price: Moseley 136A (bench) or Moseley 136AR (rack), \$2650. Options

1. With both carrying handle and rack brackers, add $\$ 15$.
2. With rear input terminals, add $\$ 15$.

7000A HIGH-SENSITIVITY X-Y RECORDER, 11 " $\times 17{ }^{\prime \prime}$

Plots dc signals to $100 \mu \mathrm{v} / \mathrm{in}$, ac to $5 \mathrm{mv} / \mathrm{in}$

Moseley Model 7000A Recorders are versatile precision plotters having greater sensitivity, more ranges and higher common mode rejection than previously offered in a single instrument. One-megohm shielded and guarded inputs accept ac and de signals over a wide voltage range with calibrated step selector or continuous range controls. Extended zero positioning up to 4 scale lengths, a multiple-range time base applicable to either axis, and extremely good re. trace characteristics are additional features.

The recording platen is equipped with the Moseley AUTOGRIP paper holddown, which has no moving parts,
operates equally well on any chart $11^{\prime \prime} \times 17^{\prime \prime}$ or smaller and is maintenance-free. New and useful features include multi-contact flat mandrel balance potentiometers, calibrated zeco offset with extended range, and calibrated time sweeps with automatic reset and adjustable sweep lengths which may be used on either axis.
The 20 cps to 100 kc frequency range and $5 \mathrm{mv} /$ inch ac sensitivity of the 7000 A are convenient for plotting low currents without extra amplification, using hp 1110A (page 304) and hp 456A Clip-on Current Probes (page 140).

Specifications

Input clrcuhs; dc floating, guarded aod shielded; can be operated up to $500 \mathrm{v} d c$ above ground; ac iaputs are single-ended, capacitorcoupled.
DC voltage ranges (each axis): 17 calibrated ranges: $0.1,0.2,0.3$, $1,2,5.10,20,50 \mathrm{mv} / \mathrm{in} ; 0.1,0.2,0.5 .1,2,5,10,20 \mathrm{v} / \mathrm{in}$ for standard units; $0.05,0.1,0.25,0.5,1,2.5,5,10,25 \mathrm{mv} / \mathrm{cm}$, $0.05,0.1,0.25,0.5,1,2.5,2,10 \mathrm{v} / \mathrm{cm}$ for metric units; con. tinuously variable mode permits extension of each range.
DC input reslstance: one megohm at null on all calibrated and variable ranges; potentiometric input on five most sensitive ranges by disconnecting straps on input attenuators.
AC voltage ranges (each axis): 12 calibrated ranges, full scale: $5,10,20,50 \mathrm{mv} / \mathrm{in}: 0.1,0.2,0.5,2,2,5,10,20 \mathrm{v} / \mathrm{in}$ on standard units; $2.5,3,10,25 \mathrm{mv} / \mathrm{cm}, 0.05,0.1,0.25,0.5,1,2.3,5,10$ v / cm for metric units.
AC Input impadance: one megohm on all calibrated ranges.
Interference rejection: de common mode rejection is 140 db ; ac common mode rejection 120 db at power line frequency on two most sensitive ranges.
Slewing spead: $20 \mathrm{in} / \mathrm{sec}$, each axis.
Time sweeps: applicable to either or both axes in 8 ranges: $0.3,1$, $2,5,10,20,50,100 \mathrm{sec} / \mathrm{io}$ on standard units; $0.25,0.3,1,2.5$, $5,10,25,50 \mathrm{sec} / \mathrm{cm}$ for mercic units; sweep length is adjustable and may be reset at any point of operation manually or automatically.
Accuracy: $\mathrm{d} c, 0.2 \%$ of full scale; $a c, 0.5 \%$ of full scale from 20 tps to 100 kc ; de linearity, 0.1% of full scale; ac linearity, 0.2% of full scale; time sweep accuracy is 2% of full scale; linearity, 1% of full scale.

Repeatability: 0.1% of full scale.
Positlon transducers: multi-contact fat mandrel porentiometers, each axis.
Zero offiset: 3 full scoles offset in x and 4 full scales in y in 5 inch calibrated steps; continuously adjustable between steps.
Reference voltage: continuous, zener-controlled.
Paper holddown: AUTOGRIP electric; has no moving parts; firnly grips all charts $11^{\prime \prime} \times 17^{\prime \prime}$ or smaller.
Servo motors: acceleration constant 22800 radians $/ \mathrm{sec}^{2}$, minimum.
Power: 115 or 230 volts, 50 to $60 \mathrm{cps}, 85$ volt-amperes.
Dlmensions: bench model: $171 / 2^{\prime \prime}$ wide, $151 / 8^{\prime \prime}$ high, $61 / 2^{" 1}$ deep ($445 \times 382 \times 165 \mathrm{~mm}$) ; rack model: $171 / 2^{\prime \prime}$ inside rack clearance, $171 / 2^{\prime \prime}$ parel height, $61 / 2^{\prime \prime}$ maximum depth ($444 \times 444 \times 165 \mathrm{~mm}$).
Welght: net $38 \mathrm{lbs}(17,1 \mathrm{~kg})$; shippiag $46 \mathrm{lbs}(20,7 \mathrm{~kg})$.
Compatlble accessories: F. 38 Line Pollower; Q Roll Charts; D-18 and D. 2 Character Printers; G-2B Null Detectors; 40D Keyboard, 60D Logarithmic Converter: 101 Waveform Translator; Dymer digital-to-analog converters, and hp 1110A or hp 456A Clip-on AC Current Frobes.
Prices: Moseley 7000A (standard)
$\left.\begin{array}{l}\text { Moseley 7000A (standard) } \\ \text { Moseley 7000AR (standard rack) } \\ \text { Moseley 7000AM (metric) } \\ \text { Moselep 7000AMR (metric rack) }\end{array}\right\} \$ 2575$

Options: (prices on request)

1. Potentiometric switch for five most sensitive ranges.
2. Zero check switches on each axis.
3. Automatic recycling time sweep.
4. Retransmitting slidewires.

2D-2, 2D-3 X-Y RECORDERS, 11 "x 17"

2D-2 Series high-impedance and time base models; 2D-3 with computer reference feature

Moseley 2D-2 and 2D-3 Series X•Y Recorders offer a wide choice of features in options tailored for almost any application. The 2D-2 Series are basically general-purpose plotters, including models with electronic time base and 1 megohm input resistance. Recorders in the 2D-3 series are specially equipped to accept the standard +100 and -100 volt computer reference as the servo balancing potencial; they have an inpur resistance of 200,000 ohms/volt and do not include a time base. Other features of the two series are electrically and mechanically identical and include the new AUTOGRIP electric paper holddown system, which has no moving parts, is quier, main-renance-free and grips any size charr 11 " $\times 17$ " or smaller.
All 2D-2 and 2D-3 recorders are completely solid state except the 1 -megohm models which use a single nuvistor in each axis to provide the extra gain required.

As on all Moseley recorders, range selectors include a scale factor vernier which continuously extends the full-scale voltage acceprance of any range to permit on-scale recording of data with arbitrary limits. Porentiometric operation on the most sensitive range of $2 \mathrm{D}-2$ models is possibic by making a simple internal circuit board modification and, on 2D-3 models by a function switch selection.
The 2D-3 models include zero check pushbutton switches on each axis for convenience in checking computer reference calibration. Although specially designed for computer table use, 2D. 3 recorders also have a standard internal electronic refer. ence which may be utilized when operated as a standard plotter.

Specifications

Recording mechanism: independent servo-actuated drives for x and y axes: inputs floating when operated with internal reference (2D-3 models single-ended to ground when operated from computer reference) : ink pen and AUTOGRIP electric paper hold. down.

Paper size: standard $11^{\prime \prime} \times 17^{\prime \prime}$ graph paper with $10^{\prime \prime} \times 15^{\prime \prime}$ writing area (metric, is $\times 38 \mathrm{~cm}$ writing area), when equipped with Type Q roll chart accessories, $10^{\prime \prime}$ roll chats 120^{\prime} long

Slewing speed: $20 \mathrm{in} / \mathrm{sec}$ ($50 \mathrm{~cm} / \mathrm{sec}$) max. pen speed, each axis.
DC voltage ranges (each axis): standard models (2D-2 and 2D.3) : 16 calibrated ranges, $0.5,1,2,5.10,20,50 \mathrm{mv} / \mathrm{div}$ (inch) : $0.1,0.7,0.5,1,2,5.10,20,50 \mathrm{v} / \mathrm{div}$ (inch) ; sandard metric models (2D.2M and $2 \mathrm{D}-3 \mathrm{M}$): 16 calibrated ranges, 0.2 . $0.5,1,2,5,10,20,50,100 \mathrm{mv} / \mathrm{cm} ; 0.2,0.5,1,2,5,10,20 \mathrm{v} / \mathrm{cm} ;$ 1 -megohm models (2D-2A): 11 calibrated ranges, $0.5,1,5,10$ 50 mu/div (inch); 0.2, 0.5, I. 5, $10.50 \mathrm{v} / \mathrm{div}$ (inch); 1 -megohm metric models (2D.2AM) : 11 calibrated ranges, $0.2,0.5 .2,5,20$, $50 \mathrm{mv} / \mathrm{cm} ; 0.2,0.5,2,5.20 \mathrm{v} / \mathrm{cm}$; all models have scale factor vernier with potenciometric inplut avalable by removal of straps on input circuit board; potentionetric operation effective on most sensitive range of standard models: 4 most sensitive ranges of 1 . megohm models.

TIme Intervals (2D-2 Serles only): standard models: 7 calibrated sweeps, $0.5,1,2,5,10,20,50 \mathrm{sec} / \mathrm{div}$ (inch) : standard metric models: 7 calibrated sweeps, $0.2,0.5,1,2,5,10,20 \mathrm{sec} / \mathrm{cm}$: 1 -megohm models: 5 calibrated sweeps, 0.5, 1, 5. $10,30 \mathrm{sec}$, div (inch): 1-negohm merric models: s calibrated sweeps, in2, 0.5. 2. $5,20 \mathrm{sec} / \mathrm{cm}$.

Input resistance: standard models: 200,000 ohms/y (full scale $10^{\prime \prime}$) through I v/div (inch) range; 2 megohms on all higher ranges; standard metric models: 200,000 ohms/v (full scale 25 $\mathrm{cm})$ through $0.5 \mathrm{v} / \mathrm{cm}$ range; 2.5 megohns on all higher ranges: 1 -megohn) models: 1 megohm at null on all fixed ranges (when using scale factor vernier, 100,000 ohms on the 4 most sensitive ranges and 1 megohm on all others) : all models: porentionetric operation draws essentially zero current at null.
Accuracy: better than 0.2% of full scale with 0.1% resettability on all ranges; time base accuracy better than 5% on full scale, adjustable to 1%.

Standardization: continuous zener-controlled electronic reference: 2D-3 series will operate from extermal ± 100 v computer reference.

Power: 115 or 230 volts, 50 to 60 cps , approx. 143 volt-amps.
Dimensions: bench models: $171 / 2^{\prime \prime}$ wide, $63 / 4^{\prime \prime}$ high. $16^{\prime \prime}$ deep ($445 \times 165 \times 406 \mathrm{~mm}$); rack models: $173 / \mathrm{t}^{\prime \prime}$ inside rack clearance, $171 / 2^{\prime \prime}$ panel height. $51 / 2^{\prime \prime}$ max, depth ($551 \times 445 \times 140 \mathrm{mn}$) .

Waight: net approx. 30 lbs (13.5 kg) ; shipping 50 lbs (22.5 kg).

Prices

Moseley 2D-2 or 2DR. 2 (standard)
Moseley 2D-2M or 2DR-2M (metric)

Options

1. Any rack model with rear inputs, add sis.
2. With event marker on lower margin of x axis, add $\$ 100$.
3. With 5000.0 hm . 1% linearity retransnitting potentioneter on either axis. add $\$ 50$.
4. With cartridge ink supply, no charge.

2D-4 X-Y RECORDER, $11^{\prime \prime} \times 17^{\prime \prime}$

High-accuracy recorder for utility $x-y$ plotting

The Moseley Model 2D-4 is designed to meet the need for a lower cost precision x-y recorder in specific applica. tions not requiring the overall versatility of the Model 2D.2. Maintaining high-qualiry workmanship and accuracy. economy has been achieved by using a mechanical paper holddown, eliminating ac and time sweep features and reducing inputs to 10 , instead of 16 ranges. Sull included as standard features are full-scale zero controls, variahle range expansion mode, input filters, potentiometric capability and cartridge ink supply. The 2D-4 versatility may be increased by the addition of comparible Moseley accessories such as the Type A.1 AC.to-DC Converter, Model 60D Loga.
rithmic Converter, Type 101 Waveform Translator and Type Q Roll Chart Adapters.

Operating simplicity is an outstanding characteristic of the 2D.4. All controls ace located in functional positions on a sloping panel across the front of the instrument. Inputs for each axis accept either open-wire or plug-type connectors. Zero controls have a range of one full scale above or below the lower left origin. Each range may be adjusted for an arbitrary full-scale voltage to fit variable data, and the most sensitive range may be operated potentiometrically to draw essentially zero current at null.

Specifications

Recording mechanism: independent servo-actuated drives for x and y axes, non-interacting, transformer isolated and free of ground; liquid ink pen with castridge ink supply, manual pen lift; electric pen lift with local and remote control optional at extra cost.
Shewing speed: is in/sec ($38 \mathrm{~cm} / \mathrm{sec}$) max. pen speed, each axis.
Paper size: standard $11^{\prime \prime} \times 17^{\prime \prime}$ graph paper with $10^{\prime \prime} \times 15^{\prime \prime}$ reriting arez: metric unit: $25 \mathrm{~cm} \times 38 \mathrm{~cm}$: mechanical paper holddown; $10^{\prime \prime} \times 120^{\prime}$ roll charts when equipped with roll chart accessories.
DC voltage ranges: ten calibrated ranges, each axis: $0.5,1,5$, 10, $50 \mathrm{mv} / \mathrm{div}$ (inch) and $0.1,0.5,1,5,10 \mathrm{v} / \mathrm{div}$ (inch); merric unit: $0.2,0.5,2,5,20,50 \mathrm{mv} / \mathrm{cm}$ and $0.2,0.5,2,5$ $v^{\prime} \mathrm{cm}$, each axis; stepless range control allons arbitrary fullscale voltage setting; potentiometer input may be established on most sensitive range.
Input resistance: 200,000 ohms/volt full scale (10") on all fixed ranges: potentiomerric mode draws essentially zero current at null.
Standardization: long. life mercury cell.
Interterence relectlon: ds common mode rejection better than 10^{c} to 1 on most sensitive range.

Accuracy: the most sensitive range, $0.5 \mathrm{mv} / \mathrm{div}$ ($0.2 \mathrm{mv} / \mathrm{cm}$ on metric unir) is factory-adjusted to 0.1% of full scale; accuracy and resetrability may be adjusted to 0.1% on any one range at a time by an easily accessible control.
Dimensions: bench models: $171 / 2^{\prime \prime}$ wide, $16^{\prime \prime}$ high, $63 / 4^{\prime \prime}$ deep ($445 \times .506 \times 165 \mathrm{~mm}$): rack models: $173 / 4$ " inside rack clearance, $171 / 2^{\prime \prime}$ panel height, $51 / 2^{\prime \prime}$ maximum depth ($551 \times 445 \mathrm{x}$ 170 mm).
Weight: net $25 \mathrm{lbs}(11.3 \mathrm{~kg}$); shipping $40 \mathrm{lbs}(18 \mathrm{~kg})$.
Power: 115 or $230 \mathrm{v}, 50$ to 60 cps , approx. 110 volt amps.
Price: Moseley 2D-f (srandard bench) $\left.\begin{array}{l}\text { Moseley 2D-f (standard bench) } \\ \text { Moseley 2D-4 (metric bench) } \\ \text { Moseley 2DR-4 (standard rack) } \\ \text { Moseley 2DR. } 4 \mathrm{M} \text { (metric rack) }\end{array}\right\} \$ 1490$

Optlons

1. Local and remote electric pen lift, add $\$ 60$.
2. Installed 5000 ohm retransmitring potentiometer, per axis, add $\$ 50$.
3. Rear-mounred input connectors, (available on rack units only), add $\$ 15$.
4. Event marker on lower margin, add $\$ 100$.
5. AUTOGRIP electric instead of mechanical paper hold. down. add 895.

2FRA TWO-PEN X-Y RECORDER, $11^{\prime \prime} \times 17^{\prime \prime}$
 A three-axis graphic recorder for plotting two curves simultaneously

The 2FRA is a three-axis, two-pen $11^{\prime \prime} \times 17^{\prime \prime}$ graphic recorder, each axis presenting 1 -megohm input resistance at null. It is available only in a rack mounting configuration but may be furnished with metric (2FRAM) instead of English scaling. Standard facilities include a time base on the x axis, 11 voltage ranges with concinuous expansion feature, full scale zero set and suppression, local and remote electric pen lift and potentionetric capability.

Two drop-in mounted pens with integral ink reservoir traverse the full y axis with no less than 0.1 inch horizontal separation. Writing range for both pens is 10 inches vertically and 15 inches horizontally. Servo drives are independent and free of electrical ground. Servo amplifiers and power supply are hybrid design combined in a single flug-in unit, compact and easily maintained. A simplified self.
balancing system uses linear slidewires and a continuous zener-controlled reference.

Each input range has a calibrated (fixed) and continuously variable mode. The variable mode may be used to fit arbitrary maximum voltages within the recording limits of the paper. Potentiometric operation on the four most sensitive ranges of each axis may be easily established by removing linkages on the input circuit boards. The builtin time base operates on the x axis only, with five calibrated sweeps from 7.5 to 750 seconds for full-seale pen travel.

A useful extra cost option provides a third pen which is fixed in a position near the bottom of the pen carriage. It may be operated by a remote contact closure to identify significant events in an operation procedure.

Specifications

Recording mechanism: independent seryo-actuated drives on three axes, $x_{1} y_{1}$, and y_{1}, free of ground; liquid ink "drop.in" pens.
Paper slze: standard 11 "x 17" graph paper with $10^{\prime \prime} \times 15^{\prime \prime}$ writing area; metric paper has $25 \times 38 \mathrm{~cm}$ writing area; AUTOGRIP electric paper holddown.
Slewing speed: $10 \mathrm{in} / \mathrm{sec}$ ($25 \mathrm{~cm} / \mathrm{sec}$) on x axis: $20 \mathrm{in} / \mathrm{sec}$ ($50 \mathrm{~cm} / \mathrm{sec}$) on y_{1} and y_{2} axes.
DC input voltage ranges: 11 calibrated ranges, each axis: 0.5 , $1,5,10,50 \mathrm{mv} / \mathrm{div}$ (inch) and $0.1,0.5,1,5,10,50 \mathrm{v} / \mathrm{div}$ (inch): metric ranges: $0.2,0.5,2,3,20,50 \mathrm{mv} / \mathrm{cm}$ and 0.2 , $0.5,2,5,20 \mathrm{v} / \mathrm{cm}$; potentiometric input availabie on four most sensitive ranges of all axes by removal of internal linkage on attenuator.
Input resistance: one megohm at null on all fixed ranges, each axis; when in variable range mode, 100,000 ohms on the four most sensitive ranges and one megohm on all others; potentiometric input draws essentially zero current at null.
Time Intervals: s calibrated sweeps on x axis only: $0.5,1,5,10$, $50 \mathrm{sec} /$ div (inch); metric: $0.2,0.5,2,5,20 \mathrm{sec} / \mathrm{cm}$; these
speeds correspond to $7.5,15,75,150$, and 750 sec for fullscale travel.
Accuracy: better than 0.2% of full scale with resettability better than 0.1% of full scale: time base accuracy better than 5% of full scale, adjustable to 1%.
Standardization: continuous zener-controlled electronic reference.
Power: 115 or 230 v , 50 to 60 cps , approx. 200 volt-amps.
Dimensions: $173 / 4^{\prime \prime}$ inside rack clearance, $171 / 2^{\prime \prime}$ panel beight, $55 / 8^{\prime \prime}$ maximum depth ($445 \times 444 \times 143 \mathrm{~mm}$).
Welght: net 47 lbs (21 kg); shipping is lbs ($25,7 \mathrm{~kg}$).
Prlce: Moseley 2FRA (standard) or 2FRAM (metric), \$3575. Options

1. With rear input terminals (Amphenol 165-14 and 165. 15) add $\$ 15$.
2. With installed event marker on lower end of y axis, add $\$ 100$.

6SA X-Y RECORDER, 10 " x 10"; 7 X-Y RECORDER, 30 " \times 30"
 Automatic chart advance recorder, plus display-type instrument

The Moseley Model 6SA is a rack mounting $x \cdot y$ recorder featuring automatic frame advance of a continuous coll of individual charts, each providing a $10^{\prime \prime} \times 10^{\prime \prime}$ plotting area. A precise and automatic transport mechanism positions a new chart whenever initiated by a manually operated momentary contact switch or corresponding remote circuit. Completed charts may be cut free on a sermated edge, or they may be stored on a takeup spool.

A plug-in control module has the advantage of range and function substitution without internal modification of the re. corder. For each axis the standard module provides 11 calibrated fixed input ranges from $0.5 \mathrm{mv} /$ div (inch) to $50 \mathrm{v} / \mathrm{div}$ (inch), with 1 -megohm inpur resistance ar null, continuously variable mode for each range, and resettable fulluange zero adjustment. A time sweep mode on the vertical axis provides 5 calibrated speeds from 0.5 to 50 div (inch)/sec. Porentiometric input may be established on the x-axis by function switch selection and on the y axis by removal of an internal linkage.

The Moseley Model 7 is an over-size $x \cdot y$ recorder specially designed for latge systems display in console, wall or special foor stand mountings. Incorporation of standard Moseley re. corder features provides maximum versatility, flexibiliry, speed and high accuracy. The vacuum grip, flat-bed plaren accepts regular $32^{\prime \prime} \times 32^{\prime \prime}$ graph paper which presents a plorting area of $30^{\prime \prime} \times 30^{\prime \prime}$, an ideal size for display of data plorred with digital-to-analog conversion accessories. Thirteen calibrated ranges on each axis accept dc inputs from 30 mv to 300 v full scale, with a minimum input resistance of $200,000 \mathrm{ohms} / \mathrm{v}$ and minimum recording speed of $20 \mathrm{in} / \mathrm{sec}$. A continuously variable mode allows expansion of any range to fit arbitrary data values.

Other standard features include full-range resettable zero controls, continuous zener-controlled reference supply, and poteatiometric operation on the most sensitive range. Compatible Moseley accessories include the Type A.1R AC.to-DC Converter (page 355), Model 60 D Log Converrer (page 354), Type G-2B Null Detector (page 356), and Model 101 Waveform Trans. lator (page 355).

Model 6SA

Specifications, Model 6SA

Recording mechanism: two independent servo-actuated drives for x and y axes, free of ground; "drop-in" ink pen.
Chart requlrements: coll type with $10^{\prime \prime} \times 10^{\prime \prime}$ grids; $12^{\prime \prime}$ chart advance; vacuum holddown automatically cycled with frame advance.
Slewing speed: 1 sec or less for full-scale pen travel, each axis.
DC voltage ranges: 11 calibrated ranges, each axis: $0.5,1.5,10$, $50 \mathrm{mv} / \mathrm{div}$ (inch) ; $0.1,0.5,1,5,10,50 \mathrm{v} / \mathrm{div}$ (inch); variable range control permits arbitrary full scale range setcings.
Time Intervals: 5 sweeps on 9 axis: $0.5,1,5,10,50 \mathrm{sec} / \mathrm{div}$ (in.). $50 \mathrm{sec} / \mathrm{div}$ (inch).
Input resistance: 1 megohm at null on all fixed ranges; when in variable range mode, 100,000 ohms on 4 most sensitive ranges and 1 megohm on all others; potentiometric input capability.
Zero controli resettable zero set; one full scale of offset.
Accuracy: better than 0.2% of full scale; resettability 0.1%.
Standardlzation: continuous zener-controlled electronic reference.
Pawer: 115 or 230 v , 50 to 60 cps, approx. 132 volt-amp.
Dimenslans: $171 / 4^{\prime \prime}$ inside rack clearance. 191/4" panel height, $117 / 8^{\prime \prime}$ maximun depth ($438 \times 488 \times 302 \mathrm{~mm}$).
Weight, net approx. $80 \mathrm{lbs}(36 \mathrm{~kg})$; shipping $110 \mathrm{lbs}(49,5 \mathrm{~kg})$.
Price: Moseley 6SA, with $12^{\prime \prime}$ chart advance, $\$ 3150$.

Optlons

1. Chart advance of 6,4,3,2 or 1 inch (specify one only), add $\$ 25$.
2. With special $10^{\prime \prime}$ chart advance, add $\$ 50$.

Model $?$

Specifications, Model 7

Recording mechantsm: two independent servo-actuated drives for x and y axes, free of ground; electric pen lift with local and remote control.
Paper size: standard $32^{\prime \prime} \times 32^{\prime \prime}$ graph paper with $30^{\prime \prime} \times 30^{\prime \prime}(762 \times$ 762 mm) plotting area; vacuum bolddown.
Slowing spoed: $20 \mathrm{in} / \mathrm{sec}$ maximum pen speed, each axis.
DC voltage ranges: 13 calibrated ranges, each axes: $1,2,5,10$, $20,50 \mathrm{mv} / \mathrm{in} ; 0.1,0.2,0.5,1,2,5,10 \mathrm{v} / \mathrm{in}$; variable range control; potentiometric ingut on most sensitive range.
Input resistance; $200,000 \mathrm{obms} / \mathrm{v}$, full scale (30°) up to 0.5 v / in; 3 megohms on all higher ranges.
Zero control: resetcable full-scale zero set and one full scale of zero offset in each axis.
Accuracy: better than 0.1% of full scale; resettability better than 0.05% of full scale.
Standardization: continuous zener-controlled reference supply with stability better than 0.05%.
Power: $115 \mathrm{v}, 60 \mathrm{cps}$, approx. 185 volr-amp; other voltages and frequencies available on special order.
Dlmenslons: $403 / 8^{\prime \prime}$ wide, $7.1 / 16^{\prime \prime}$ high, $37.5 / 16^{\prime \prime}$ deep (1026 x $180 \times 948 \mathrm{~mm}$).
Weight: net approx. 90 tbs ($40,5 \mathrm{~kg}$) ; shipping, $180 \mathrm{lbs}(81 \mathrm{~kg}$).
Price: Moseley 7, $\$ 3950$.

7050A BASIC SYSTEMS X-Y RECORDER

Simplified single range $x-y$ recorder for system integration

Advantages:

Ultea-compact construction 1 megohm input resistance (at null)
High accuracy and repeatability
Simplified operation
Low cost for system integration
All solid-stace circuitry

Uses:

X-Y readout

Bench or rack system integration
The Moseley Model 7050A is a single-range basic systems $x-y$ recorder designed to meet specific system requirements in applications requiring integrated high-accuracy readout at minimum cost. The standacd instrument has a single fixed range of $100 \mathrm{mv} /$ in on each axis but is available in quantity orders with a single range sensitivity up to $10 \mathrm{mv} / \mathrm{in}$.

Having only one range, the 7050A requires no control panel, resulting in a compact package only slightly larger than the graph paper itself. Finger-operated clamps hold standard $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ paper on a flatbed recording platen. High accuracy is achieved by locating the linear balance potentiometer contact at the point of recording, eliminating backlash betwren the servo drive system and recording pen. Special Moseley slidewire potentiometers are long-lived and require minimum attention. Reference voltage is continuous and zener-regulated. Zero adjustments may be made with a screwdriver on controls at the rear of the instrument. A similar internal control is provided for calibration. Inputs are foating up to 500 v above ground, with both electrical and mechanical damping applied to the servo motors. Ink supply for the recording pen is contained in a replaceable plastic cartridge which can be visually monitored. At slightly greater cost the standard manually operated pen lift may be replaced by an electrically operated lift which is cemotely controlled. Another option provides a rack mounting kit.

Specifications

Recording mechanlsm: 2 independent servo-actuated drives for x and y axes, non-interacting; liquid ink pen with rransparent cartridge ink supply; manual pen lift; optional extra cost electric pen lift with remote control.
Slewing speed: $15 \mathrm{in} / \mathrm{sec}$, maximum.
Paper size: standard $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ graph paper with writing area of $7^{\prime \prime} \times 10^{\prime \prime}(18 \times 25 \mathrm{~cm})$; mechanical paper holddown; Λ UTOGRIP electric holddown available at extra cost.
$D C$ voltage range: single range of $100 \mathrm{mv} / \mathrm{in}$, each axis; inputs floating, free of ground; quantity orders have option of single range with sensitivity up to $10 \mathrm{mv} / \mathrm{in}$.
Input resistance: 1 megobm at null, each axis.
Standardization: continuous reference, zener-regulated.

Accuracy: 0.1% of full scale; resettability 0.1% of full scale.
Dimensions: $13^{\prime \prime}$ long, $101 / 2^{\prime \prime}$ wide, $41 / 2^{\prime \prime}$ deep (330 x $267 \times 114 \mathrm{~mm}$).
Welght net $14 \mathrm{lbs}(6,3 \mathrm{~kg})$; shipping $22 \mathrm{lbs}(9,9 \mathrm{~kg})$.
Power, 115 or 230 volts $\pm 10 \%, 50$ to 60 cps , approximately 65 volt-amperes.
Price: Moseley 7050 A (single $100 \mathrm{mv} /$ in range, each axis), $\$ 975$.

Options

1. Electric pen lift with remote control, add $\$ 60$.
2. With $19^{\prime \prime}$ rack mount kit, add $\$ 30$.
3. With 1% linearity retransmitting potentiometer on on each axis, add $\$ 100$.
4. With AUTOGRIP electric paper holddown, add $\$ 95$.

7590A AUTOMATIC DATA PLOTTING SYSTEM, 11" x 17"

Automatically plots electrical information in point or line form

The Model 7590A is a specially equipped x-y cecorder for automatically plotting electrical information in line or point form at a rapid rate. The basic recorder is similar to the Model 2D-4 (page 348), with its standard features of 10 input ranges on each axis, all solid-state circuitry, floating inputs, drift-free servo mechanisms and mechanical paper holddorwn. Added to achieve automatic point or line plotting capability are a built-in null detector and a solenoid. actuated character printer. Character printer and pen are interchangeable, the one used being dependent on whether digital or analog information is being recorded.

The built-in 5 -mode null detector is similar to the Type G-2 (page 356) and is capable of plotting up to 360 points per minute. Mute mode requires a command from the data source to unmuce the recorder servos. Any signal at the input which unbalances the servo will reposition the plotting carriage until a null or balanced condition is reached,
at which time the servos are muted, a plot is accomplished, and a completed plot pulse is issued to an external control, causing the systen to assume a standby status ready for the next command. No-mute mode is similar to mute mode except that a command is not required to unmute the servos. This allows the recorder to seek null as soon as an input signal is applied. Upon reaching balance, a plot is made, a completed plot pulse issued and the system returns to standby. A calibrated mode accepts a signal, balances but does not plot. This mode is useful in pre-run procedures. Line or point plotting, using pen or character printer, respectively, is established by a function selector.

The character printer supplied is similar to the Type D-IB (page 356) with cylindrical die and actuating solenoid. Each end of the die has a different symbol. Three dies, totaling six symbols, are furnished. Special characters are available at moderate cost,

Specifications

Recording mechanism: independent servo-actuated drives for x and y axes, noa-interacting, transformer isolated and free of ground; liquid ink pea with cartridge iak supply for line plotting; solenoid plunger type character princer for point plotting.
Slewing speed: $15 \mathrm{in} / \mathrm{sec}(38 \mathrm{~cm} / \mathrm{sec}$) maximum speed, each axis.
Paper size: standard $11^{\prime \prime} \times 17^{\prime \prime}$ graph paper with $10^{\prime \prime} \times 15^{\prime \prime}$ writing area; metric unit, $25 \mathrm{~cm} \times 38 \mathrm{~cm}$; mechanical paper holddown; $10^{\prime \prime} \times 120^{\prime}$ roll charts when equipped with roll chart accessories.
DC voltage ranges: 10 calibrated ranges, each axis: $0.5,1,5,10$, $50 \mathrm{mv} / \mathrm{div}$ (inch) and $0.1,0.5,1 ; 5,10 \mathrm{v} / \mathrm{div}$ (inch) : metric unit: $0.2,0.5,2,5,20,50 \mathrm{mv} / \mathrm{cm}$ and $0.2,0.5,2,5 \mathrm{v} / \mathrm{cma}$, each axis; stepless range control allows arbitrary full-scale voltage setting; potentiometric input may be established on most sensitive range.
Input resistance: 200,000 ohms/volt full scale ($10^{\prime \prime}$) on all fixed ranges; poratiometric mode draws essentially zero current at null. Standardization: long-life mercury cell.
Interference rejection: dc common mode rejection better than 10^{6} to 1 on the most sensitive range.
Accuracy: the most sensitive range, $0.5 \mathrm{mv} / \mathrm{div}(0.2 \mathrm{mv} / \mathrm{cm}$ on metric unit) is factory-adjusted to 0.1% of full scale; accuracy and resettability may be adjusted to 0.1% on ang one range at a time by an easily accessible control.
Character printer accuraty: 0.05% (approx, $\mathrm{S} / 1000^{\prime \prime}$) ; overall recorder accuracy not affected.

Null detector senslifulty: better than 0.4% of full scale,
Forced plot: if null is not reached within approximately 2 seconds, a plot is forced.
Enable-disable: required disable voltage: -3 volts dc (a contact closure may be substiruted for the disable bias by inserting a sesistor berween existing terminals on the printed circuit board) ; required enable voltage: from 0 volts to ang plus de potential; voltage or contact closure requirements can be reversed by moving jumpers on the printed circuit board.
Seek slgnal: min. pulse height, $\pm 3 \mathrm{v} ;+10$ to -20 v , max. range.
Completed plot signal: pulse treight, 20 v ; pulse width, $100 \mu \mathrm{sec}$: rise time, less than $1 \mathrm{\mu sec}$; max. permissible capacitive load, 0.002 microfarad; output impedance, less than 200 ohms (capaci-tor-coupled).
Dimenslons: bench: $171 / 2^{\prime \prime}$ wide, $16^{\prime \prime}$ high, $63 / 4^{\prime \prime}$ deep ($445 \times$ $406 \times 165 \mathrm{~mm}$) ; rack: $173 / 4^{\prime \prime}$ inside rack clearance, $171 / 2^{\prime \prime}$ panel height, $51 / 2^{\prime \prime}$ maximum depth ($5 S 1 \times 445 \times 140 \mathrm{~mm}$).
Weight: net $38 \mathrm{lbs}(17,1 \mathrm{~kg})$; shipping $46 \mathrm{lbs}(20,7 \mathrm{~kg})$.
Power: 115 or $230 \mathrm{v}, 50$ co 60 cps , approx. 110 volt-amperes.
Price: Moseley 7590A (standard)
$\left.\begin{array}{ll}\left.\begin{array}{ll}\text { Moseley 7590A } & \text { (standard) } \\ \text { Moseley 7590AR } & \text { (standard, rack) } \\ \text { Moseley 7590AM } & \text { (metric) } \\ \text { Moseley 7590AMR } & \text { (metric, rack) }\end{array}\right\} \$ 1985\end{array}\right\}$

Option 01: with AUTOGRIP electric paper holddown, add \$9s.

F-3B, $7500 \mathrm{~A}, 7501 \mathrm{~L}$ LINE FOLLOWER SYSTEMS
 Regenerate original electrical data directly from previously recorded curves

The F-3B Line Follower is an accessory available as a factory-installed device on Moseley 2D Series X.Y Recorders (page 347) to permit the regeneration of original electrical data directly from previously recorded curves. Any line prepared with pencil or pigment-type ink will be followed auromatically with high accuracy by means of an optical photo-electric sensing element which replaces the pen of the recorder. The unit does not impair normal recording characteristios of the recorder. The F.3B system uses an existing slidewire in the 2D series recorders for dis. placement analog output.

Models 7500A and 7501A line follower systerns convert Moseley 2D and 680 Series Recorders (pages 347, 360,

361), respectively, for use as chart readers or transport delay simulators.

When a 2D Recorder is equipped with a Model 7500A, a Q. 3 Roll Chart Accessory (page 363) also is required. These line follower sysrems consist of two assemblies, a control unit and a tracking unit. The control unit contains all control circuits for the system, the power supply, servo positioning amplifier and all the electronics except the photo diodes which are in the rracking head. The tracking unit in each system is specially designed for installation on a particular series of Moseley recorders. The unit consists of the positioning servo motor, the line follower head and the readout potentiometer.

Specifications

Components: F-3B: scanning and pick-up unit which replaces pen of $x \cdot y$ recorder; 7500A and 7501 R: tracking unit with positioning servo, pick-up and readour poten. tiometer; all three systems include a control unic, conraining a power source and control elements.
Compatibility: F.3B and 7500A for use with 2D Series X.Y Recorders; 7501A for 680 Series Strip-Chart Recorders.

Displacement analog output: F.3B: external voltage is ap. plied to existing slidewire in 2D Series Recorders; 7500A and 7501 A : approximately 0 to 6 vdc , or variable resis. tance change selected by inkernal switch; also output potentiometer of 5000 ohms, 0.1% linearity, 3 w .

Straight-line accuracy: 0° to 45° will be followed at time sweeps through $0.5 \mathrm{sec} /$ in with an accuracy of ± 0.03 inch; a straight line will remain within the scanned area at angular ranges from 0° to 70° at time sweeps up 102 $\mathrm{sec} / \mathrm{in}$ and 0° to 85° up to $5 \mathrm{sec} / \mathrm{in}$ (angles are measured with respect to the x axis); square waves or spike func. tions of 0.1 inch maximum amplitude will remain within the scanned area at time sweeps up to $10 \mathrm{sec} / \mathrm{in}$.

Scanned area: the head scans 0.1 inch on either side of its center line and 0.05 inch along its center line.
Alarm circuit: can be set to detect excess tracking ecrors of less than 0.1 inch: internal reisy has multiple contacts for controlling internal and external functions.
Temperature effects: no resecting of controls is required for remperature variations of $\pm 15^{\circ} \mathrm{F}$.
Function controls: sensitivity contcol for adjustment of error alarm; gain control for attenuating signals to recorder or position servo; pushbutton-reset to restore operation after alarm shut-off; balance control to compensate for uneven light field.
Power: F.3B: 115 of 230 volts, 50 to 60 cps , single phase, approximately' 5 watts; 7500 A and 7501 A : 115 volts, 60 eps, single phase, approximately 30 volt-amperes.

Prices

Moseley F.3B, $\$ 795$; factory installation on 2D Series Recorder, \$50.
Maseley 7500A (for use with 2D Series), $\$ 1650$.
Moseley 7501A (for use with 680 Series), $\$ 2100$.

60D LOGARITHMIC CONVERTER

Converts ac or dc signals to logarithmic scale over 60 db dynamic range

Advantages:

20 to $20.000 \mathrm{cps} 2 c$ frequency range
AC or do input selector
$\pm 0.5 \mathrm{db}$ accuracy and stability
60 db dynamic range
English or metric calibration and scaling

Uses:

Logarithmic conversion element in decibel systems
Semi-log or $\log \cdot \log$ plotting
Automatic gain-frequency plotting with $x-y$ recordec
The Moseley Model 60D is a self-contained instrument which accepts ac or dc signals over an extended voltage and frequency range and produces a do output proportional to the logarithm of the positive peak amplitude of the input. Since the logarithmic scale compresses the higher amplitudes and expands the lower ones, the resulting graphic presentation has the advantage of covering a wide range of levels with maximum accuracy at the lower amplitudes.

The converter is especially useful in evaluating the frequency characteristics of amplifiers, filters, transmission networks and related devices. An automatic gain-frequency plotting system, Model 7598A, utilizes the 60D in conjunction
with a Moseley $x-y$ recorder and an hp 207A-M7 Audio Generator which is equipped with a motor drive and output porentiometer to activate the x axis as a funtion of the frequency.

A dynamic range of more than 60 db , accuracy aod long. term stability of better than $\pm 0.9 \mathrm{db}$, ac or dc input selector, 5 input attenuator steps, and 3 output scale factor steps are major features valuable in a variety of applications. Model 60DM is the metrically scaled and calibrated version. Physical design adapts readily to bench use (with till bar) of rack mounting by installation of included brackets.

Figure 1. Slock diagram, 600.

Specifications

Input ranges

Atlenuator sotting (db)	AC Input ranse (rms)	OC Imput range
0	1 mv to v	3.16 mv to 3.16 v
-10	3.16 mv to 3.16 v	10 mv to 10 v
-20	10 mv to 10 v	31.6 mv to 31.6 v
-30	31.6 mv to 31.6 v	100 mv to 100 v
-40	100 mv to 100 v	316 mv to 316 v

AC frequency range: 20 to $20,000 \mathrm{cps}$.
Dynamle range: 60 db (1000 to 1), either ac or dc .
Output ranges: $5,10,20 \mathrm{db} / \mathrm{div}$ (inch) into 20,000 -ohm load ($10 \mathrm{mv} / \mathrm{div}$ (inch) recorder range); metric model (60DM): 2. 5. $10 \mathrm{db} / \mathrm{cm}$ into $10,000 \mathrm{ohm}$ load ($2 \mathrm{mv} / \mathrm{cm}$ range of metrically scaled recorder).
Response speed: $20 \mathrm{db} / \mathrm{sec}$ (normal maximum): $60 \mathrm{db} / \mathrm{sec}$ (absolute maximum).

Accuracy: $\pm 0.5 \mathrm{db}$.
Callbration stablity: $\pm 0.5 \mathrm{db}$ (better than $\pm 0.2 \mathrm{db}$ over any 24-hour period).
Input Impedance: approximately 2 megohms, 35 pf (either ac or dc).
Power: 115 or 230 volts, 50 to 60 cps , approximately 42 voltamperes.
Dimensions: $163 / 4^{\prime \prime}$ wide, $3.9 / 16^{\prime \prime}$ high, $111 / 2^{\prime \prime}$ deep (425×91 $\times 292 \mathrm{~mm}$).
Welght' net approx. $14 \mathrm{lbs}(6,3 \mathrm{~kg}$); shipping 20 lbs (9 kg).
Price: Moseley 60D (standard) or Moseley 600M (metric), $\$ 575$.
Options

1. 5 (ps lower limit and 5 kc upper limit with $2 \mathrm{db} / \mathrm{sec}$ (normal), $6 \mathrm{db} / \mathrm{sec}$ (max.) response speed, add $\$ 250$.
2. 70 db dynamic range (by special production selection) with standard 60 db calibration markings, add $\$ 100$.

A-1 AC-TO-DC CONVERTER, 101 WAVEFORM TRANSLATOR 17002A INVERTER

Accessories for $x-y$ recording

A. 1 AC-to-DC Converter

The Type A-1 is a dual-channel ac-co-dc converter for use with ds input Moseley recorders to allow ploting of signals in the frequency range from 20 to 100,000 cycles. For a $20,000-0 \mathrm{hm}$ load ($10 \mathrm{mv} /$ div recorder range), the output is calibrated in rms units proportional to the average value of a sinusoidal input. The metric model is calibrated for a 25,000 ohm load ($5 \mathrm{mv} / \mathrm{m}$ range). Each channel has a single-ended input, differential output, 8 voltage ranges, frequency compensation and constant 2 -megohm input resistance.

Specifications, Type A-1

Channels: two identical conversion channels for x and y axes.
Frequency range: 20 to 100,000 cycles useful range, useable to 200,000 cycles with degraded accuracy.
AC voltage ranges: with Moseley recorders in $10 \mathrm{mv} / \mathrm{div}$ range (20,000 ohmis input), calibrated ranges are: $0.1,0.2,0.5,1,2,5$, 10. 20 vols/iach; metric wit with Moseley metric recorder io $5 \mathrm{mv} / \mathrm{cm}$ range (25,000 ohms input), calibeared ranges are: $0.05,0.1,0.2,0.5,1,2,5,10 \mathrm{volts} / \mathrm{cm}$.
Linearity: 0.1% from 20 to $20,000 \mathrm{cps} ; 0.3 \%$ from 20 to 50 kc : 0.5% from so to $100 \mathrm{kc} ; 1 \%$ from 100 to 200 kc .
input impedance: 2 megohms on all ranges, shunted by <25 pf.
Accuracy: 0.5% from 20 to $20,000 \mathrm{cps} ; 1 \%$ from 20 to 50 kc : 2% from 50 to 100 kc ; 10% from 100 to 200 kc .
Power: 115 volts $=10 \%, 60 \mathrm{cps}$, 11 volt-amperes.
Dlmenslons: bench model: $31 / 4^{\prime \prime}$ wide, $4^{\prime \prime}$ high (front), $51 / 2^{\prime \prime}$ high (rear), $93 / \mathrm{s}^{\prime \prime}$ deep ($83 \times 102 \times 140 \times 245 \mathrm{~mm}$); rack
mount: $15 \% /^{\prime \prime}$ inside rack clearanct, $31 / 2^{" \prime}$ panel height, 5-13/16" maximum depth ($400 \times 89 \times 148 \mathrm{~mm}$).
Weight net 7 lbs ($3,2 \mathrm{~kg}$) ; shipping $10 \mathrm{lbs}(4,5 \mathrm{~kg})$.
Price: Moseley A-1 (bench) ; A-1R (rack); A-1M (metrir beach); A-1MR (metric rack): $\$ 585$.

Options

1. For operation on $230 \mathrm{v}, 50$ to 60 cps , add $\$ 15$.
2. 10 cps low-frequency limit; 2 sec response speed, add $\$ 50$.

101 Waveform Translator

The 101 is a cranslating device for use with Moseley x-p recorders to make permanent graphic tracings of high-speed repetitive waveforms displayed on an osrilloscope. Horizontal and vertical deflection plate voltages are sampled at the waveform period by amplitude comparators which equate the voltage amplitudes to reference potentials derived from mamp generators. The resulting strobe pulses traverse the oscilloscope trace causing x and y clamps to produce de measures of the instantaneous coordinates of the strobe position. These representative coordinate signals mas be applied to the axes of an $x-y$ recorder which draws a permanent record of the waveform.

Specifications, Type 101

Input impedance: 300,000 ohms.
Output Impedance: 500 ohms.
Input source: single-ended from deflection plates and ground.
Input signal amplitude: ac coupling: 600 v ds max. (60 v ac $\mathrm{p}-\mathrm{p}$ for $\mathrm{y}, 100 \mathrm{vac} \mathrm{p} \cdot \mathrm{p}$ for x) ; dc coupling: 400 vdc max. (60 v ac p-p for $\mathrm{y}, 100 \mathrm{vac}, \mathrm{p}$ - for x).
Output signal amplitude: ± 2 volts.
Recording scan rate: adjustable from 1 second to 5 minutes.
External trigger: - 10 v pulse: $1.5 \mu \mathrm{sec}$ long, $0.15 \mu \mathrm{sec}$ rise time.
Bandwidth: 4 samples $/ \mathrm{sec}$ min.; 50 kc max.; 3 db down ar 200 kc .
Aceuracy: $\pm 1 \%$ of full scale, exclusive of recorder and oscilloscope errors, with line variation of $=10 \%$.
Internal power supply: zener diode controlled.
Power: 115 or 230 v , 50 to 60 cps , approx. 22 volt-amperes.
Dimensions: $73 / 4^{\prime \prime}$ w, $61 / 2^{\prime \prime}$ h, $85 / s^{\prime \prime} \mathrm{d}(197 \times 165 \times 220 \mathrm{~mm})$.
Wolght: net $12 \mathrm{lbs}(5,4 \mathrm{~kg})$; shipping $17 \mathrm{lbs}(7.7 \mathrm{~kg})$.
Price: Moseleg 101, $\$ 675$.

17002A Inverter Power Supply

The 17002A is an all solid-state auxiliary device for operation of selected Moseley recorders and accessories from low-voltage de sources. It also may be used as a dc-to-ac power source of 45 voleamperes or less. Within this range. output is constant at 115 or 230 volts ac for any dc input between 11 and 32 volts. The standard unit delivers a single frequency which may de specified either 50 or 60 cps .

Speclifications, Model 17002A

Input: may be any de source from 11 to 32 volts.
Input power. dependent on output load; efficiency is up to 70%. Input connections: rear terminal strip with provision for positive or negative ground, or floating input; protected against reverse polarivy by a cransistor operated as a diode.
Output voltage: 115 or 230 vac , by panel selector switch.
Output power: as voltamperes max. for conoinuous operation.
Output frequency: 50 or 60 cps, as specified by customer.
Frequency accuracy: bemer than $\pm 0.1 \%$ over a temperature range of 0° to $50^{\circ} \mathrm{C}$; long-term drift less than $\pm 0.1 \%$ per year.
Regulation: $< \pm 10 \%$ of output voltage, no load to full load.
Wave shape: square wave.
Temperature limits: operaung: 0 to $50^{\circ} \mathrm{C}$: storage: -45 to $85^{\circ} \mathrm{C}$
 Weight aet $12 \mathrm{lbs}(4,4 \mathrm{~kg})$; shipping $15 \mathrm{lbs}(6,8 \mathrm{~kg})$.
Price: Moseley 17002A (specify cither 50 or 60 cps), $\$ 350$.

40D KEYBOARD; G-2 NULL DETECTOR; D-1B, D-2 CHARACTER PRINTERS

Accessories for use with x - y recorders

40D Keyboard

The Moseley 40D is a full kegboard.cype accessory for use with compatible Moseley $x-y$ recorders in plotting tabular data in pointgraph form. Operating powet is derived from an $x-y$ recorder through a cable and plug connector which also carries servo-positioning information back to the recorder. Kepboard for each axis includes polarity, hold, clear and calibrate keys. Panel selectors control circuits for zero suppression, points/inch calibration and logarithmic plotting.
Keyboard; two 3 -colums, aine-row arrays and unit " 1000 " keys will plot numbers from 0 to $=1999$ on cach axis; function keys provide x hold, y hold. calibrate. clear and main cleat.
Function switch: selects lineat or logarithmic mode in sither or both axes logarithmic operation requires one or more Moseley 60D Logarithmic Converters.
Output aftenuetor (Hnear mode); f fixed steps at $10,20,30.100,200$ pesfinch ($5,10,23.90,100 \mathrm{pes} / \mathrm{em}$ on metric model): provision for vari. able attenuation between steps up to 900 pis/inch ($200 \mathrm{prs} / \mathrm{cm}$ on metric model).
Zaro suppression (hnear mode): up to 900 points in $100 \cdot \mathrm{pt}$ steps (up to צ 50 points in $50-\mathrm{pt}$ steps on metric model).
Calibratlon: individual potentiometers on each axis for calibration to spesified accuracy: controls for aull detector sensitivity and reference supply out. put voltage.
Aceuracy: self-contained regulated solid-state poner supply for precision voltage to resistor matrix; digital-to-analog conversion accuracy in either linear or logarithmic mode is $=0.1 \%$; basic accuracy of a recorder or log converter is not degeaded.
Power; 115 or 230 v ; 90 to 60 cps . single phase; approximately 12 volt-am pares (derived from associated recorder)
Dimensions: 93/8" wide. $4.3 / 16^{\prime \prime}$ high, $13.11 / 16^{\prime \prime}$ decp ($244 \times 132 \times 348$ mm)
Weight: net $16 \mathrm{lbs}(7.2 \mathrm{~kg})$; shipping $30 \mathrm{lbs}(13.5 \mathrm{~kg})$
Price: Moscley 40D of 40 DM (metric), \$975; when ordering for use with existing Moscley x-y recorders, specify model and scrial number (compatibla recorders must have digital or point ploter receptacles).

G-2 Null Detector

The Moseley G-2 Null Derector is an accessory for use with Moseley $x-g$ recorders to control the operation of the recorder in any one of five modes when plotting continuous, discontinuous or point function data. The source may be any analog signal producing systern, or digital spstem with conversion accessories. Available in two versions, the G-2A mounts internally as a plug-in unit in Moseley 2 D .2 and 2D. 3 Recorders; G.2B is a cabinet model with cable and plug for connection to all Model 2D Series (except 2D-4), and existing Models 2A, 2 S and 4 S Recorders. For optimum performance. the G.2A should be factory installed.
Plot rate: in point mode. 6 plors $/$ sec, max., using D-1B Character Puinter; in
line mode, 7 pts/sec, max., when points ace displaced an average of 0.05 in and using regular recorder pen.
Seek Elgnal; $=3 \mathrm{v}$ min. pulse height, 10 to -20 v max. range; 2 usec min. pulse width; 15,000 ohms input impedance. capacitor coupled; provision for contact closure to ground.
Completad plot algnal: 20 v pulse height: $100 \mu \mathrm{sec}$ pulse width; i $\mu \mathrm{sec}$ or less rise time; 0.002 mfd max. permissible capacitive load; < 200 ohms output impedance, capacitor coupled.
Senaltivity: better than 0.4% of full scale.
Forced pfot: if null is not reached within approx. 2 sec , a plot is forced.
Enabledisabla: required disable voltage is $\mathbf{- 3} \mathrm{v}$ dc: enable voltage, from 0 to any plus poecntial; a contact closure may be substituted for the disable bias by inserting a resistot between existing terminals on the printed circuit board: voltage or contact closure requirements can be reversed by moving jumpers on the printed sircuic board.
Controls: function selector provides 5 operating modes.
Power; 11s r, 50 to 60 cps, 1 dr single phase.
Price: Mosciey G.2A or G.2B, \$265; when ordering for existing ecoorders, specify model and serial numbers; G. 2 A equires faccory installation.

D-1B, and D. 2 Character Printers

The Moseley D-1B and D. 2 Character Printers may be used to replace the pen of Moseley $11^{\prime \prime} \times 17^{\prime \prime} \times-y$ recorders to identify families of points in digital plotting. An actuating solenoid prints symbol impressions through an inked ribbon suspended on the recorder pen carriage over the chart. The D-18 uses a manually reversible cylindrical die, each end of which has a different symbol. The D-2 uses a wheel with six symbols which are sequenced autornatically with each plot. A completely automatic programmed printer, DY-2733A, similar to the D.2, is available from Dogec Division.

Plotting rate: 160 points per minute, maximum.
Accuracy; 0.05% (approximately $5 / 1000$ th inch); overall recorder accuracy is not affected.
Actuating source: internally supplied from associated recorder; compatible mating receptacles standard equipment on most Moseley $11^{\prime \prime} \times 17^{\prime \prime} x-y$ recorders.
Symbols furnished: D-1B: 3 cylindfical dies (total of 6 standard symbols): D-2: 1 whecl (total of 6 standard symbols): special symbols and symbol sequences aviailable at extra cost.
Installation klts: complete kits with inseallation instructions available in either rype printer (not available for $81 / 2^{\prime \prime} \times 11^{\prime \prime} \mathrm{X} \cdot \mathrm{y}$ recorders or for ModeI 2 recorders prior to serial number 450.
Prlces: Moselcy D-1B (cylindrical die type), 1120 ; Moselcy D. 2 (wheeI type. 6 standard symbols). \$32s.
Optlons
01 . D-2 with any 6 special symbols in specified sequence from symbol chart, add $\$ 100$.
02. D-1B with special symbols on die (select 2 symbols from symbol chatt for each die). per die, add $\$ 29$.
Important: when ardering complete kits, specify model and serial number of recorder on which it will be installed.

Symbol chart

Type 6. 20

CONTINUOUS ANALOG RECORDERS

Much of the instrumentation which extends, refines or supplements human perception produces information in the form of electrical analog signals. Records of such data are, of course, often required. Electrical data acquired in serial fashion, comprising a chain of meaning. ful changes in a signal, record naturally on continuous media, frequently strip charts or magnetic tape. The purpose of the records and the character of the sig. nals will determine the appropriate recording instruments. It may be necessary to produce a visible record, and it may or may not be necessary to observe the record as it is written; the data may consist only of slowly changing signals, or it may contain significant frequency components up to $30,150,5000 \mathrm{cps}$ or more. The needed record may be of a single reain of signals, or of two or more related channels, sometimes numbering to hundreds. The records may be needed only for buman inspection, or may be acquired for later machine processing. Means exist to satisfy all these needs.

Moseley 680

Direct-writing recorders

Among the least costly, both in equip. ment and recording medium, are visible analog records of slowly changing (<1 $\mathrm{cps}^{\mathrm{s}}$) values. These are made in recrilinear coordinates with considerable accuracy (rypically 0.1%) with ink markings on ordinary paper by the servo-driven stripchart recorders of Hewlett-Packard's Moseley line. Some may optionally be equipped to use pressure-sensitive paper. Single-channel models are available with chart widths of $5^{\prime \prime}$ or $10^{\prime \prime}$; two-pen models are available in the $10^{\prime \prime}$ chatt size. Two-pen models permit both channels to realize the full resolution of the $10^{\prime \prime}$ chart-width simultaneously, since the pens can overlap on the same chart with. out interference.
Moseley servo-driven strip-chart recorders share the same servo operating principle as the $\mathrm{x}-\mathrm{y}$ recorders of this make. Recorders of this class are characterized by extraordinary reliability, in
addition to high accuracy (typically 0.1%). The Moseley line is all solidstate circuitry.
A wide variety of special-purpose chart paper is offered, and custom services are available to proride other special papers as needed. A variety of options and accessories is available.

Hewlett-Packard/Sintef 3500 A High accuracy, low cost-per-channel
Unique among strip-chart recorders, in operating principle and characteristics, is the Hewlett-Packard/Sintef Model 3500 A . Its accuracy and frequency response are of the same order as the potentiometric rypes, although paradoxically its response time is less than 20 mser. The difference is in metbod of uriting and medium, since it plots its chart in sequential dots on electro-sensirive paper. A revolving band rapidly traverses electrically chargeable styli continuously across the slowly-moving elec-tro-sensitive paper. The rate is 100 passes per second. Each of as many as 12 channels is sampled and compared with a precision voltage ramp on each pass. With each pass a corresponding dot for each channel is recorded on the paper at the appropriare point by a high-volt. age pulse. To add a channel, no new mechanical element is required. Only another Model 3501A electronic plug-in need be added. Its operating principle makes it easily and inexpensively capable of recording as many as 12 channels simultaneously, so Model 3500 A satisfies a long-unfilled need for bigbly-accupare multi-channel strip-chart recorders of low per-channel coss.

Direct-writing galvanometer recorders

A considerable proportion of data recording requirements is for continuous. visible analog records of signals with maximum significant frequency content in the range 30 to 130 cps . These needs are well filled by direct-writing instru. ments operating on the galvanometer principle. In the Hewlett-Packard family are three extensive series of Sanborn re-
corders in this caregory. All produce ink. less, rectilinear traces on matched ther-mo-sensitive Permapaperis by the hot stylus method. Linearity of 0.5% full scale, resolution of acyclesionm of paper travel even at small amplitudes. and reliable operation richout attention to the writing medium are significant advantages of the Sanborn thermal writing method. Srandard versions are available with 1, 2, $4.6,8$ and 16 channels. The Sanborn product line also includes smaller one- and rwo channel recorders, some of the portable type, which uniquely fill many purposes. Among these. Model 7701A achieves two to three times the resolution of conven. tional direct-writiog recorders by offer. ing response of 30 cps across the full 100 mm of its chart wideh.

A broad line of amplifiers and signalconditioners matches the Sanborn thermal direct-writing recorders to trans. ducers. including direct and carrier types. These amplifers include: individual. channel plug-ins of (I) a highly versa. tile. maximum signal-control design using tube and solid-stare circuirry (11 models) and (2) miniaturized all solid-state versions available in scven models; and 6 or 8 identical amplifier channels on a common plug-in chassis, available in four types.
There also are important needs for continuous, visible analog records of signals with significant content in the frequency range 0 to $s \mathrm{kc}$ or more. These are well met by Sanborn direct-wining high-speed optical recorders. They employ compacr, higinspeed galvanomerers to direct light beams, fecording ar amplitudes up to $8^{\prime \prime}$ on photo-sensitive paper. Rectilinear charts are produced, and traces may overlap. Scandard versions are available up to 25 channels. One series of these high-speed Sanborn optical recorders writes with high-intensity ultra-violet light, to produce almost-immediately visible traces which require no chemical development; another series writes with light originating in incandescent lamps, producing traces of high contrast on photosensitive paper stock of lones cose, but requiting chemical development. This, however, may be accomplished rapidly and continuously by an optional automatic artachment to the recorder.
The same wide options among amplifiers and signal-conditioners are offered both for optical and for thermal-writing instruments.

Excellence of performance in all rypes of galvanometric recorders depends heavily upon the paper medium used.

Sanborn quality-controlled papers play a large part in determining the resolu. tion and reliability of these instruments. Standard papers are available in a wide variety to suit a broad sange of general and special applications, and custom services are offered where needed.

Sanborn 3900

Magnetic tape instrumentation

Although magnetic tape instromenta. tion has in the past been considered a costly means of accomplishing its purposes, its great growth has come about largely because of its low cost per unit of information bandled. This comes about because the technique is capable of recording data at high speed with high density on a medium which is not only of reasonable initial cost but is also eras. able and reusable. While capital equipment costs have been high and in general have tended constantly to rise, the Hew. lett-Packard family of Sanborn magnetic recorders constitutes a significant excep. tion to the trend. It will be seen that these recorders, in the most important respects, match the performance of the costliest instruments, and even exceed them in reliability, yet are priced so low that magnetic tape instrumentation now is well within reach for a broad new range of industrial and scientific applications.

Analog electrical data are not, of course, readily visible in any easily interpretable fashion directly on the magnetic tape medium. Meters and oscilloscopes are commonly used to view the electrical signals as they are being mag. netically recorded or reproduced. Many kinds of data need not be viewed during the recording process; many are of interest only after processing and reduction. Magnetic tape recosding is the most used and most convenient medium for automatic data processing.

An important advantage of the magnetic technique is that the data are recoverable at any later time, on the same machine which recorded them or from other machines like it, io their original
form, with no substantial limit on number of replays and without significant degradation. Tapes may readily be duplicated by dubbing. Magnetic recorders exist which can thus treat data with frequency content beyond a megacycle; these use tape at high velocity. Where less frequency range is needed, tape velocity may be reduced, with resulting reducrion in costs.

Any channel of any member of the Hewlett-Packard family of Sanborn magnetic recorders for analog instrumentation may be connecred so as to record in either of two ways, i.e., by divect or by FM means. Accurate FM recordings may be made, on Sanborn magnetic instruments, of information whose frequency content ranges from de to some high frequency which is directly proportional to the selected tape velocity. At 60 inches per second. for example, the recording bandwidth is dc to 20 kc . If the direat mode of recording is selected, the appermost recoverable frequency, at any given tape velocity, will be much higher- 250 kc , for example, at 60 ips . This, likewise, is directly proportional to tape velocity, and thus also to rape cost per minute. The lowest effectively recoverable frequency in the direct mode will not be below 50 cps , in any case, and will be higher at the higher tape veloci-ties- 100 cps at $30 \mathrm{ips}, 200 \mathrm{cps}$ at 60 jps. This is tabulated below:

Tape vatoothy (trehers/seo)	$\begin{aligned} & \text { FH } \\ & \text { (ko) } \end{aligned}$	Direct (ko)
60	0-20	0.2-250
30	0-10	$0.1-125$
15	0-5	0.05-60
71/2	0-2.5	0.05-30
$31 / 4$	$0-1.25$	0.05-15
$12 / 8$	0-0.6	0.05-7.5

Direct recording is accomplished by directly impressing the analog data sig. oal (with the requisite bias) through the recording head onto the magnetic tape.

FM recording is accomplished by choosing some suitable carrier frequency in the mid-range of the instrument's direct response capability, the information then being impressed by frequency-modulating the carrier. Playback is through an appropriate FM dernodulator. Data may be handled in a range from do to some fraction of the carrier frequency.

A pair of channels, one direct and one FM, can record a single signal of bandwidth from do to the highest directly recordable frequency.

Standards for many tape speeds have been set by large users of the method, so tapes may be interchanged readily. The table above reflects the frequencyresponse standards set by the U.S. standardizing body, IRIG, the Inter-Range

Instrumentation Group of the Department of Defense. Sanborn 7. and 14channel magnetic recording instruments conform entirely to IRIG standards.

Among the most valuable of the magnetic recording methods' capabilities is that of time expansion and time com. pression: the equipment can replay data either slower or faster than it was recorded. This makes it possible to slow down high-speed phenomena for detailed examination. Data much too fast to be recorded on visible media may be gathered and recorded accurately by magnetic means; by playing back the tape at some slower speed, the signals may be brought within the bandpass of a directwriting recorder, and an accurate chart of the data then obrained. Slow-speed data may be gathered over a long period of time, perhaps automatically or by telemetering, then replayed rapidly for quick examination.

Sanborn magnetic recorder product line

Sanborn magnetic recorders comprise two series of tape-transport mechanisms and one series of electronics.

Model 2004, a 4 -channel zecorder of extremely low cost, is a basic instrument capable of operstion at 4 speeds ($17 / 8$, $33 / 4,71 / 2$ and 15 ips). Recording channels may be direct of FM. Inexpensive quarter inch tape is used. Maximum ef. fectively recoverable signal frequency, in the dizect mode at the 15 ips speed, is 30 kc , and in the FM mode 2.5 kc . At this speed, in FM, the signal-to-noise ratio is 40 db without electronic futter compensation, which is optionally avaitable. The instrument uses the same plugin, solid-state electronics as the maxi-mum-performance 3900 series. The full Sanborn line of specialized signal amplifiers and signal conditioners is available to suit the output of a wide variety of basic transducers to drive the Model 2004 electronics.

The recorders of Sanborn's Series 3900 conform throughout to IRIG standards. The new tape transport mechanism, designed and built by Hewletr-Packard. achieves a degree of tape motion smoothness which is matched otherwise only at very much greater cost. In this key aspect of tape recorder performance, described by flutter and $F M S / N$ ratio specifications, it is outstanding. It also sets a new high standard of ruggedness and reliability among high-performance recorders. This is the result not only of unusual mechanical design, but also of all solid. state plug-in electronic circuitry. All versions have six pushbutton-selected operating speeds and an accurate built-in (ootage indicator.

3500A RECORDER, 3501A RANGE UNIT, 3510A AUXILIARY UNIT
 Versatile strip-chart recorder

The Hewlett-Packard/Sintef 3500A Recorder is a new concept in multi-channel strip-chart recorders. A single recording mechanism, using the sampling technique, plots the input data from all channels. The result is a high-performance recorder at a low cost per channel. The input channels are in the form of plug-in units, so the system can be expanded up to the maximum of 12 channels, simply and inexpensively. Up to 6 channels can be instalked in the 3500A itself, the remaining 6 in the 3510A Auxiliary Unit.

The recorder has high accuracy and resolution, plus low drift, features which make it ideal for long-term monitoring of critical phenomena. Its high resolution results from the fact that all channels can deflect the full 20 cm width of the chart paper. In addition, the recorder has a fast response, 20
msec maximum, enabling it to follow discontinuities.
Utilizing the sampling technique, the hp 3500 A samples the input data at the rate of 100 samples per second per channel and plots the information as a secies of points on the chart paper. Identification of a particular trace with its input channel is easy. Individual traces can be broadened manually or automatically in synchronism with channel numbers along the edge of the chart paper.

The hp 3501 A Range Units are the plug-in input channels for the recorder. They provide calibrated sensitivities from 0.05 to $20 \mathrm{v} / \mathrm{cm}$ at a high input impedance and have extremely low drift. The operation of each unit is independent of channel position, and the dc zero reference of each channel can be set anywhere on the chart.

Specifications, 3500A

Active data channels: 1 to 6 ; additional 1 to 6 channels can be added using the 3510 A .
Input: one independent input (with common ground) for each channel.
Response time: 20 msec maximum for full-scale change.
Recording accuracy: $\pm 0.2 \%$ of selected full seale.
Sampling density: 100 samples per sec per channel.
Trace width: adjustable from approximately 0.2 to 0.6 mm .
Chart speed: nine speeds from 0.1 to $50 \mathrm{~mm} / \mathrm{sec}$ in a 1,2 , 5 sequence.
Recording medum: eleciro sensitive paper $7 \cdot 13 / 16^{\circ}$ wide, 120° long ($20 \times 3658 \mathrm{~cm}$).
Internal reference: 1 volt (accuracy $\pm 0.05 \%$) for calibration of sensitivity.
Power: 11 s or 230 volts $\pm 10 \%, 60 \mathrm{cps} \pm 2 \%$ (50 cps optional), approximately 90 watts maximum with six active channels.
Dimensions; $16 \frac{3}{4}$ " wide, 9 " high, $131 / 4^{\prime \prime}$ deep ($425 \times 229 \times$ 337 mm); hardware furnished for conversion to rack mount 19 " wide, $83 / 4^{" 1}$ high, $111 / 4^{\prime \prime}$ deep behind panel ($483 \times 221 \times$ 286 mm).
Welght; net 36 lbs ($16,2 \mathrm{~kg}$); shipping 40 lbs (18 kg).
Accessories furnished: 03500.0042 plug-in extender; 03500 . 6018 extender cable assembly.
Price: hp 3500A, $\$ 1600$.
Option 01.: modified for operation from $50 \mathrm{cps} \pm 2 \%$ power line, add \$2s.

Specifications, 3501A
 (instatled in 3500A Recorder)

Response tlme: 20 msec maximum for fuli-scale change.
Sensitlvity: 9 calibrated sensitivities from 0.05 to $20 \mathrm{v} / \mathrm{cm}$ in a $1,2,5$ sequence; vernier conrtol provides continuous adjustment between ranges and increases max sensitivity to 0.02 V / cm.
Accuracy: $\pm 0.2 \%$ of selected full scale.
Linearity: less than 0.1% deviation from absolute linearity.
Input resistance: 1 megohm.
Zero drift: less than $\pm 0.1 \%$ per $10^{\circ} \mathrm{C}$.
Weight: net 11 oz (310 g).
Power: approximately 1.2 watts, supplied by Model 3500 A .
Price: hp $3501 \mathrm{~A} . \$ 225$.

Specifications, 3510A

Active data channels: 1 to 6.
Power: approx. 1.2 watts per channel, supplied by 3500A.
Dimensions: $163 / 4^{\prime \prime}$ wide. $33 / 4^{\prime \prime}$ high, $131 / 4^{\prime \prime}$ deep ($425 \times 95 \mathrm{x}$ 337 mm) ; hardware furnished for conversion to rack mount $19^{\prime \prime}$ wide, $3-15 / 32^{\prime \prime}$ high, $111 / 4^{"}$ deep behind panel (483 x $88 \times 286 \mathrm{~mm}$).
Welght net 9 lbs ($4,1 \mathrm{~kg}$) ; shipping $12 \mathrm{lbs}(5,4 \mathrm{~kg}$).
Accessorles furnished: $03510-6002$ interconnecting cable assembly: 5060.0215 joining bracket kit.
Price: hp 3510A, $\$ 200$.

680 TO 683 SERIES STRIP-CHART RECORDERS, 6"

Compact, module-type, multi-speed servo recorders with a variety of options

Advantages:

All solid-state circuitry One-half second maximum balance time Continuous electronic reference Electric pen lift with remote control Synchronous motor driven chart Three-position tilting chart table

Uses:

General-purpose strip-chart recording
Single span voltage (681) or current (683) recording Temperature recording (682) with cold junction thermocouple

The Moseley 680 to 683 Series of 6 " strip-chart recorders provide a wide choice of servotype instruments for general or specialized use. The 680 is fully equipped with multirange input, multi-speed chart transport, full-range zero set, and electric pen lift, features essential for general-purpose applications. The 682 has a single span compensated for a remperature measuring cold-junction thermocouple in a choice of commonly used ranges (Figure 1). The 681 has a single voltage span, customer-selected within a range from 5 mv to 120 :; the 683 has a single current span in a selected value up to à maximum full-scale sensitivity of 5μ. All standard 681, 682 and 683 models have a two. speed ($60-10.1$ ratio) chart transport with choice of almost any maximum speed up to $8 \mathrm{in} / \mathrm{min}$, and extra-cost option of a 16 -to-1 instead of 60-to-1 speed ratio.

Span limits for commonly used cold junctions

Type	Thermocouple element	Temperature zange				Minimum span*	$\underset{\substack{\text { Use } \\ \text { module }}}{ }$
		Centhrade min. max.		Fahrentelt min. max.			
J	IronConstantan	-200°	760°	-320°	1400°	$\begin{aligned} & 100^{\circ} \mathrm{C} \\ & 200^{\circ} \mathrm{F} \end{aligned}$	Type R-2-J
T	CopperConstantan	-200°	400°	-310°	1800°	$\begin{aligned} & 100^{\circ} \mathrm{C} \\ & 200^{\circ} \mathrm{F} \end{aligned}$	Type R-2-T
K	Chromel. Alumel	-200°	1370°	-310°	2500°	$\begin{aligned} & 100^{\circ} \mathrm{C} \\ & 200^{\circ} \mathrm{F} \end{aligned}$	Type R-2-K
R	Platinum. Platinum (13\% Rhodium	$0{ }^{\circ}$	1770°	32°	$3100{ }^{\circ}$	$\begin{array}{r} 500^{\circ} \mathrm{C} \\ 1000^{\circ} \mathrm{F} \end{array}$	Typo R-2-R
S	PlatinumPlatinum (10% Rhodium)	0°	1770°	32°	3215°	$\begin{array}{r} 500^{\circ} \mathrm{C} \\ 10000^{\circ} \mathrm{F} \end{array}$	Type R-2.S

"Due to the non-linear response of thermocouples the minimum span may be smaller than the value shown. The limiting factor is not the temperature span but the difference between the thermocouple output voltages al each end of the selected span. This difference voltage must be approximately 5 miliivolts, or more.
figure 1. Maximum operating ranges for available cold junction modules.

All recorders in the series feature module construction with all transistor circuitry, high accuracy, fast response. synchronous motor chart drive and full view tilting chart magazine. Of a total of six, four modules are identical in all models. In specialized instruments the input module and control plate module are designed for a particular function and are not interchangeable to other models. Standard facili-
ties in all models include instant chart speed transfer, local and remote pen lift control, tear-off or chart roll storage, and a choice of cartridge-fed ink pen or pressure stylus.

(37\% Reference Juncrion, Jet Chot for Corresi Inpur Module)

Figure 2. Temperaturemillivolt relationships for commonly used cold junctions.

Specifications

Recording mechanism: servo-actuated ink pen drive; electrical isolation from ground; local/remote electric pen lift; full-scale zero adjustment; stylus in place of pen (Option 12.) at no extra cost.
Chart slze: $6^{\prime \prime} \times 100^{\prime}$ roll charts, $5^{\prime \prime}$ writing width; pressuresensitive rolls are 80^{\prime} in length; metric paper has 12 an writing width; visible chart area during operation, approx. $4^{\prime \prime} \times 6^{\prime \prime}$.
Balance speed: 0.5 sec max, for full scale.
Chart speeds: 680: 8 speeds at 1, 2, 4, $8 \mathrm{in} / \mathrm{min}$; $1,2,4$, $8 \mathrm{in} / \mathrm{hr} ; 680 \mathrm{M}$ (metric): $2.5,5,10,20 \mathrm{~cm} / \mathrm{min} ; 2.5$, $5,10,20 \mathrm{~cm} / \mathrm{hr} ; 681,682,683: 2$ speeds in $60-\mathrm{to}-1$ ratio provided selected maximum speed is not greater than $8 \mathrm{in} / \mathrm{min}$ ($20 \mathrm{~cm} / \mathrm{min}$ metric): $16 \cdot$ to. 1 instead of $60-\mathrm{to}-1$ speed ratio available at extra cost on any model under Option 08.; speeds up to $60 \mathrm{in} / \mathrm{min}$ available at extra cost on special order.
Spans: 680: 10 calibrated spans, 5. $10,50,100.500 \mathrm{mv}$; 1, 5, 10, 50, 100 v , full scale; 680 M (metric) 6,12 , $60,120,600 \mathrm{mv} ; 1.2,6,12,60,120 \mathrm{v}$, full scale; extra span of 1 mv full scale available at extra cost; 681: customer selection of any single span between 5 mv and 120 y full scale; extra cost option of any span between 1 mv and 5 mv ; 682: cusiomer-selected single temperature span specifed from chast of available modules; 683: cus-tomer-selected single curcent span up to full scale sensitivity of $5 \mu \mathrm{a}$.
Input resistance: 680,681 : $200,000 \mathrm{ohms} /$ volt (166,666 ohms/volt on metric) full scale through 10 v span; 2 megohms on all others; potentiometric operation on most

sensitive span draws zero current at null; constant 100,000 ohms on all spans available at extra cost; 682: true potentiometric input draws zero current at null; 683: dependent on current span selected; basic sensitivity of standard model is $5 \mu^{2}$ at 1000 ohms full scale (6 ma on metric).
Accuracy and resolution: better than 0.2% of full scale, with 0.1% of full scale resettability.
Standerdization: continuous zener-controlled electronic reference; calibration of 682 in accordance with NBS circular 561 (1955), "Standard Reference Tables for Thermocouples".
Interference rejection: better than 100,000 to 1 on 5 mv dc span.
Zero Set: 680: continuously adjustable over full-scale span; 681-683: adjustable by internal control, factory set for zero-left operation.
Power: 115 or 230 volts, 60 cps , approx. 22 volt-amperes; available at extra cost for 50 cps under Option 10.
Dimensions: $73 / 4^{\prime \prime}$ wide, $6.3 / 32^{\prime \prime}$ high, $8^{\prime \prime}$ deep (197x $155 \times 203 \mathrm{~mm}$).
Weight: net approx. 11 lbs (5 kg); shipping $17 \mathrm{Jbs}(7,6 \mathrm{~kg}$).
Accessory hit supplied: spare fuse, pen cleaning wire, slidewire cleaner, 2 ink cartridges (red and blue), set of bristol wrenches and a roll of appropriate chart paper.

Prices

Moseley 680 (standard) or 680 M (metric), $\$ 750$; *H01. $680(\mathrm{~s})$ (Moseley 680 with added 1 mv full-scale span)
or ${ }^{*} \mathrm{H} 01-680 \mathrm{M}(\mathrm{s})$ (Moseley 680 M with added 1.2 mv full-scale span), 8800 ; *H02-680(s) or *H02. $680 \mathrm{M}(\mathrm{s})$ (Moseley 680 or 680 M with 100,000 ohms input resistance on all spans), $\$ 825$; Moseley 681, $681 \mathrm{M}, 683,683 \mathrm{M}$ (standard spans), $\$ 625$; Moseley 681 or 681 M with span between 1 and 5 mv , $\$ 675$; Moseley 682 or 682 M with selected available module. $\$ 675$.

Options

1. With installed $5000.0 \mathrm{hm}, 0.1 \%$ linearity retransmit. ting potentiometer, add $\$ 50$.
2. With installed event marker, add $\$ 25$.
3. With installed limit switches, add $\$ 90$.
4. Wich installed digital encoder, add $\$ 25$ plus cost of selected encoder.
5. With dual rack mounting adapter, add $\$ 35$.
6. With dual rack adapter and latching glass door, add $\$ 100$.
7. With 16 -to-1 instead of 60-to-1 speed ratio, add $\$ 25$.

09 . With remote chart drive switch, add $\$ 25$.
10. For 115 or 230 volt, 50 cps operation, add $\$ 25$.
11. With special scale markings, add $\$ 10$.
12. With stylus for pressure-sensitive paper instead of ink pen, no charge.
13. For operation with Moseley 60D Logarithmic Converter, add $\$ 25$.
14. With locking glass door, add $\$ 45$.

* Only one feature available per instrument, factory installed.

7100A, 7101A 10" STRIP-CHART RECORDERS
 Multi-speed, multi-span, one- or two-pen models

A rugged, compact, servo potentiometer type $10^{\prime \prime}$ stripchart recorder with high accuracy and fast response, the 7100A Series combines unique Moseley-pioneered features in a versatile instrument with a choice of models tailored for specific applications or general laboratory use. Two basic models are offered, the 7100A, with two independent pen channels, and the 7101 A , with a single pen channel. Other features of each model are identical and include 12 instantly selectable chart speeds, 10 calibrated spans with full-scale zero suppression, 1 -megohm input resistance, continuous electronic reference and advanced solid-state circuitry.

Moderately priced options provide a variety of built-in operational features, increasing the versatility of any model. Event markers installed on either or borh channels conveniently identify key recording areas; high-low limit switches provide automatic alarm and chart drive control; retransmitting potentiometers on either or both channels will produce a proportional readout for monitoring or process control; and the standard manual pen lift may be replaced by an electromagnetic control for local or remote operation. For accurate recordings of signals as low as onethousandth of a volt a plug-in module with spans from one millivolt through 100 volts, full scale, is available. Another option provides an external 10-to-1 chart speed reducer unit which doubles the selectable number of chart speeds. All models in the series may be ordered with metric calibration and scaling at no extra cost.

Specifications

Recording mechanism: 7100A series have two servoractuated ink pen drives, independent and free of ground; 7101A series have a single ink pen drive, manual pen lift.
Balance tlme: 0.5 second or less for full scale
Chart slze: standard rolls with $10^{\prime \prime}(25 \mathrm{~cm})$ writing width; 120 foot length.
Chart speeds: 12 synchronous motor driven speeds: 1,2 in/hr; $0.1,0.2,0.5,1,2 \mathrm{in} / \mathrm{mia} ; 0.1,0.2,0.5,1,2 \mathrm{in} / \mathrm{sec} ;$ metric unit: $2.5,5,15,30 \mathrm{~cm} / \mathrm{hr} ; 1.25,2.5,5,15,30 \mathrm{~cm} / \mathrm{min} ; 1.25,2.5,5$ $\mathrm{cm} / \mathrm{sec}$; remote controlled $10-10.1$ speed reducer available at extra cost.
Spans: 10 calibrated spans (each channel of 7100): 5, 10, 50, 100, $500 \mathrm{mv} ; 1,5,10,50,100 \mathrm{v}$, full scale; variable span control mode allows continuous arbitrary full-scale span setting; removal of internal linkage permits potentiometric operation on 4 mosi sensitive spans.
Input resistance: one megohm at null on all fixed calibrated spans; when in variable mode, 100,000 ohms on four most sensitive steps and one megohm on all others; potentiometric operation draws esseatially zero current at null.
Standardization: continuous electronic reference from zener-diodecontrolled power supply.
Zero set: continuously adjustable over full scale, plus one full scale of suppression; extended zero suppression available at extra cost.
Accuracy: better than 0.2% of full scale; resettability berter than 0.1% of full scale.
Interference rejection: 120 db dc common mode; line frequency common mode acjection is 100 db on 5 mv span.
Power: 115 or 230 voits $\pm 10 \%, 60 \mathrm{cps}$, approximately 65 voltamperes for 7100 A , 42 volt-amperes for 7101 A ; 50 cps models available on special order.

Dimensions: 7100A or 7101A bench: $16 \frac{3}{4}$ " Jong, $8.11 / 16^{\prime \prime}$ wide, $71 / 4^{\prime \prime}$ deep ($425 \times 220 \times 184 \mathrm{~mm}$) ; 7100AR or 7101AR rack: $163 / 4^{\prime \prime}$ inside rack clearance, $83 / 4^{\prime \prime}$ panel width, $71 / 4^{\prime \prime}$ maximum depth ($426 \times 222 \times 184 \mathrm{~mm}$).
Weight: 7100 A , net $30 \mathrm{lbs}(13,5 \mathrm{~kg})$, shipping $38 \mathrm{lbs}(17,1 \mathrm{~kg})$; 7101 A , net $25 \mathrm{lbs}(11,3 \mathrm{~kg}$), shipping $32 \mathrm{lbs}(14,4 \mathrm{~kg}$).
Accessory kit supplied: spare fuse, pen cleaning wire, slidewire cleaner, 2 ink cartridges (red and blue), set of bristol wrenches and a roll of appropriate chart paper.
Prices: dual channel: Moseley 7100A (standard)

Moseley 7100AM (metric)
Moseley 7100 AMR (metric, rack)
$\left.\begin{array}{rl}\text { single channel: } & \text { Moseley 7101A (standard) } \\ & \text { Moseley 7101AR (standard, rack) }\end{array}\right\}$
Moseleg 7101AM (metric) (Mack) $\} \$ 1390$
Moseley 7101 AMR (metric, rack)
Options

1. With 2 mv to $100 \vee$ full-scale spans, add $\$ 50$.
2. With 10-to-1 chart speed reducer, add $\$ 85$.

03L. With left side event marker, add \$3s.
03R. With right side event marker, add $\$ 35$.
03B. With both left and right event markers, add $\$ 70$.
04. Installed retransmitting pots, each, add $\$ 50$.
05. High-low limit switch (one channel only), add $\$ 90$.
06. Remote electric pen lift, add $\$ 50$.
07. Remote on-off chart control, add $\$ 25$.
06. Extended (5 -scale) zero suppression, per axis, add $\$ 150$.
09. With cold junction remperature module instead of standard span module, no charge.
10. For 50 -cycle operation, no charge.
11. With hinged glass chart door and lock, add $\$ 50$.

TYPE Q ROLL CHART ADAPTERS

Convert selected Moseley $11^{\prime \prime} \times 17^{\prime \prime} \times-y$ recorders for strip-chart recording

Advantages:

Increase versatility of $x-y$ recorder
Fast paper change, easy chart storage
Easily installed by user (Q-1, Q.2)
Normal recorder functions unimpaired
Moseley Type Q roll chart adapters are designed especially for use with Moseley bench-type Model 2D (pages 347,348) and 7000A (page 346) Series X-Y Recorders. They permit use of $10^{\prime \prime} \times 120^{\prime}$ continuous roll chart paper in a variety of operating modes. Types Q-1 and Q-2 are manually operated and are supplied in a single kit for user installation, using existing pre-tapped mounting holes in compatible recorders.

Type Q-1, Q-2

This version permits manual chart advance by operating a hand crank. A crank handle also is provided on the supply reel for rewind purposes. Included in the kit is a tear-off wire attachment for chart "pull-through, tear-off." Both the Q. 1 and Q-2 are supplied in a single kit and cannot be puichased separately.

Type Q-3

The Type Q-3 adapter consists of a synchronous motor
and gear-ttain assembly which attaches to the right side of the recorder; six roll speeds may be selected by rotating a knob on the end of the take-up spool housing. Standard speeds furnished for operation on 60 -cycle current are 2 , $4,8,16,24$ and 32 inches per minute. For the same frequency, metrically scaled and calibrated units are available at no extra cost to operate at speeds of $5,10,20,40,60$ and 80 centimeters per minute. At slightly exira cost, both standard and metric models are available for operation on so-cycle current. When installed on a Moseley 2D Series X-Y Recorder which employs either vacuum or ALiTO. GRIPT electric paper holddown, a factory modification of the recorder is required to provide chart advance operating power.

Installation of the Q. 3 on a Moseley 2D or 7000A series recorder converts to operation as a strip-chart recorder of high accuracy and sensitivity. When also equipped with a Moseley F-3B Optical Line Follower (page 353), the resulting system may be used for process control. In this use a pre-recorded curve is followed optically by a pick-up device which generates an electrical output proportional to the y coordinate of the recorded curve. This signal is suitable for the control of processes, machines or other laboratory and industrial functions.

Specifications, Type Q Accessories

Recorder compatibillty: all Moseley bench-type 2D and 7000A series X-Y Recorders; not useable on rack mounted models; Q-1 and Q-2 furnished as a single kit for user installation; Q. 3 must be factory installed.

Paper requirements: roll chart, continuous grid, $10^{\prime \prime} \times 120^{\prime}$, light-weight, Moseley Part No. 228-0010; heavg-weight, 228-0011.
Controls: $\mathrm{Q}-1, \mathrm{Q}-2$, none; $\mathrm{Q}-3$, rotating turret speed selector providing chart speeds of $0,2,4,8,16,24,32 \mathrm{in} / \mathrm{min}$ (standard) ; metric unit: $0,5,10,20,40,60,80 \mathrm{~cm} / \mathrm{min}$; extra-cost option provides speeds one-tenth of standard.

Power: Q-1, Q-2, none (manually operated); Q.3, 115 v , 60 cps , approximately 12 watts (normally supplied from recorder on which installed): 50 (ps units in both stand. ard and metric models available at extra cost.
Prices: Moseley Q-1 and Q-2 (supplied as a single kit), $\$ 85$; Moseley Q. 3 or Q-3M (metric) for 115 v 60 cps operation (includes factory installation), $\$ 650$.

Options:

1. Q-3 or Q-3M with all speeds reduced by 10-to-1 ratio, add $\$ 65$.
2. Q-3 or Q3M for 50 cps operation, add $\$ 25$.

THERMAL WRITING OSCILLOGRAPHIC RECORDING SYSTEMS

Summary of Sanborn systems for permanent, graphic records of measurements

Application	Slynal canditloners	Syatom batic assembles 6 and 8 channels ventical flush-Pront chart 9 electrical $\mathrm{mm} / \mathrm{sec}$ speeds 50 mm wide, 6 -channe! 40 mm wide. 8-channel
Intermediate, minizature, low-power dissipating plug-ins; preamps may be intermixed in system	7 different types of compact, solid-state olug-in greamplifiers can be used in any combination in these systems. Sienal coupler; low-, medium- highgain de; carrier; phase sensitive demodulator; max. sensitivilies, $\mathrm{I} \mu \mathrm{v} /$ odiv to $20 \mu \mathrm{~V} / \mathrm{Jiv}$. System performance specifications pages 374, 375	
Most versatile highly reliable plug-ins; wide choice of preamps which may be inter. mixed in system	Eleven different types of tube and solid-state plug-in preamplifiers can be used in these systems. Low-, medium-, high-gain dc; carrier; phase sensitive demodulator; logarithmic; ac waltmeter; sms volt/ammeter; 400 -cycle frequency deviation; Irequency meter; accelerometer; maximum sensilivities $2 \mu v / d i v ~ 105 \mathrm{mv} / \mathrm{div}$. System performance specifications pages 376 to 379	Basic assembly description pages 366, 367
Most economical multichannel plug-ins; ior systems that do not require channel interchangesbility	A choice of 4 different economical 8-channel units having identical amplifier channels on a common chassis are available for 7728A. Low., medium-, highgain de: maximum sensitivities $10 \mu \mathrm{v} / \mathrm{div}$ to $50 \mathrm{mv} / \mathrm{div}$. System performance specifications page 380	Basic assembly description pages 366, 367

6- AND 8-CHANNEL RECORDING SYSTEM BASIC ASSEMBLIES

Models 7706A, 7716A, 7708A, 7718A, 7728A

Advantages:

Extremely versatile input capacity
Completely integrated: signal input to galvanometer Field-proved electronios, recorder
True rectilinear inkless recording
Clear resolution to $4 \mathrm{cps} / \mathrm{mm}, 0.25$ div non-linearity

Uses:

Record 6 or 8 variables simultaneously
Select the signal conditioners and system packaging best suited to the application

Sanborn 6 . and 8-chaonel basic assemblies offer complete versatility for making accurate, permanent records of multiple variables simultaneously. These basic assemblies ac. cept 6 or 8 chancels of interchangeable preamplifiers designed to condition and control simple or complex signals. Variables appear as sharp, clean, permanent traces on Permapaper charts (opaque, or zranslucent for copying). They can be analyzed independently, compared immediately with accurate timer pulses, or marked for identification, and stored for later use. Frequency response of the recorder is 0 to 125 cps on 50 mm wide (6 -channel) assemblies; 0 to 150 cps on 40 mm wide (8 -channel) as. semblies. Rise time is 4 msec on 8 -channel systems, 5 msec on 6 -channel. The basic assemblies all use the same flushfront recorder with fully solid-state power amplifers, which have built-in electrical limiting to protect recorder styli accuracy and feedback circuits to virtually eliminate drift. These systems also can be purchased in optional rack mounts and portable cases.

Compact all solid-state 8800 Preamplifiers

For Models 7706A, 7708A basic wsemblies, the eight channels of 8800 Preamplifiers occupy only $7^{\prime \prime} \times 19^{\prime \prime}$ of panel space and, while slightly less versatile than 350 Series, offer greater economy in space and cost, plus comparable reliability and performance (see pages 374.375).

11 versatile 350 Preamplifiers

For Models 7716A, 7718A basic assemblies, the 350's are the most versatile and highly developed of Sanborn interchangeable plug-in signal conditioners. They are avail. able in many types, from sensitive dc with plug-in zero suppression to specialized logasithmic and frequency deviation types. This series employs tube and solid-state circuitry, and each plug.in has its own power supply module (see page 376 to 379).

Economical, all-channels-alike 950 Amplifiers

For Model 7728A (7726A) basic assembly the 950 Series is ideal for applications where many channels of similar real-time or stored data must be monitored simultaneously and there is no need to change individual channels. Four classes of de 8-channel amplifiers are available in this series (see page 380). Each amplifier channel is complete from signal input to galvanometer output and all channels receive

power from a single power supply. Complete system performance for 6. and 8-channel systems are tabulated on page 380.

Specifications, (all models)

(The complete system performanoe specifications of these basic asserablies with the three classes of preamplifiers (amplifier) are on Pages 374 to 380 .)
Paper speeds: standard recorders are supplied with 9 speeds: $0.25,0.5,1,2.5,5,10,25,50$ and $100 \mathrm{~mm} / \mathrm{sec}$, electrically shifted and selected by front-panel pushbuttons; optional " D " version recorders have 9 additional speeds, $0.25,0.5$, $1,2.5,5,10,25,50$ and $100 \mathrm{~mm} / \mathrm{min}$; provision is made for optional remote operation of paper speeds and paper drive.

Event marker: right margin; built-in timer provides 1 sec timing marks; provision for manual or remote event marking from external contact closure; "D" version recorders provide I sec and I min timing markers; optional second event macker ($608-100-\mathrm{Cl} 1$) can be installed between channels \#1 and \#2 and actuated by external contacts; also, solid-state marker driver amplifiers for do event marking are available (188AP, $+d c$ input and $188 \mathrm{APM}, \pm d c$ input) and require 1.5 v at 0.5 ma at input to produce slightly over 1 mm defection.
Front-panel controls: individual stylus heat controls; pushbutton speed selectors; motor starting switch; timer-offmarker switch.

Paper footage Indicator: front-panel indicator shows number of feet remaining on the supply coll.

Paper length: standard roll 200 feet long; adapter (462-184) allows the use of special 1000 foot rolls: adapter requires $83 / 4^{\prime \prime}(222 \mathrm{~mm})$ of panel space.
Paper takeup: standard paper takeup on front panel; concealed takeup (358.800) is available on special order occupies additional $83 / 4^{\prime \prime}(222 \mathrm{~mm})$ of panel space.

Power: recorder: 115 volts $\pm 10 \%, 60 \mathrm{cps}, 230$ watts; 115 or 230 voits, 50 cps available on special order; systems: $7708 \mathrm{~A}, 390$ watts; $7718 \mathrm{~A}, 970$ watts; 7728A, 515 watts.

Dimensions

7706A, 7708A: mobile cabinet mount: 651/8" high, 22" wide, $30^{\prime \prime}$ deep ($1654 \times 559 \times 762 \mathrm{~mm}$); rack mount Option 1: (recorder) $171 / 2^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $241 / 8^{\prime \prime}$ deep ($445 \times 483 \times 613 \mathrm{~mm}$); (amplifer) $7^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $201 / 2^{\prime \prime}$ deep ($178 \times 483 \times 621 \mathrm{~mm}$); portable cases Option 2: (recorder) $193 / 4^{\prime \prime}$ high, $20^{\prime \prime}$ wide, $211 / 2^{\prime \prime}$ deep ($502 \times 508 \times 546 \mathrm{~mm}$); (amplifer) $7.9 / 16^{\prime \prime}$ high, $22^{\prime \prime}$ wide, $211 / 2^{\prime \prime}$ deep ($193 \times 559 \times$ 546 mm).

7716A, 7718A: mobile cabinet mount: same as 7706A, 7708 A with allowance for additional $7^{\prime \prime}(178 \mathrm{~mm})$ of panel height; rack mount Option 1 : (recorder) same as 7706A, 7708A; (amplifier, 2 required) $101 / 2^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $191 / 2^{\prime \prime}$ deep ($267 \times 483 \times 495 \mathrm{~mm}$); master power panel requires $13 / 4^{\prime \prime}$ high, $19^{\prime \prime}$ wide (45×483 mm) panel space; portable cases Option 2: (recorder) same as 7706A, 7708A; (amplifier, 2 required) 11 . $1 / 16^{\prime \prime}$ high, $20^{\prime \prime}$ wide, $211 / 2^{\prime \prime}$ deep ($281 \times 508 \times 546$ mm).

7728A: mobile cabinet mount: same as 7706A, 7708A; rack mount Option 1: (recorder) same as 7708A; (amplifier) $7^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $18^{\prime \prime}$ deep (178 x $483 \times$ 457 mm).
Welght, typical (for all systems in cabinet): 8-channel recorder with 8 amplifiers in cabinet mount, viz. 7708A: net $590 \mathrm{lbs}(265,5 \mathrm{~kg}$), shipping $755 \mathrm{lbs}(339,8)$; rack mount Option 1: recorder, all systems: net 210 lbs (94.5), shipping $250 \mathrm{lbs}(112.5 \mathrm{~kg}$); 8800 Preamplifiers (8): net 100 lbs (45 kg), shipping $120 \mathrm{lbs}(54 \mathrm{~kg}$), subtract $12 \mathrm{lbs}(5,4 \mathrm{~kg})$ for 6 -channels; 350 Preamplifiers (2 racks of four) viz. 7718 A : net $200(90 \mathrm{~kg}$), shipping 240 lbs (108 kg) (subtract $20 \mathrm{lbs}, 9 \mathrm{~kg}$, for 6 channels); 950 Am -
plifier, viz. 7728 A : net $85 \mathrm{lbs}(38,3 \mathrm{~kg})$, shipping 95 lbs ($42,8 \mathrm{~kg}$); 950 Amplifier, viz. 7726A: no change for 6 channels; portable cases Option 2: recorder, all systems: net $300 \mathrm{lbs}(125 \mathrm{~kg}$), shipping $340 \mathrm{lbs}(153 \mathrm{~kg}) ; 8800$, 950 Amplifiers viz. 7708A, 7728 A : net $120 \mathrm{lbs}(54 \mathrm{~kg})$, shipping $140 \mathrm{lbs}(63 \mathrm{~kg}$); 350 Amplifiers viz. 7718 A : two cases, each case, net $125 \mathrm{lbs}(56 \mathrm{~kg})$, shipping 140 lbs (63 kg); subtract 20 lbs (9 kg) to determine weight of 6-channel systems, viz. 7716A.

Accessories: 8-channel, 40 mm (50 div), 200 ft Permapaper roll (651-58), $\$ 16.50 ; 6$-channel, 50 mm (50 div) 651 . $57, \$ 16.25$ (consult hp sales office for 1000 fr rolls and price for quantity purchases of 200 ft rolls); 399 Analog Writing Am (8-channel), \$6.50; 398 Analog Writing Arm (6-channel), \$7; 411-3 Marker Arms (8-channel), $\$ 6.50 ; 401$ Marker Arms (6 -channel), $\$ 6.50$.

Optional accessory equlpment: $358-800$ Concealed Paper Take-up, $\$ 145$; 462-184 1000 ft Roll Adapter, $\$ 175$; 608-100-Cl1 Extra Event Marker, \$70; 188AP Marker Driver Amplifier (+1.5 v dc input), $\$ 75$; 188APM Marker Driver Amplifier ($\pm 1.5 \mathrm{v}$ dc input), $\$ 105 ; 358-1400$ Re. corder Carrying Case, $\$ 250$; 858-1400 (7706A, 7708A, 7728A) Amplifier Carrying Case, $\$ 150$; two 354-1100-C? and -C5, \$200ea.

Prices (Note 1): Sanborn 7706A (6-channel cabinet assembly, less 8800 Amplifiers), $\$ 4750$; Sanborn 7708A (8channel cabinet assembly, less 8800 Amplifiers), $\$ 5425$; Sanborn 7716A (6.channel cabinet assembly, less 350 Amplifiers), $\$ 5,225$; Sanbom 7718A (8-channel cabinet assembly, less 350 Amplifiers), $\$ 6,250$; cabinet consists of master control panel, blower system preamplifier rack(s), recorder assembly with power amplifiers and power supply, and preamplifier power supplies; Sanborn 7728A (8channel cabinet assembly, Iess 950 Amplifers), $\$ 3300$; cabinet assembly consists of raaster control panel and cabling, blower system, transfer chassis and 8 -channel recorder; Sanborm 7726A is quoted on request.

Optlon 1 (Note 1) all models: (same as 6 - or 8 -channel assemblies less cabinet includes: blower, master power panel cabling and slides for rack mounting): Sanborn 7706A Option 1, \$4430; Sanborn 7708A Option 1, \$5105; Sanborn 7716A Option 1, $\$ 5035$; Sanborn 7718A Option 1, \$6,060; Sanborn 7728A Option 1, \$295s; 950 Amplifiers used with this recording system under Option 1 have a muffin fan installed on the rear for cooling purposes; when ordering, add a -3 after the amplifier model number, and add $\$ 100$ to the price of the 950 Amplifiers; also add $13 / 8^{\prime \prime}$ to the depth dimension of the amplifier.
Option 2 (Note 1) all models: Sanborn 7706A Option 2, \$4650; Sanborn 7708A Option 2, \$5350; Sanborn 7716A Option 2, \$5,340; Sanborn 7718A Option 2, \$6,365; San. born 7728A Option 2, $\$ 3250$ (recorder and amplifier assemblies supplied in portable cases).
Note 1: Add price (times number of channels) of signal conditioners (see pages 374 to 380) required to the above basic assembly prices for complete system cost. "D" version recorders have $9 \mathrm{~mm} / \mathrm{min}$, in addition to standard $9 \mathrm{~mm} /$ sec speeds; adds $\$ 250$ to system cost; order by requesting " D " recorder.

7714 A 4-CHANNEL RECORDING SYSTEM BASIC ASSEMBLY

Horizontal, pullout table-top simplifies chart noting; accepts 350 preamps

This Sanborn recorder provides the convenience of horizontal table-top chart marking, the flexibility and high performance of the interchangeable, individual-channel preamplifiers (used in 6 - and 8 -channel assemblies) and the economy of a 4 -channel system. Individual power amplifiers have built-in electrical limiting to protect recording stylus and current feedback circuits which virtually eliminate drift. Variables appear as sharp, clear, true rectangular coordinates on 50 mum wide Permapaper. ${ }^{\text {B3 }}$ Frequency response is 0 to $125 \mathrm{cps},-3 \mathrm{db}$ at 10 div peak-to-peak; rise time is 5 msec to 90% of final amplitude with less than 4% overshoot.

Specifications

(For complere performance specifications with signal condidioners a vailable for these basic assemblies, see pages 376,379 .)

Paper speeds: $0.25,0.5,1,2.5,5,10,25,50$ and $100 \mathrm{~mm} / \mathrm{sec}$. mechanically changed manually: paper drive motor may be turned on or off remotely by 11 s vac .
Timer marker: right margin, provides 1 sec liming marks from built-in timer, manual and remote marking possible: second event marker ($608-100 \cdot \mathrm{Cl} 1$) can be installed between channels 3 and 4 for remote marking; also solid-state marker driver amplifiers for dc event marking are available (188AP, +dc inpur and $188 \mathrm{APM}, \pm \mathrm{dc}$ input) ; they require 1.5 v at 0.5 ma at input to produce slightly over 1 mm deflection.
Front-panel controls: individual stylus heat controls, speed selector handle motor starting switch, timer-of marker switch. remote control plug.

Paper \}ength: 200 ft rolls of standard 4 -channel Permapaper (651.54), 50 mm channel width, easily loaded from rop of recorder; transparent Permapaper ($651-184$) for making multiple copies of recording on contact copier (Ozalid, etc.) is available.

Paper take-up: automatic paper take-up standard equipment.
Paper footage indicator located on recorder right side, indicates paper footage remaining on the supply roll.
Power: 115 volts $\pm 10 \%, 60 \mathrm{cps} .350$ watts; 115 volts, 50 cps available at no extra cost; 115 or 230 volts, 50 cps cost slightly higher (consult your hp sales office).
Cooling: 20 cfm is minimum required airfow to keep recorder assembly operating at rated temperature; when recorder assemblies or systems are purchased without a Sanborn cabinet with air cooling blower system, the user should provide the specifed cooling for proper equipment operation.
Dimenslons: 7714A mobile cabinet mount: $651 / 8^{\prime \prime}$ bigh, 22" wide, $30^{\prime \prime}$ deep ($1654 \times 559 \times 762 \mathrm{~mm}$) ; rack mount Option 1: (recorder) $121 / 4^{\prime \prime}$ high, $19^{\prime \prime}$ wide. $17^{\prime \prime}$ deep ($318 \times 483 \times$ 432 mm) ; (amplifier) $101 / 2^{\prime \prime}$ high. $19^{\prime \prime}$ wide. $191 / 2^{\prime \prime}$ deep ($267 \times 483 \times 495 \mathrm{~mm}$) ; power and styli heat control panel requires additional space $7^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $117 / 8^{\prime \prime}$ deep ($178 \times 483 \times 304 \mathrm{~mm}$)
Welght (typical) 4 -channel recorder with 4 amplifiers in cabinet mount, viz. 7714A: net 340 lbs (153 kg), shipping 480 lbs (216 kg); rack mount Option 1: (recorder) net 101 lbs ($45,5 \mathrm{~kg}$), shipping $126 \mathrm{lbs}(36,7 \mathrm{~kg}$); with four 350 Preamplifers: net $100 \mathrm{lbs}(45 \mathrm{~kg}$), shipping $120 \mathrm{lbs}(54 \mathrm{~kg}$).

Accessories: $4 \cdot c h a n n e l, 50 \mathrm{~mm}$ (50 djv), 200 ft Permapaper roll ($651-54$), $\$ 12.60$ (consult local hp sales office for quantity prices of 200 ft rolls); 398 Analog Writing Arm ($4 \cdot$ chan. nel). $\$ 7.15$; $411-7$ Event Marker Arm (4-channet), $\$ 6.65$.

Optlonal accessory equipment: 608-100-Cil Extra Event Marker, 370 ; 188AP Marker Deiver Amplifier (+1.5 v dc input), 575; 188APM Marker Driver Amplifier ($\pm 1.5 \mathrm{v} \mathrm{dc}$ input), \$105.
Prices (Note 1): Sanborn 7714A (4-channel cabinet assembly less 350 Preamplifiers). $\$ 3985$; cabinet assembly includes master control panel, blower systems, stylus heat controls, preamplifer rack, recorder assembly with power amplifers and power supply and preamplifier power supplies.
Option 1 (Note 1): same as 4 -channel assembly above, less cabinet; includes: blower, master power panel, stylus heat panel, cabling and guide supports for rack mounting (note cooling requirements for operating temperature): Sanborn 7714A Option 1, \$37ss.
Note 1: Add price of signal conditioners for each channel required to the above basic assembly price for complete system cost.

7702A, $7712 A$ DUAL-CHANNEL RECORDING SYSTEMS BASIC ASSEMBLIES

Mobile cart, portable or rack mounted systems with versatile plug-in preamplifiers

These handy Sanborn dual-channel recorders can be mounted in a cabinet, mobile cart or portable carrying case. They use the same plug-in preamps as 6 - and 8 -channel assemblies. The recorder chart paper runs horizontally in 7702 A (8800 preamps, Note 2) and vectically in 7712 A
(350 preamps). Each assembly consists of fully solid-state individual current feedback power amplifiers and single power supply. Erequency response is dc to $125 \mathrm{cps},-3 \mathrm{db}$ at 10 div peak-to-peak; and rise time is 5 msec to 90% of final amplitude with less than 4% overshoot.

Specifications

(For complete performance sperifications with Sanborn's versatile plug.in 8800 (Note 2) and 350 series signal conditioners see pages 374 to 379.)

Paper speeds: standard recorders are supplied with 4 speeds (1,5 , 20 and $100 \mathrm{~mm} / \mathrm{sec}$) mechanitally shifted and selected by frontpancl pushbuttons; other speed combioations are available on special order; provision is made for optional remote operation of paper speeds and drive from suitable 11s vac source.
Timer-off-marker: separate styius marks edge of chart (paper) 1 sec pulses in "time" position (timer motor) or with 60 cps signal operator can use as a reference mark ia "mark" position; remote marking provision at rear connector by simple concact closure (115 v ac) : an extra marker is available on special order.
Panel controls: individual stylus heat controls, power switch, timer. off-marker switch, pushbutton speed selectors and individual gatvanometer damping adjustments (screwdriver).
Paper: standard 200 ft rolls of 50 mm wide 2,channel Permapaper® (651.52), easily loaded from the top of recorder; one channel only may be used with 1 -channel Permapaper (651-51); transpareat Permapaper (651.182) is available for making multiple copies of recording on contart copier (Ozalid, etc.).
Paper take-up: automatic paper take-up standard equipment.
Power. 115 volts $\pm 10 \%, 60 \mathrm{cps}, 200$ prates: 115 or 230 voits $\pm 10 \%, 50$ cps on special order.
Dimenslons: 7702A, 7712 A , mobile cart: $364 \mathrm{~s}^{\prime \prime}$ high, $141_{2}{ }^{\prime \prime}$ wide, 281/4" deep ($921 \times 369 \times 718 \mathrm{~mm}$) ; rack mount Option 1: 7702A -101/2" high, 19 " wide, $161 / 4^{\prime \prime}$ deep ($267 \times 483 \times 406 \mathrm{~mm}$); $7712 \mathrm{~A}-14^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $171 / 4$ deep ($356 \times 483 \times 438 \mathrm{~mm}$); portable case Option 2: 7702A-11" high, 191/4" wide, $171 / 2^{\prime \prime}$ deep ($279 \times 489 \times 445 \mathrm{~mm}$) ; 7712A-141/2" high, $191 / 4^{\prime \prime}$ wide, $171 / 2^{\prime \prime}$ deep ($368 \times 489 \times 445 \mathrm{~mm}$).
Weight (approx): typical for either 7702A or 7712A with 2 preamplifers in mobile cart: net $125 \mathrm{lbs}(56,3 \mathrm{~kg}$). shipping 176
lbs ($79,2 \mathrm{~kg}$): rack mount Opion 1: net $90 \mathrm{lbs}(40,5 \mathrm{~kg}$). shipping 114 lbs ($51,4 \mathrm{~kg}$) : portable case Option 2: net 110 lbs ($49,5 \mathrm{~kg}$), shipping 140 Jbs (63 kg).
Accessories: 2 -channel, 50 mm (50 div) 200 ft Permapaper roll (651.52), green coordinates on opaque white paper, $\$ 7.30: 1$. channel, 50 mm (50 div) 200 ft Permapaper roll (651.51), green línes on white, $\$ 4.25$ (consult local hp sales office for quanuity prices); 398 Analog Writing Arm. \$7: 411.10 Event Writing Arm, $\$ 6.65$ ea.
Optional accessory equipment: 462-189 Exura Marker (center margin), $\$ 75$; 297.1400 Portable Case (7702A recorder) (Note 2) ; 296-1400 Portable Case (7712A recorder), $\$ 155$.

Prices (Note 1); Sanborn 7702A (2-chanael mobile cart recorder assembly less 8800 Series Preamplifers) (Note 2); Sanborn 7712A (2.channel mobile cart recorder assembly less 350 Series Preamplifiens), \$1715; mobile cart assembly includes 2 -channel recorder, dual-channel porver amplifier and power supply, paper take-up and preamplifer power supply.
Option 1 (both models): same as 2 .channel assembly above less mobile cart (includes guide supports for rack mounting): 7702A Option 1 (Note 2) ; 7712A Option 1, $\$ 1575$.
Option 2 (both models): same as 2 -channel assembly sbove but recorder and preamplifiers are mounted in portable case: 7702A Option 2 (Note 2\}; 7712A Option 2, $\$ 1730$.
Note 1: Add price of signal conditioners (set pages 374 to 379), times the number of channels you desire to use, to the above basic assemblies prites for cornplete system cost.
Note 2: 7702A available early 1966, specifications tentative, price on request.

7701A,AX 1-CHANNEL RECORDING SYSTEM BASIC ASSEMBLIES

100 mm wide channel increases resolution 100 to 200%

The Sanborn 7701A provides two to three times the signal resolution of a standard width recorder and can be used with any of the versatile solid-state 8800 interchangeable plugin signal conditioners. Frequency response is dc to 30 cps , -3 db full scale. The lowimpedance ruggedly constructed
galvanometer employs velocity feedback for damping and the power amplifier has electrical limiting to protect recording stylus. Up to 2000 hours of continuous unattended recording at $0.5 \mathrm{~mm} / \mathrm{min}$ (optional plug-in 1 minute timer) is possible without changing chart roll.

7701A

Specifications

(For complete performance specifications with Sanborn's versatile plug in 8800 Signal Conditioners see pages 374, 375.)

Paper speeds: $4 \mathrm{~mm} / \mathrm{sec}$ speed standard ($0.5,2.5,10$ and 50 $\mathrm{mm} / \mathrm{sec}$), mechanically shifted and selected by front-panel pushbuttons; four additional speeds $0.5,2.5,10$ and 50 $\mathrm{mm} / \mathrm{min}$ can be added in the field or purchased as option.
Event marker: right margin, manually operated from front panel; 1 sec or 1 min plug-in timer and second event marker optional.
Front-panel controls: stylus heat control, pushbutton paper speed selectors, remote-local switch, timer-off-marker switch, power switch and galvanometer damping adjustment.
Paper: 200 ft roll of 100 mm wide-channel standard Permapaper ${ }^{(8)}$ ($651-217$); time lines every 5 mm , amplitude lines every 2 mm (50 div full scale).
Paper take-up: automatic paper take-up standard (concealed in recorder).
Power: 115 volts $\pm 10 \%, 60 \mathrm{cps}, 100$ watts; 115 or 230 volts $\pm 10 \%$, $50 \mathrm{cps}, 100$ watts (Model 7701 AX).
Dlmenslons: 7701A, in carrying casc: $12.5 / 16^{\prime \prime}$ high, $9.31 / 32$ " wide, $181 / \mathrm{g}^{\prime \prime}$ deep ($312 \times 253 \times 460 \mathrm{~mm}$); without case: $10 \cdot 7 / 16^{\prime \prime}$ high, $8 \cdot 11 / 16^{\prime \prime}$ wide, $17-7 / 16^{\prime \prime}$ deep ($265 \times 221 \times$ 444 mm); rack mounting adapter (mounts 2 wide-channel recorders) : $14^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $171 / 2^{\prime \prime}$ deep ($356 \times 483 \times$ 445 mm).
Weight: 7701A in carrying case, includes typical 8800 Series Preamplifier: net $461 / 2 \mathrm{lb}(20,9 \mathrm{~kg}$), shipping $62 \mathrm{lbs}(27,9$ kg) ; without carrying case: net $401 / 2$ lbs ($18,2 \mathrm{~kg}$), shipping $52 \mathrm{lbs}(23,4 \mathrm{~kg})$; rack mount adapter: net $16 \mathrm{lbs}(7,3 \mathrm{~kg})$,
shipping $20 \mathrm{lbs}(9,1 \mathrm{~kg})$.
Accessorles: 1 -channel, 100 mm (50 div) 200 ft roll Perma. paper ($651-217$), $\$ 8.45$ (consult local hp sales office for quantity prices) ; 412.4 Analog Stylus, \$15; 411-9 Event Marker Stylus, $\$ 9$.
Optional accessory equipmant: left edge event marker 07701. 60140, \$45; 60 cps timer (operates right edge event marker) $358-1300 \mathrm{H}-\mathrm{C} 21 \mathrm{sec}$ timer, $\$ 20 ; 07701-60150,1 \mathrm{~min}$ timer, $\$ 20 ; \mathrm{mm} / \mathrm{min}$ speed reduction kit for adding $0.5,2.5,10$ and $50 \mathrm{~mm} / \mathrm{min}$ speeds to recorder, 07701-60130, $\$ 110$.
Prices (Note I): Sanborn 7701A with carrying case (less 8800 Preamps), 1150 ; Sanborn 7701 AX with carrying case (less preamps) t 15 os 230 voits, $50 \mathrm{cps}, \$ 1250$; Sanborn 7701A, Option 1, recorder less carrying case but including (1) 7701-06A Rack Module, \$1145; Sanborn 7701A, Option 2, recorder less carrying case and rack module, \$1075; Sanbom 7701-06A (rack module for 1 or 2 recorders), \$70; Sanborn 7701-04A (carcying case), $\$ 75$.
Note 1: Prices for the wide choice of 8800 Series Preamplifiers available for this recording system are listed on pages 374, 375 ; add $\$ 35$ to the price of the recorder when ordering either High. Gain DC 8803A or Carrier 8805A Preamplifer in the 7701A or 7701AX; a 440 cps regulator card, 07701.60110 , must be mounted in the recorder if the 8803A Preamplifier is used, and $321 \cdot 100 \cdot$ C10 (2400 cps regulator card) if 8805 A is used; when the 440 cps card is in the recorder any preamplifier but 8805 A can be used; with the 2400 cps card, any preamp but 8803 A can be used.

299, 301 ONE-CHANNEL PORTABLE THERMAL WRITING RECORDERS

Two briefcase-size systems for medium-gain dc and ac, or carrier measurements

These single-channel, 25 lb recorders are widely used by engineers and technicians for measuring and recording the results of equipment checkout and servicing, in the field and in the laboratory. They possess most of the features found in larger systems and produce high resolution traces on a 32 mm (40 div) wide channel. Four inches of chart
are displayed at all times for stady and marking. Model 299 is very useful for mediun gain broad do and ac mersurements: 301 (with built-in excitation source) for carrier inputs from resistance bridges, variable reluctance devices, differential transformers and other ac teansducers.

Specifications

Reoerder model	Sanborn 299	Sanbern 308 ${ }^{\text {+ }}$
Senstivity (maximum)	$10 \mathrm{mv} / \mathrm{div}$ (each div $=1 / 32^{\prime \prime}$)	$10 \mu \mathrm{~V} /$ div (each div $=1 / 32^{*}$)
Sensitivity range (attenuation)	$10,20,50,100,200,500 \mathrm{mv}$ idiv and 1.2 .5 and $10 \mathrm{v} / \mathrm{div}$: attenuator error $\pm 2 \%$ max.	X1, 2, 5, 10, 20, 50. 100 and 200 attenuation factors; atten. uator error $=2 \%$ max.
Input circuit	5 megohms each side, balanced to ground	6000 ohms min. resistance, 13 K min. reactance-measured with full zero suppression and R \& C balance: 7000 ohms resistance. 13 X reactance-with R \& C balance control centered and zero supptession out; transducer impedance. 100 ohms min.
Common mode or quadraturo rejection ratio	50:1 on most sensitive ranges: 25:1 on other ranges	quadrature rejection ratio is greater than 100 to 1
Common mode or quadrature voltage tolerance	$\pm 2.5 \mathrm{v}$ max. on most sensitive range, higher on othes ranges to $=500 \vee$ max.	quadrature tolerance: Ifom centerline lwice amplitude of equivalent full-scale in phase signal; from chart edge, up to the equivatent of Iuil-scale in-phase signal, where full scale is defined as centerline to erther chart edge
Zero suppression	$=2 \mathrm{v}$ max., from mercury cells, in series with output of input attenuator, and used for bolh single.ended and balanced inputs; corresponds to max. suppression of 10 times center ol chart to either edge	5 -step switch, center out, two positions lor both positive and negative signal, each step equivalent to approx. 5 turns of R -Eal control
Frequency response (-3 db max, at 10 div p-p) (-3 do max. at full scale)	$\begin{aligned} & d c 10100 \mathrm{cps} \\ & d c 1050 \mathrm{cps} \end{aligned}$	$\begin{aligned} & \text { de to } 100 \mathrm{cps} \\ & \text { de to } 50 \mathrm{cps} \end{aligned}$
Zero drift Temperature, 0 to $50^{\circ} \mathrm{C}$ Line vollage variation, 103 to 127 volls Time	$\begin{aligned} & 0.5 \mathrm{div} / 10^{\circ} \mathrm{C} \\ & 0.25 \mathrm{div} \\ & 0.5 \mathrm{div} / \mathrm{hr}, 2 \mathrm{div} / 24 \mathrm{hrs} \end{aligned}$	$\begin{aligned} & 0.25 \mathrm{div} / 10^{\circ} \mathrm{C} \\ & 0.1 \mathrm{div} \end{aligned}$
Noise (peak-to.peak màx.)	0.1 div	0.25 div
Calbration (internal)	$0.2 v \pm 1 \%$	$40 \mu v i$ excitation volt. $=1 \%(200 \mu v / 20$ div deflection

-Carríer trequency 2400 cos , internanly supplied; carrier voliage 4.5 to 5.5 v rms, nol adjustable.

320, 321, 322 TWO-CHANNEL PORTABLE THERMAL WRITING RECORDERS

Fixed-amplifier systems for simultaneously measuring
two broad-range precision dc or carrier variables

These complete recording systems are extcemely useful in the field when two similar variables must be simultaneously analyzed and permanently recorded. They operate in any position, record signals on two 50 -mm wide channels, have electrical limiting to protect recording styli and current feedback ciccuits to reduce drift. Model 320 has guarded and floating inputs designed for broad $d c$ and ac signals even though complicated by excessive noise due to ground loops. Model 322 has two general-purpose direct-coupled amplifier channels, each with calibrated zero suppression, which can be used for single-ended and balanced inputs. Model 321, with built-in 2400 cps cacrier excitation source, is designed to measure signals from resistance bridges, variable reluctance devices, differential transformers and other ac transducers.

Recorifer model	Sanbern 820	Sanbort 321 \dagger	Sanborn 325, 322A
Maximum sensitivily	$0.5 \mathrm{mv} / \mathrm{div}$ (each div $=1 \mathrm{~mm}$)	$10 \mu \mathrm{v} /$ div (each div $=1 \mathrm{~mm}$)	$10 \mathrm{mv} / \mathrm{div}$ (each div $=1 \mathrm{~mm}$)
Attenuation range	$0.5,1,2,5,10.20 \mathrm{mv} /$ div and $v / 10$ div; attenuator error $\pm 2 \%$ max.	XI, 2, 5, 10, 20, 50, 100 and 200 attenuation lactors; attenuator error $\pm 2 \%$ max.	10, 20, 50, 100, 200, $500 \mathrm{mv} /$ div and 1, 2,5 and $10 \mathrm{v} /$ div; attenuator error $\pm 2 \%$ max.
Input circuit	0.5 megohm on mv/div and 1 megohm on v/10 div; floating and guarded with channel-to channel isolation; oc source resistance should be below lo K on mv	6000 ohms min. resistance, $13 \mathrm{~K} \mathrm{min}$. reactance, measured with full zero suppression and $\mathrm{R} \& \mathrm{C}$ balance; 7000 ohms resistance, 13 K reactance, with 8 \& C balance control centered and zero suporession oul: transducer imoedance. 100 ohms min.	```S megohms each side balanced to```
Comman mode ar quadrature rejection ratio	140 db max. at dc; 120 db min. $31 \overline{60} \mathrm{cps}$ with no input unbalance; 100 db min. at to cos with 5000 ohms unbalance ± 500 volis max.	Quadrature rejection ratio is greater than 100 to 1 Quadrature tolerance: from centerline twice amplitude of equivalent full-scale in-phase signal; from chart edge, up to the equivalent of full-scale in-phase signal, where full scale is defingd as centerline to either chart edge	50:1 on most sensitive range, 25:I on other ranges
Common mode or quadrature voltage tolerance			± 2.5 volts max. on most sensitive ranges; higher on other attenuator nositions to ± 500 volts max.
Zero suppression	None	5.step switch, center out, two positions for both positive and negative signal, each step equivalent to approx. five turns of R-8al conirols	± 2.5 v max, from mercury cells, in series with output of input attenuator, and used for síngle-ended and balanced inputs; corresponds to max suppression of ten limes center of chart to either eode (322A has no zero suopression)
Frequency response (-3 do max. al 10 div $p-p$)	dc to 125 cps	dc to 125 cps	dc to 125 cps
$\begin{aligned} & (-3 \text { db max. at } \\ & \text { fulf scale) } \end{aligned}$	de to 50 cps	de to 50 cps	de to 50 cps
$\begin{aligned} & \text { Zero drift } \\ & \text { Temp., } 0 \text { to } 50^{\circ} \mathrm{C} \text {; } \end{aligned}$	0.25 div/ $10^{\circ} \mathrm{C}$	0.25 div/ $10^{\circ} \mathrm{C}$	$0.5 \mathrm{div} / 10^{\circ} \mathrm{C}$
Line voltage variation, 103 10 127 v	0.1 div	0.1 div	0.25 div
Time		-	$0.5 \mathrm{div} / \mathrm{hr}, 2 \mathrm{div} / 24 \mathrm{hrs}$
Noise (p.p max.)	0.25 div	0.25 div	0.1 div
Internal calioration	$10 \mathrm{mv}, \pm 2 \%$	$40 \mu v$ excitation voll, $\pm 1 \%$ ($200 \mu \vee 20$ div deflection)	$0.2 \mathrm{v}=1 \%$

Harrier frequency 2400 sps , internally supplied; catcicr valeage 4.9 to 5.5 v mms not adjustable.

Specifications (1, 2-channel portables)

Gain stability: better than 1% to $50^{\circ} \mathrm{C}$ on all models; better than 1% for line voltage variations from 103 to 127 v ac, all models.
Non-linearity: 0.25 div max with respect to straight line through centerline and calibration point 20 div from chart center, all models.
Response time: $5 \mathrm{msec}, 10 \%$ to 90% with 4% or less overshoot over center ten divisions.
Paper speeds: single-channel 299.301: two speeds (5 and so $\mathrm{mm} / \mathrm{sec}$) ; dual-channel $320,321,322$: four speeds ($1,5,20$ and $100 \mathrm{~mm} / \mathrm{sec}$) ; other speeds are available on any model on special order.
Channel width: single-channel models, $1.25^{\prime \prime}$ divided into 40 div, $1 / 32^{\prime \prime}$ apart; dual-channel models, $2^{\prime \prime}$ divided into 50 div, 1 mm apart.
Timer-marker: single-channel models have separate stylus for edge marking (60 cps excitarion) ; on dual-channel models, 1 second timers are internal and extra event marker (462189) can be added on special order: jacks are provided on all models for remote operation of marker coil by contact closure.
Input connectors: single-channel, 5 pin AN rype on front panel; dual-channel models in portable cases have 3 .pin AN type front-panel connectors, rear connectors when rack mounted (optional binding post adapters available).
Monitor output connectors: miniarure phone jack on front panels provide approx. $40 \mathrm{mv} / \mathrm{div}$ across min. external load of 100 K .
Electrical Ilmiting; single-channel, approx. 125% of full scale; dual-channel, approx. 115% of full scale.
Power requirements: single-channel, 115 volts $\pm 10 \% 60 \mathrm{cps}$, 45 watts; dual-channel, 115 volts $\pm 10 \% 60 \mathrm{cps}, 100$ watts; $115-230$ volts 50 cps available in all models on special order.
Dimensions: single-channe! models: $7^{\prime \prime}$ high, $12^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ deep ($178 \times 305 \times 267 \mathrm{~mm}$); dual-channel models in portable cases: $133 / 4^{\prime \prime}$ high, $141_{4}{ }^{\prime \prime}$ wide, $91 / 2^{\prime \prime}$ deep ($349 \times 361 \times 241$ mm) ; rack mounts (models ending in R): $14^{\prime \prime}$ high, 19" wide $\times 16^{\prime \prime}$ deep ($356 \times 483 \times 406 \mathrm{~mm}$); paper takeup 320 -

300 for dual-channel portable is $43 / 4^{\prime \prime}$ high, $141 / 2^{\prime \prime}$ wide, $91 / 2^{\prime \prime}$ deep ($121 \times 370 \times 241 \mathrm{~mm}$) and 320R-300 on rack mount adds only $51 / 4^{\prime \prime}(133 \mathrm{~mm})$ to recorder height.
Weight, approx: single-channel models: net $22 \mathrm{lbs}(10 \mathrm{~kg})$, shipping 25 lbs ($11,3 \mathrm{~kg}$); dual-channel models: net 55 lbs (24 kg), shipping $66 \mathrm{lbs}(29,7 \mathrm{~kg}$).
Accessories: 1 -channel: Permapaper ${ }^{8}, 1 / 4 "$ wide (40 div), 125 fr coll (651 -202). $\$ 3.40$ ea (consult hp sales office for quanrity prices); 403A Analog Writing Stylus, \$7.50: 411-1 Marker Stylus, \$6.65: dual-channel: Permapaper (651.52) 50 mm (50 div), 200 ft roll, $\$ 7.50: 398$ Aralog Writing Stylus, \$7; \{11-10 Marker Stylus, $\$ 6.65$.
Optional accessory equipment: paper rakeup 299-300 for single-channel 299.301; \$40; paper takeup 320.300 for dualchannel 320, 321, 322 (in portable cases) \$125; 320R-300 for dual-channel $320 \mathrm{R}, 321 \mathrm{R}, 322 \mathrm{R}$ (rack mounts), $\$ 150$; binding post adapter (to make it easier to connect banana plugs, spade lugs, clip leads, bare wires, etc.): 299-200-C10 for 299 and $322, \$ 7 ; 301-200 \cdot \mathrm{Cll}$ for $301, \$ 8 ; 320-100-\mathrm{C} 31$ for 320 and $321, \$ 10$; extra marker $462-189$ (center-margin) for dual-channel models, $\$ 75$.
Prlces: single-channel: Sanborn 299, \$800; Sanborn 301, \$850: dual-channel: portable case: Sanborn 320. \$1650; Sanborn 321. \$1650; Sanborn 322, \$1395; Sanborn 322A (withour zero suppression) \$1295; rack mount: Sanborn 320R, \$1800; Sanborn 321R, \$1800; Sanborn 322R, \$1545; Sanborn 322AR, \$144s.

Model 53 Battery Converter

This handy accessory is a portable, stable source of ac power that will operate Sanborn single- and dual-channel recorders in most field applications. It will supply 128 volts, 60 cps at 125 watts continuously for 2 hours, and with a 35 watt load, bat. tery life between charges is 7 hours. Model 53 is a combination charger/converter/storage battery packed in a flameproof carrying case $9^{\prime \prime}$ high, $14^{\prime \prime}$ wide, $5^{\prime \prime}$ deep ($246 \times 372 \times 137 \mathrm{~mm}$). Weight $30 \mathrm{Ibs}(6,7 \mathrm{~kg}$). Sanborn 53 (including 12 -volt storage battery), $\$ 171$; without battery, $\$ 160$.

SYSTEM PERFORMANCE: 8800 PREAMPS IN 7708A, 7706A, 7702A \dagger, 7701A

Compact, solid-state interchangeable plug-ins, 2-1/16" $\times 7^{\prime \prime}$

Modol	8anbon frama	Senborn tioza	Sanbarn tad8a	5anbern AL0日A*
Preamplifier type	low-gain dc	medium-gain de	nigh-gain de	special-duppose OC
Max. sensitivity	$5 \mathrm{mv} / \mathrm{div}$	$1 \mathrm{mv} / \mathrm{div}$	$1 \mu v /$ div	$20 \mathrm{my} / \mathrm{div}$
Attenuation range	$0.005,0.01,0.02,0.05,0.1,0.2,0.5$, 1. 2 and $5 \mathrm{v} / \mathrm{div}$, atienuator error $\pm 1 \%$ max.	$1,2,5,10,20,50,100,200,500$ and $1000 \mathrm{mv} /$ div, alsenuator error $=1{ }^{\pi}$. max.	1, 2. 5. 10, 20.50. 100, 200.500. 1000. 2000 and $5000 \mu v$ div and $10,20$. 50, 100. 200, 500. 1000, 2000 and 5000 mv , div; altenuator arror $=10_{0}^{\circ}$ max.	corininuously adjustable ovel the range of $201050 \mathrm{mv} / \mathrm{div}$
Inout circult	$500 \mathrm{~K}=1 \%$ resistive. gach sids. s.ll tanges; approx. 100 of input capacilance: input balancod to ground	$180 \mathrm{~K}=10$ resistive, each side. all ranges, approx, 100 pl input caoscitance: input balanced to ground	1 megohm min. on μv ranges. 5 megohms on mu ranges: input is doating and guarded from chassis	two inpuls: figh imperance: $\Delta V_{i} \Delta I$ higher than 100 K i lowim. pedsace. 1500 obms $\pm 2 \%$; boin single-ended wilh respect 10 common terminal on oower supply: chassis terminal lo chassis rolation on 7701 A ud to $三 50 \mathrm{adc}$
$\begin{aligned} & \text { Zero } \\ & \text { suppression } \end{aligned}$	precedas signal sttenuation and gain control, may be used with singlaended and halanced inputs; ranges referred to ingut arg $=10$ and $=100$ v; on three most sensitive ranges suporession cannol be used above $\pm 50 \mathrm{~V}$	grecedes signal attenualion and gain conltol, may be used wilh singleended and balanced inouts; ranges reterrad to inpul are $=$? and $=20$ v : on thee mosi sensitive ranges superession cannot be used above $\pm 12.5 \mathrm{y}$	peacedes 1. 2. 5 atterustor switch and gain conifal: ranges relerred to input are $=1, \pm 30 \pm 100 \mathrm{mz}$ or for \boldsymbol{H}^{Y} or my signal ranges respecLively	none
Common mode or quadiature rejectlon ralio	tyoically 60 do (dc to 150 cos) but can be a minimum of as db (250:1)	rypically 60 db (ds to 150 cos) but can be a minimum of 48 db ($250: 1$)	on $\mu \mathrm{V}$ ranges: 160 db at de and 120 do at 60 cps : on my rânges 100 db al $d c$ and 60 db at 60 cps	100 db min , ol de
Common mode or quadrature voltage	$\pm 50 \mathrm{v}$ max. dn three most sensilive isnges: $=500$ y max. on all olhaf ranges	± 12.5 v max. on three most sonsilike ranges; ± 125 y max. on nex! three ranges: $=500 \vee$ max. on all other ranges	± 300 y dc on ali ranges; at 60 cos: $10 v$ fomsat $1 \mu^{2}$.div, $20 \cup r m s a t 2 \mu v$. 50 v rms al $5 \mu \mathrm{~V}, 100 \mathrm{~V}$ ims al $10 \mu \mathrm{~V}$. 220 v 6 ms al 20 uv through 5000 uv: 100 v ms at $10 \mathrm{mv}, 220$ y rits on all othar ranges	$\pm 50 \vee \mathrm{max}$, with raspect to chessis
Zaro drifi (lemp. and voli variations,	1 div $/ 10^{\circ} \mathrm{C}$ max. from 0 to $40^{\circ} \mathrm{C}$; 0.15 div max, from 103 to 127 volts	1 div $/ 10^{\circ} \mathrm{C}$ max. from 0 10 $40^{\circ} \mathrm{C}$ 0.15 div max. from 103 to 127 volls	(20 to $40^{\circ} \mathrm{C}$) 2 div at $1 \mu v_{i}^{\prime}$ div. decreasing to 0.1 diy max, on beast sensilive ranges: O.l div irom 103 to 127 volts	0.25 divil $0^{\circ} \mathrm{C}$ max from $01040^{\circ} \mathrm{C}$: 0.4 div max. from 103 to 127 volts
Gain stabillity (temp. and líne volt variations)	$02 \mathrm{~T} / 10^{\circ} \mathrm{C}$ max. from 0 to $40^{\circ} \mathrm{C}$. $0.25 \% / 10^{\circ} \mathrm{C}$ max. from 103 10 127 volts	$0.2 \%_{n} 10^{\circ} \mathrm{C}$ max. from 0 to $40^{\circ} \mathrm{C}$: 0.25% from 103 to 127 volts	(20 to $40^{\circ} \mathrm{C}$) 0.4 C for sensitivitles 1 to $10 \mu \mathrm{vidiv} .0 .2 \mathrm{Fin}$ above 10 zv 'div. from 103 to 12) volts	$17 \% / 10^{\circ} \mathrm{C}$ max. From 0 to $40^{\circ} \mathrm{C}: 1 \mathrm{~F}_{\mathrm{i}}$ max. from l03 to 127 volls
$\begin{aligned} & \text { Noise (max. } \\ & \text { p-pat cali- } \\ & \text { brated gain) } \end{aligned}$	0.1 dv	0.1 div	I div al I $\mu \mathrm{v} /$ div, 0.5 div al $2 \mu \mathrm{v} / \mathrm{div}$. 0.2 ofle at $5 \mu v / \delta / v$ and 10 mv div. 0.1 div or less on all olher anges	0.1 div
Max. nonlinearrity	0.25 div	0.25 div	0.25 div	0.25 dlv
Internal calibration	$100 \mathrm{mv}=1 \%$	$20 \mathrm{mv}=1 \%$	$200 \mu v \neq 1 \%$ in μv position; 20 mv $=1 \%$ in mu position	+600 $\quad \mathrm{mv}=27 \%$
Price	Sanborn Beold. 5275	Sanborn 8802A, 3225	Sanborn 8803A. Sodo	Sanborn 8809R, \$75

 where limited by response of the proamplifier.
*Designed peimarily for 7701A basic assentbly (page 370).
| Avallable early 1966.

NEW

8801A

8802A

8803A

8809A

LOW-GAIN, MEDIUM-GAIN, HIGH-GAIN DC; SPECIAL-PURPOSE DC, PHASE-SENSITIVE DEMODULATOR, CARRIER, AC-DC CONVERTER

Measure variables 1 microvolt to 250 volts, even in the presence of high (or quadrature) voltages with 0.25 division non-linearity

Model	Eanborn atiosa	8 Cabam H054	Sanhorn 3807a
Preamplifier tyda	phase-sensitive demodulator	carrier	converier ac-de
Max sonsitivily	$0.5 \mathrm{my} / \mathrm{div}$	$10 \mu \mathrm{v} / \mathrm{div}$	$1 \mathrm{mv} / \mathrm{olv}$ (scale exp.), $20 \mathrm{my} / \mathrm{div}$ (without scsle exp.)
Attenuation range range	signal: 0.5, 1, 2, 5, 10. 20, 50, 100, 200 and 500 mv/div; error $\pm 1 \%$ max.: reference valtage: 3 io $20 \vee \mathrm{rms}$ and 20 to 125 v rms	signal zettenyation of XI. 2. 5. 10.20,50, 100 and 200; attenualion errar $\pm 20 \%$	0.02 . 0.05, 0.1, 0.2, 0.5. I. 2 and $5 \mathrm{vims} / \mathrm{div}$. without scale expansion; attenualor erros $\pm 2 \%$: trequency range 50 cps to 100 kc
Inpul circuit	1 megohm signal and ref. inguts transi isolated: 0 to 360° plus-in phase shifter (front panel) providas eitiner calibraled single-(raq, or uncal, polyfreq. ref, signal; ref. frec. can be 60 cos to 40 kc pacalloraled, a ny single freg. 60 cps to 40 xc cali. brated: sld. Irea. $60,600,5 \mathrm{kc}$ and 20 kc	approx. 10 K : Iransducer impedence 5 K max.. 100 ahms min.: std, carriar freg. 2400 cps from power supply: provision made do accapt 440 to 4800 cos with component subslitution; carfler excilation 4.5 to 5 V pms	I megonm: input is floating and guarded irom chassis
Zero supprassion	none	signal insenad in series with external Iransducer output can supprass o to 100% or full. scale transducer load, effher phase, 0 or 180°, by lever gwitch	any 5, 10, 20 or 50 鱼 section of any range can be expended to tull scale; since zam suppression followes detector section. zero position can be any amplifude between zera and full scale il "scale expansion" is used
Common mode or quadeature rejection ratlo	quaralure refection ratio with tal. Dhase shifier is $100: 1$ min. for $2 X$ iull-scale (center-to-edge) quadralure signal; uncal. phase shifter*: comman mode rejection co db min.	quadrature rejection is 100:1 min.	40 db min. 400 cds
Common mode or quadrature voltage	Quadrature voltage tolerance equals $2 \times$ the amplitude of a full-scale (conter-10-adge) in-phase signal; common mode tolerance, 500 v mis max.	quadrature voltage tolerance, in the presence of full. scala in.phase voltage, equals 2 X the in-phase voitaze requlred for iull-scale (center-to-edge) ou!put	$=500$ volts pesk
2010 drift (ime temp. and voit varlations)	$0.3 \mathrm{div} / 10^{\circ} \mathrm{C}$ max. from $02040^{\circ} \mathrm{C}$; 0.25 die max. from 103 to 127 v	$0,3 \mathrm{djv} / 10^{\circ} \mathrm{C}$ max from 0 to $\mathrm{d} 0^{\circ} \mathrm{C} ; 0,1 \mathrm{djy}$ max. from 103 to 127 y	$0.7 \mathrm{dw} / 10^{\circ} \mathrm{C}$ max., 0 to $40^{\circ} \mathrm{C}$, with $\times 20$ scale expangion, decreasing to 0.1 div $/ 0^{\circ} \mathrm{C}$, max, wilhout scala expansion
Galo stabliticy (temp, and line voli variations)	$0.35 \% / 10^{\circ} \mathrm{C} \text { max. from } 0 \text { to } 40^{\circ} \mathrm{C} ; 1.15 \% \text { max. }$ $\operatorname{com}_{103} 10127 \mathrm{~V}$	$0.3 \% / 10^{\circ} \mathrm{C}$ max, from 0 to $40^{\circ} \mathrm{C} ; 0.4 \%$ max. from 103 to $127 v$	$0.3 \% / 10^{\circ} \mathrm{C}$ max... 0 to $40^{\circ} \mathrm{C}$, without scale expension: $0.25 \%, 103$ to 127 v
$\begin{aligned} & \text { Noise (max. D.p } \\ & \text { at callfratad } \\ & \text { gadn) } \end{aligned}$	0.5 div	$0.25 \mathrm{~d} \mathbf{~ / v}$	1 div (al $\times 20$ scale expansion)
Max, nonInaarily	0.25 div	0.25 div	0.25 div
Internal calibration	$10 \mathrm{mv}=1 \%$	2\% of rated fulluscale output of transducer $=1 \%$	IV rms, $500 \mathrm{cps} . \pm 0.5 \%$
Price	Sanborn 8806A, $\$ 575$ (with uncal, phase control); \$550 (with cal. phase control)	Sanborn 8805A. 8400	Sanbern 8807A, \$600

*Infinite quadrature rejection may be obtaired for a particular reference signa! level, Irequency and (uncal.) phase control setting.

NEW

SYSTEM PERFORMANCE WITH STANDARD 350 PREAMPS IN 7718A, 7716A, 7714A, 7712A

Extremely versatile, high performance, tube and solid-state, interchangeable plug-ins $4-3 / 16^{\prime \prime} \times 10122^{\prime \prime}$

Model	8untarn 350-1300C	Sanborn 350-10008	Sanbern 360-1600A
Pseamplifier type	low-gain dc	medium-gain dc	high-gain dc
Max. sensilivity	$5 \mathrm{mv} / \mathrm{div}$	$1 \mathrm{mv} / \mathrm{div}$	$2 \mu \mathrm{v} / \mathrm{div}$
Attenuation range	$0.005,0.01,0.025,0.05,0.1,0.25,0.5$, $1,2.5$ and $5 \mathrm{v} / \mathrm{div}$; attenualor error $=2 \%$	$1,2,5,10,20,50,100,200,500$ and 1000: mv/div attenuator error $\pm 2 \%$	attenuation of X1, 2, 5, 10, 20,50, 100, $200,500,1000,2000$; attenuator error $\pm 1 \%$
Input circuit	5 megohms $\pm 1 \%$ exch side to ground shunted by approx. 300 pf on 0.005 v/div position and 200 of on all other positions: input balanced lo ground	5 megohms $\pm 1 \%$ each side to ground shunted by approx. 250 of on 1, 2 and $5 \mathrm{mv} / \mathrm{div}$; 200 pl on all other ranges; input balanced to ground	100 K min., independent of gain; input is floating and guarded from chassis
Zero suppression	follows attenuator switch and precedes gain control, csn be used with singleended ingut only; suppresses $=5 \mathrm{v}$ on most sensitive range, corresponding to max. suppression of 40 times center of chart to either edge on any cange	can be used with single-ended or balanced inputs; suppresses up $\mathrm{to}_{0} \pm 2.5 \mathrm{v}$ referred to input on 1,2 and $5 \mathrm{mv} /$ div; $\pm 2.5 \mathrm{v}$ times 0.2 of mv/div range on all other ranges	$350-28$ plug-in provides amplifer with suporession voltage ranges of $\pm 2 \mathrm{mv}$, $\pm 10 \mathrm{mv}$ and $\pm 100 \mathrm{mv}$
Common mode or quadrature rejection ratio	>60 do on $0.005 \mathrm{v} / \mathrm{div}$: normally better than 34 ab on all oither ranges; can be min, of $28 \mathrm{db}(25: 1)$	$>60 \mathrm{db}$ on l. 2 and 5 mv /div normally belter than 34 db on alf other ranges; can be min. of 28 db (25 l)	160 db at $\delta \mathrm{c}, 120 \mathrm{db}$ at $60 \cos$ for up to 5000 ohms unbalance in inpus
Common mode or quadrature voltage	± 5 y on $0.005 \mathrm{v} / \mathrm{div} ; \pm 5$ volts times 100 times $\mathrm{v} / \mathrm{div}$ renge on other positions with upper limit of 500 v	$\pm 5 v$ on 1, 2 and 5 ; $\pm 5 \vee$ times 0.2 of mv /סiv range on all other ranges, with an upper limit of $\pm 500 \mathrm{v}$	$20 \vee$ rms at $X 1,40 \mathrm{rms}$ at $\mathrm{X} 2,100 \mathrm{v}$ rms at $\mathrm{X} 5,200 \mathrm{v}$ rms at $\times 10,220 \mathrm{v} \mathrm{ms}$ all other positions
Zero drift (time, temp. and voit variations)	0.4 div/hr mix.., 2 div/ 24 hr max:0.3 div $/ 10^{\circ} \mathrm{C}$ from 0 to $40^{\circ} \mathrm{C} ; 0.8 \mathrm{div}$ max, from 103 to 115 v , and from 115 to 127 v	$2 \mathrm{div} / \mathrm{hr}$ on 1,1 div/he on 2, 0.4 div/hr and 2 div/ 24 hr max, on all other ranges; 1.3 div/ $10^{\circ} \mathrm{C}$ for $1,0.7$ div/ $10^{\circ} \mathrm{C}$ for $2,0.3$ div $/ 0^{\circ} \mathrm{C}$ on all other ranges from $01040^{\circ} \mathrm{C} ; 2.5$ div for $1,1,25$ div for $2,0.5$ div for all other ranges from 103 to 127 v	1 div/24 hr max. on Xl range, decreasing with range setting, from 20 to $40^{\circ} \mathrm{C}$; $0.2 \mathrm{div} /{ }^{\circ} \mathrm{C}$ max, decreasing with range setting to 0.1 div $/ 20^{\circ} \mathrm{C}$ max., 0.1 div max. from 103 to 127 y
Gain stability (temp. and line volt variations)	$0.6 \% / 10^{\circ} \mathrm{C}$ max. from 0 to $40^{\circ} \mathrm{C}$; 0.25% max. from 103 to 127 v	$0.6 \% / 10^{\circ} \mathrm{C}$ max. for 1 ; for $2,0.35 \%$ / $10^{\circ} \mathrm{C} ; 0.2 \% / 10^{\circ} \mathrm{C}$ max. on all other ranges from 0 to $40^{\circ} \mathrm{C}$; 0.25% max. from 103 to 127 v	$0.1 \% / 24 \mathrm{hr}$ max.; $0.2 \% / 10^{\circ} \mathrm{C}$ max, $201040^{\circ} \mathrm{C} ; 0.25 \%$ max. from 103 to 127 V
Nolse (max. p.p at calibrated gain)	0.1 div	0.1 div	1 div on XI range with high frequency culoff, decreasing to 0.1 div with range and cutof
Max, non-linearity	0.25 div	0.25 div	0.25 div
Internal calibration	$100 \mathrm{mv} \pm 1 \%$	$20 \mathrm{mv} \pm 1 \%$	$0.2 \mathrm{mv} \pm 0.5 \%$
Price	Sanborm 350-1300C, \$250	Sanborn 350-10008, \$325	Sanborn 350-1500A, $\$ 525$; ($350-2 \mathrm{~A}$, $\$ 75 ; 350-28, \$ 165 ; 350-4 \mathrm{~A}, \$ 130$)

Frequency response for all systems: dc to 150 cps (40 mm channels); dc to 125 cps (50 mm channels); $-3 \mathrm{db}, 10$ div p-p; except where limited by response of the praamplifier.

LOW-GAIN, MEDIUM-GAIN, HIGH-GAIN DC, PHASE-SENSITIVE DEMODULATOR, CARRIER

Measure variables with precision even in the presence of high (or quadrature) voltages with 0.25 division non-linearity

Model	Sanborn 950-1200E,ET *	Samborn 350-1100C
Preamolifier troe	Phase sensitive demodulator	carrier
Max. sensilivity	$0.5 \mathrm{mv} / \mathrm{div}$	$10 \mu \mathrm{v} / \mathrm{div}$
Attenuation range	Signal: 0.5, 1, 2.5, 5, 10, 25, 50, 100, 250, 500 mv/div; attenuator etror $\pm 2 \%$; relerence vollagie: 10 to 125 vims; raference trequencies from 50 cos 105 kc	$\begin{aligned} & \text { Attenuation of XI, 2, 5, 10,20,50,100, 200; attenuator } \\ & 8 \text { 8ror }=1 \% \end{aligned}$
Indut circuit	Signal and reference: single-ended $100 \mathrm{~K} ; 350.1200 \mathrm{E} 95$ to 90 K (floating input, either side may be grounded)	Approx. 2.5 K , inclưding zero suppression circuit: transduces impedance 1 K max.; 100 ohms min.; standard carrier frequency is 2400 cps , internally provided: 600,1200 and 4800 CDS optiong; ; cartier excitation is 4.5 to 5 valts
Zero suppression	Nane	Signal inserted in series with external transducer output which can suporess 0 to 100% of full-scale vansducer load (either phase, 0° or 180°. by lever switch)
Common mode or quadrature rejection ratio		
Common mode or quadrature voltage	Quadrature veltage tolerance is twice the amplitude of a tull. scale (edge-to-edge) in-phase signal	Quadrature voltage tolerance, in oresance of full-scale in-phase voltage, is twice the in-phase voltage amplitude requirgd for full-scale (center-to-edge) output
Zero drift (time temp., and volt variations)	0.1 div/hr max.: 0.3 div/ $10^{\circ} \mathrm{C}$ max. from 0 to $40^{\circ} \mathrm{C}$; 0.15 div max. feom 10310127 volts	
Gain stability (temp, and line volt variations)	0.8% max. $/ 10^{\circ} \mathrm{C}$ from 0 to $40^{\circ} \mathrm{C}$; 1.15% max. from 103 to 127 volts	
Noise (max. D-D al calibrated gain)	0.25 div	0.1 div
Max. non-linearity	0.5 div	0.25 div
Internal calibration	$10 \mathrm{mv} \pm 1 \%$	2% of rated full-scale output of transducer $\pm 1 \%$
Price	Santborn 350-1200E, 5400 ; Sanborn 350-1200ET, \$470	Sanborn 350-1100C, \$425

-350.1200ET has isolation transformers for floating signal and reference inputs.

The 350.1800A is a basic choppor preamplifier with three Interchangeable plug-In front ends. When $350-2 \mathrm{~B}$ is Inserted, the preampliffer is a high-performance dc amplifler with zero suppression; 350-2A can be used when rero suppression is unnecessary; 350-4A is the plug'In to use for excitation and balancing de strain gage bridess (100 to $1000-0 \mathrm{hm}$ impedance).

$350 \cdot 1200 E$

350.1100 C

SYSTEM PERFORMANCE WITH SPECIAL 350 PREAMPS IN 7718A, 7716A, 7714A, 7712A

Record complex audio, noise, pulse rates, doppler shifts, rpm, ac transducer outputs, etc.

Model	Sanhorl 360-1400A	Santurn 360-2300*	Sanborn 360-2500*
Preamplifier type	logarithmic (level detecting on ac ranges)	ac wattmeter (average oower)	rms volt/ammeler (true rms)
Max. sensitivity	logarthmic: $1 \mathrm{db} / \mathrm{div}, 50$ db full scale; linear ac: $2 \mathrm{mv} / \mathrm{div}$: dc: $200 \mathrm{mv} / \mathrm{div}$	voltage: 1 v rms normal full scale; current: 2 ma rims normal full scale	voltage: $0.5 \vee \mathrm{mms} /$ div; current: 1 ma rms/div
Attenuation range	ac ranges: 100 mv to 100 V rms. 7 ranges in 10 db steps: $0.1,0,32,1,3.2$. 10,32 and 100 v full scale logarithmic or linear: total range is -70 db to +40 db in 50 db ranges in logarithrnic moda; reference is $1 v$ for 0 db ; frequency range 5 cos to 100 kc ; dc renges: logarithmic, one 50 db range ($-1010+40$ db) with reference of 0 db for +0.6 v ; linear, +10 v full scale	power range: equals normal full-scale voltage selting times normal full-scale current range setting; voltage ranges: 1 , $2.5,5,10,25,50,100,250 \mathrm{v}$ rims full scale; current ranges: $0.002,0.005,0.01,0.02$, $0.5,1,2,5$ amps rms full scale; voltage and current range errors are $=1 \%$, frequency range: 40 cos to 10 kc	voltage ranges: $25,100,150,250$ and 300 v rms full scale; other position, line, provides direct connection to power line for line check; current ranges: $0,05,0.1$. $0.25,0.5,1,2.5$ and 5 amps rms full scale; frequency ranges: voltage, 30 to $2500 \mathrm{cPs} \pm 3 \%, 20$ to $5000 \mathrm{cDs} \pm 10 \%$; current, 50 ma range 50 to 1000 cps $\pm 3 \%$, 8 ll other ranges 50 to $2000=3 \%$
Input circuit	10 megohms, single-ended, ac and dc, all ranges	voltage: $25 x / f u l l$-scale v, up to $25 v$ normal range; constant at 625 K on all other ranges; current: from 20 to 400 mv max. drop for front inguts depending on range; both inputs floating and may be grounded	voltage: 1000 ohms/full-scale v; current: from 200 to 300 mv max. drop for front input, depending on ranges; both inputs floating and may be grounded
Zero drift (time, temp, and volt variations)	$1 \mathrm{div} / \mathrm{hr}$ max.; $1 \mathrm{dlv} / 10^{\circ} \mathrm{C}$ max., 0 to $40^{\circ} \mathrm{C}$; 2 div max. from 103 to 127 vallis	$1 \mathrm{div} / 10^{\circ} \mathrm{C}$ from 0 to $80^{\circ} \mathrm{C}$; 1 div from 103 to 127 volts	0.5 div/hr max.; $0.3 \mathrm{div} / 10^{\circ} \mathrm{C}$ max. from 0 to $40^{\circ} \mathrm{C}$; ? div max, from 103 to 127 volts
Noise (max. p-p at calibrated gain)	0.1 div	0.33 div	0.1 div
Max. non-linearity	Uinear, $=0.5$ div; log, $\pm 1 \mathrm{div}$	1.5 div	1.5 div
Internal calibration	do corresponding to full-scale (edge-to-edge) output	2 mw full-scale jower	de corresponding to full-scals (edge-to-edge) rms alternating voltage or current
Price	Sanborn 350-1400A, \$475	Sanborn 350-2300, \$850	Sanborin 350-2500, \$600

 preamplifier,

- To be deleted from sorles after Inventory deplation.

SPECIAL-PURPOSE SIGNAL CONDITIONERS

Accurately condition and control "special" variables with exact plug-in

Model	6anhorn 350-2800*	Santorm 850-2800A	Sabborn 350-3500 A
Preamolifier type	400 cycle frequency deviation	irequency meler	accelerometer (level detecting)
Max, sensitivity	$0.1 \mathrm{cps} / \mathrm{div}$	-	$0.5 \mathrm{mv} / \mathrm{div}: ~ m v$ may be peak to perk, zero to peah, or average.
Attenuation range	$\pm 2.5 \mathrm{cps}_{1}=5 \mathrm{cDs},=12.5 \mathrm{cps}$ and $=25$ cps full scale; input voltage range 0.5 to 225 v (zero to peak)	irequency ranges. $0-100 \cos (30 \mathrm{cDs}$ min operating frequency), $0-500 \mathrm{cps}$, $0-2.5 \mathrm{kc}, 0-10 \mathrm{kc}$ and $0-50 \mathrm{kc}$ for full. scale deflection without zero supression or scale expansion; scale expansion atlows full-scale measurement of any 10,20 or 50% section of any range: zero suppression provides selection of zero output position to be any frequency between zero and full scale when scale expansion is used; input voltage range: 30 mv to 450 v on all ranges except 50 kc which is 150 mv to 450 y peak to peak	attenualion: $\mathrm{X} 1,2,5,10,20,50,100$, 200, 500, 1000, 2000, and 5000 (error $=1 \%$; frequency range 2 cos to 100 kc
Inpul circuit	$100 \mathrm{~K} \mathrm{~min} .$, single-ended to ground	100 K min., single-ended to ground	single-ended, higher than 1000 meg. ohms; input capacitance 30 pf
Zero drifl (time, temp. and line volt variations)	0.75 div/hr max. on mast sensitive ranges, decreasing to $0.25 \mathrm{div} / \mathrm{hr}$ max.; 1 div from 103 to 127 v	without scale expansion, 0.1 div/hr max.; 0.25 div $10^{\circ} \mathrm{C}$ max., 0 to $40^{\circ} \mathrm{C}$; 0.5 div from 103 to 127 v	$0.5 \mathrm{div} / \mathrm{hr}$ max. $0.3 \mathrm{div} / 10^{\circ} \mathrm{C}$ max. from 0 to $40^{\circ} \mathrm{C} ; \pm 0.5$ div from 103 to 127 v
Noise (max. p-p at calibrated gain)	1 div	1 div for 30 cos input, decreasing to 0.1 div	0.1 div
Max. non-linearity	1 div	without scale expansion, 0.75 div	0.5 div
Internal calibration	de voltage which corresponds to +20 cos frequency deviation	power line frequency applied to input	$25 \mathrm{mv}=0.5 \%$
Price	Sanborn 350-2600, $\$ 550$	Sanborn 350-2800A, \$415	Sanborn 350-3900A, \$600

*To de deleted whan inventory is depleted.

350.2600

$350-2800 \mathrm{~A}$

$350 \cdot 3900 \mathrm{~A}$

SYSTEM PERFORMANCE WITH 950 AMPLIFIERS IN 7728A, 7726A

Economical, low-gain, medium-low gain, medium-gain, high-gain de

Model	Sanborn 958-8800	Sanbom 958-2900	Sartborn 968-8400	Sanborn 968-1500
Amplifer type	low-gain dc	medium-low gain do	medium-gain dc	high-gain dc
Max. sensitivity	$50 \mathrm{mv} / \mathrm{div}$	$10 \mathrm{mv} / \mathrm{div}$	0.5 mv/div	$10 \mu v /$ div
Aftenuation range	$0.05,0.1,0.2,0.5,1$ and $2 \mathrm{v} / \mathrm{div}$, attenuator error $=2 \%$ max.	10. 20, 50, 100, 200 and $500 \mathrm{mv} / \mathrm{div}: ~ \mathrm{l}, ~ 2,5$ and $10 \mathrm{v} / \mathrm{div}$; attenustor error $\pm 2 \%$	$0.5,1,2,5,10$ and $20 \mathrm{mv} /$ div: $0.5 .1,2,5,10$ and $20 \mathrm{~V} /$ 10 div; attenuator error $\pm 2 \%$	10, 20, 50, 200, 200, 500, 1000 and $2000 \mu \mathrm{~V} / \mathrm{div}$; attenuator error $=2 \%$
Input circuit	550 K each side balanced to ground, except 500 K on negative input side on threg most sensitive ranges	5 megohms each side balanced to ground	0.5 megohm on my ranges, 1 megohm on volt ranges, inpul is flaating and guarded from chassis	$100 \times$ all ranges, flosting and guarded from chassls
Zero suppression	precedes signal attenuation and gain control, may be used with singie-ended and balanced inpuls; $\pm 40 \mathrm{v}$ max. suppression referred to input	follows attenuator switch and precedes gain control, may be used with singleand and balanced inputs; suppresses ± 2.5 v max. on most sensitive range, corresponding to max. sup. pression of 10 times center of chart to either edge on any ranga	none	none
Common mode or quadrature rejection retio	typically more than 40 db , but may be as low es 28 db (25:1)	34 db min. on most sensifive ranges, 28 db min . on ail other ranges	140 db min. at dc; 120 db min. at 60 cos with no unbalance: 100 db min. at 60 cps with 5000 ohms unbalance	140 db mini, at dc; 120 db min. at 60 cos with no input unbaiancs; 100 db min. at 60 cps with 5000 ohms unbalance
Common modo or quadrature voitage	± 40 y max. on 3 most sensitive ranges; $\pm 400 \mathrm{v}$ max. on all other ranges	$\pm 2.5 \vee$ max. on most sensitiva ranges; for other ranges max. voltage is increased in proportion to the fuil-scale voltage to 8 max. of $\pm 500 \mathrm{v}$	± 500 v max.	$\pm 200 \vee$ max.
Zero drift time, temp., and volt varistions)	0.5 div $/ 10^{\circ} \mathrm{C}$ max. from 0 to $50^{\circ} \mathrm{C}$; 0.1 div max, from 103 to 127 v	0.5 div/hr max., 2 div/24 hr max.; 0.5 div $/ 10^{\circ} \mathrm{C}$ max. from 0 to $50^{\circ} / \mathrm{C}$; 0.1 div max. from 103 to 127 v	$0.25 \mathrm{div} / 10^{\circ} \mathrm{C}$ max. from 0 to $50^{\circ} \mathrm{C}$; 0.1 div max. from 103 to 127 v	$0.25 \mathrm{diy} / 10^{\circ} \mathrm{C}$ max. from 0 to $50^{\circ} \mathrm{C}$; $0.1 \mathrm{div}_{\mathrm{max}}$ from 103 to 127 v
Gain stability (temp. and line volt variations)	1% max. from 0 to $50^{\circ} \mathrm{C}$. 1% max. from 103 to 127 v	1% max. from 0 to $50^{\circ} \mathrm{C}$; 1% max. from 103 to 127 v	1% max. from 0 to $50^{\circ} \mathrm{C}$; 1% max. from 103 to $127 v$	1% max. from 0 to $50^{\circ} \mathrm{C}$; 1% max. from 103 to 127 v
Noise (max p-pat catibrated gain)	0.1 div	0.1 div	0.25 div	0.5 div
Max. non-linearity	0.25 div	0.25 div	0.25 div	0.25 div
Internal calibration	$1 \vee \pm 1 \%$	$0.2 \mathrm{v} \pm 1 \%$	$10 \mathrm{mv}=2 \%$	$0.2 \mathrm{mv}=2 \%$
Price	Sanborn \$58.3600, \$2500	Sanborn 958-2900, \$2500	Sanborn 958-3400, \$3500	Sanborn 958-1500, \$3800

Frequency response lor all systems: dc to $150 \mathrm{cps}(40 \mathrm{~mm}$ channels); dc to $125 \mathrm{cps}(50 \mathrm{~mm}$ channels); -3 dD , $10 \mathrm{div} \mathrm{d}-\mathrm{p}$; except $958-1500$, which is de to 100 cps.$$

4500 MULTI-CHANNEL OPTICAL RECORDING SYSTEM

Record high-frequency, high-speed test data on integrated amplifier-to-galvanometer system

Advantages:

Up to 25 channels
One basic galvanometer for 0 to 5 kc response
Sensitivities: $2.5 \mathrm{mv} / \mathrm{in}$ to $625 \mathrm{mv} / \mathrm{in}$
Record up to $4^{\prime \prime}$ ($\mathrm{p}-\mathrm{p}$) amplitudes at 0 to 5 kc ; $8^{\prime \prime}(\mathrm{p}-\mathrm{p})$ at 0 to 3 kc
Trace positioned elecrrically anywhere on chart
Uses:
Telemetry recording
f00-cycle power measurements
Transients measurements
Measuring data sampled at high pulse rates
The Sanborn Model 4500 Optical Recorder is a completely integrated system that can provide high-speed, permanent cecordings of many variables, without annoying time delay errors between channels, in the 0 to 5000 cycle range. Per-channel cost is low, and the system is convenient to operate. Signals are connected directly to either front or rear panel of system multi-channel amplifiers and immediately recorded on 8 -inch wide chart. Front-panel position controls make it easy to move each channel's trace to any position on chart.
Amplifiers are available with maximum sensitivities of 2.5, 50 and $625 \mathrm{mv} / \mathrm{in}$; with and without zero suppression and common mode voltages, and have zero drift, gain stability and noise ratings for high quality amplification. Each amplifier assembly consists of eight identical, solid. state modular channels of electronics and a common power supply. This same assembly is offered with 6 channels of electronics for 6., 14. and 18 -channel optical recording systems. Twenty-four channel systems are driven by three 8 -channel amplifiers; the 25 th channel galvanometer can be driven directly or by an external amplifier.
Special frequency boost and compensation circuits exrend frequency response of 2 kc galvanometers to 5 kc range (-3 ob). Current feedback in matching nerwork between amplifier and galvanometer stabilizes frequency response of galvanometers over broad temperature range. Galvanometers of other natural ifequencies are available for applications when the sigoal is to be applied directly to che eecorder. Recordings can be made at any of nine speeds (0.25 to $100 \mathrm{in} / \mathrm{sec}$) on ultraviole-sensitive paper and immediately developed under attached post-development lamp. Traces may overlap at amplitudes up to eight inches. Additional features include: full-width (0.01 and 0.1 sec) timing lines, amplitude lines (removable over part or all of paper), sequential light beam interruption for trace identification, event marker, a lamp power control and meter and a meter for indicating remaining paper footage. As in most Sanborn recording systems, the 4500 has provision for complete remote operation.

PERFORMANCE SPECIFICATIONS WITH 650 AMPLIFIERS IN 4500 BASIC ASSEMBLIES

Low-cost, solid-state, multi- (alike)-channel amplifiers: galvanometer driver; low-gain, medium-gain

Model	Sanbern 658-2000	Sanbero 658-2900	Sanbern 858-3400
Amplifier type	galvanometer driver, gensral-purpose	low-galn, general-purpose	madium-gain, general-purpose
Max. sensltivity	$625 \mathrm{mv} / \mathrm{in}$ (5 v for 8^{8} trace)	$50 \mathrm{mv} / 10$ (400 mv for 8^{*} (race)	$2.5 \mathrm{mv} / \mathrm{in} \mathrm{(20} \mathrm{mv} \mathrm{for} 8^{\overline{5}}$ (uace)
Attenualion range	XI, 2, 4, 10, 20, 40; smooth gain 2.5-to-1 adj.; up scale and down scale output switch: attenuation error $x 2 \%$ max.	X1, 2, 5, 10, 20, 50, 100, 200, 500, 1000; smooth gain $2.5-10-1 \mathrm{adj}$; attenuation error $=2 \%$ max.	X $1,2,5,10,20,50,100,200,500$, 1000, 2000, 5000; smooth gain 2.5-to-1 adj.; attenuation ersor -3% max.
Tnput circult	single ended, 100 K	bal. to gnd.; 1 megohm each side	floating and guarded, 180 K
7...-		N/A
Common mode or quadralure rajection ratio	N/A		140 db at $\mathrm{dc}, 120 \mathrm{db}$ st 60 cDs bal. 110 db at 60 cos 1000 ohms unbal.
Common mode or Quadrature voltage	N / A	± 2.5 von Xl range, multiply att. range $\times 2.5$ to max of $=500 \mathrm{y}$	± 500 volts
Frequency response (within 3 db ooinu)	$0105 \mathrm{kc}\left(4^{2} \mathrm{p} \cdot \mathrm{p}\right), 0$ to $3 \mathrm{kc}\left(8^{N} \mathrm{p}-\mathrm{p}\right)$	da $5 \mathrm{kc}\left(4^{\prime \prime} \mathrm{p}-\mathrm{p}\right), 0103 \mathrm{kc}\left(8^{\circ} \mathrm{p}-\mathrm{p}\right)$	$0 \operatorname{to5kc}\left(4^{*} p-\rho\right), 0103 \mathrm{kc}\left(8^{\prime \prime} \mathrm{p}-\mathrm{p}\right)$
Response time (10% to 90\%)	80 usec 4\% or less overshoot	$80 \mu \mathrm{sec} 4 \%$ or less Overshoot	$80 \mu \mathrm{sec} 4 \%$ or less overshoot
Zero drift (time. temp. and line vollage variations)	$\begin{aligned} & 0.025^{\circ} / 10^{\circ} \mathrm{C} \mathrm{max}, 01050^{\circ} \mathrm{C} ; 0.02^{*} \\ & \text { max., } 103 \text { to } 127 \text { volts } \end{aligned}$	$\begin{aligned} & 0.1^{*} / 10^{\circ} \mathrm{C} \text { max., } 0 \text { to } 50^{\circ} \mathrm{C} ; 0.02^{\circ} \\ & \text { max., } 103 \text { to } 127 \mathrm{v}: 0.1^{\circ} / \mathrm{hr} . \end{aligned}$	$\begin{aligned} & 0.05^{\prime \prime} / 10^{\circ} \mathrm{C} \text { max. } 0 \text { (0 } 50^{\circ} \mathrm{C} ; 0.02^{\circ} \\ & \text { max., } 103 \text { to } 127^{\prime} \text { volts } \end{aligned}$
Gain stability (temp. and line volt variations)	betler than $1 \% .01050^{\circ} \mathrm{C}$; batter than $1 \%, 103$ to 127 volts	Detter than $1 \%, 0$ to $50^{\circ} \mathrm{C}$: better than 1 名, 103 to 127 volts	$\begin{aligned} & \text { better than }\left[\%, 0 \text { to } 50^{\circ} \mathrm{C} ;\right. \\ & \text { better than } 1 \%, 103 \text { to } 127 \text { volts } \end{aligned}$
Noise (max. p-p at calibrated gain)	$0.0{ }^{\text {a }}$ p-p max.	$0.02^{\prime \prime} \mathrm{p}-\mathrm{p}$ max.	$0.02^{*} \mathrm{D} \cdot \mathrm{p}$ max.
Max non-linearity	$\pm 1.5 \%$ 亿ull scale (8^{*})	$\pm 1.5 \%$ full scale ($8^{* \prime}$)	$\pm 1.5 \%$ lull scale (${ }^{(8 \%)}$
Internal calibration	2.5 volis $=1 \%$	0.2 volt x 1\%	$10 \mathrm{mv}=2 \%$
Price	Sanborn 658-2000, \$2200	S3nborn 658-2900, $\$ 2895$	Santorn 658.3400, 57780
$\begin{aligned} & \text { Price (with } \\ & \text { cooling fan) } \end{aligned}$	$\begin{gathered} (658-2000-3) \\ \$ 2345 \end{gathered}$	$\begin{gathered} (658 \cdot 2900 \cdot 3) \\ 53040 \end{gathered}$	$\begin{gathered} (558-3400 \cdot 3) \\ \$ 3925 \end{gathered}$

658.2000

658-2900

659.3400

Specifications

Channel capacity: up to 25.
Paper speeds: standard recorders are supplied with 9 speeds: $0.25,0.5,1,2.5,5,10,25,50$ and $100 \mathrm{in} / \mathrm{sec}$. electrically shifted and selected by front-panel pushbuttons; a connector and control panel are available for remote control of paper drive and speeds.

Timing Sines: 0.01 or 0.1 sec interval lines can be recorded across the full chart width ($8^{\prime \prime}$) ; control can be from the remote control panel.

Ampilfude Hnes: $0 . l^{\prime \prime}$ interval amplitude lines can be superimposed on total chart or eliminated over 0.25 or 0.5 of full chart width; millimeter lines are available on special osder.

Galvanometer 9B.1A (standard) ; undamped natural frequency is 2000 cps ; frequency response is flat within $\pm 5 \%$ to 1200 cps; sensitivity is $17.5 \mathrm{ma} / \mathrm{in}$; nominal coil resistance is 17 obms; maximum safe current is 150 ma; the following list of additional galvanometers are available from Sanborn for applications where the signal is to be fed directly to the recorder: $200 \mathrm{cps}(9 \mathrm{~B}-1 \mathrm{~B})$, $500 \mathrm{cps}(9 \mathrm{~B}-1 \mathrm{C}), 3400 \mathrm{cps}$ (9B-1D), $10,000 \mathrm{cps}(9 \mathrm{~B}-1 \mathrm{E}), 40 \mathrm{cps}(9 \mathrm{~B}-1 \mathrm{~F}), 60 \mathrm{cps}$ ($9 \mathrm{~B} \cdot 1 \mathrm{G}$), $100 \mathrm{cps}(9 \mathrm{~B} \cdot 1 \mathrm{H}), 150 \mathrm{cps}(9 \mathrm{~B}-1 \mathrm{~J}), 300 \mathrm{cps}$ ($9 \mathrm{~B} \cdot 1 \mathrm{~K}$), $900 \mathrm{cps}(98 \cdot 1 \mathrm{~L}), 1500 \mathrm{cps}(9 \mathrm{~B} \cdot 1 \mathrm{~N}), 3000 \mathrm{cps}$ (9B-1P), $5000 \mathrm{cps}(9 \mathrm{~B}-1 \mathrm{~S}), 8000 \mathrm{cps}(98-1 \mathrm{~T}), 1000 \mathrm{cps}$ (9B-1V) ; for further information contact your hp sales office.

Controls: Power On-Of, Timing Interval selector, Lamp Power Adjust, Lamp Off/Start, Paper Footage indicator, Event Marker, Paper Drive On/Off Jog pushbutton; all controls are on the front panel.

Vewing: calibrated periscope on front panel allows viewing the traces when recording or calibrating.

Input connectors (all ampliflers): each channel has both front and rear connector panels; $658-3400$ has guard circuit connections, all mating connectars supplied.

Output (all amplifiers): $=72 \mathrm{ma}$ to drive standard 2000 cps galvanometers, 17 ohm nominal load, ungrounded, approx. 10,000 ohms source impedance; current is limited to ± 150 ma.

Output manltor (ampliflers): front-panel jack provides $\pm 1 \mathrm{v}$ full scale across 100 K ohms min. load (658.2900 and 658.3400 only).

Paper takeup: optional 650-900 mounted below recorder; front-panel pushbutton automatically controls paper and take-up speed; clutch keeps paper taut; relay stops take-up at end of roll.

Amplifier cooling: 20 cfm min. air flow required at rear of annplifiers for proper cooling, when the amplifier or system is purchased without a Sanborn cabinet and air-cooling blower, proper operational ambient temperature becomes the responsibility of the user; in such instances, and where the cabinet being used has sufficient depth ($23^{\prime \prime}$) a blower can be in. stalled on the rear of the amplifier for $\$ 145$; to order an amplifier with this blower assembled. simply add a " .3 " after the amplifer model number (i.e., 658-2900-3).

Power 103 to 127 volts, $60 \mathrm{cPs}, 450$ watts (recorder); 103 to 127 volts, 50 to $400 \mathrm{cps}, 125$ watts (amplifiers) (115 or

230 volts on special order); 105 to 125 volts, 60 cps, 195 watts (paper take-up) (115 or 230 volt. 50 cps on special order).

Dimensions: 650-1400 16-channel cabinet: $575 / 8^{\prime \prime}$ high, $22^{\prime \prime}$ wide, $22^{\prime \prime}$ deep $(1464 \times 559 \times 559 \mathrm{~mm}) ; 658 \cdot 2400,24$-channel cabinet; $681 / 4 "$ high (1734 mm) other dimensions same as 650.1400 ; rack mounts: recorder, $121 / 2^{\prime \prime}$ high, $18^{\prime \prime}$ wide, $161 / 2^{\prime \prime}$ deep ($318 \times 483 \times 419 \mathrm{~mm}$); paper take up, $51 / 2 "$ high, 19" wide, 12 " deep ($140 \times 483 \times 305 \mathrm{~mm}$) ; amplifiers, 6.61/64" high, 1813" wide, 201/3" deep ($177 \times 56^{\prime \prime} \times 511$ mm) : portable cases: recorder, $13.5 / 16^{\prime \prime}$ high, $20.3 / 16^{\prime \prime}$ wide, $173 / 4$ " deep $(338 \times 513 \times 451 \mathrm{~mm})$; amplifiers, $7 \cdot 9 / 16^{\prime \prime}$ high, $22^{\prime \prime}$ wide, $211 / 2^{\prime \prime}$ deep ($193 \times 559 \times 546 \mathrm{~mm}$).

Weights: 650-1400, $16 \cdot \mathrm{ch} a n n e l$ cabinet: net $400 \mathrm{lbs}(181.6 \mathrm{~kg})$. shipping $450 \mathrm{lbs}(204,3 \mathrm{~kg}) ; 650 \cdot 2400,25$-channel cabinet: net $450 \mathrm{lbs}(204,3 \mathrm{~kg})$, shipping $500 \mathrm{lbs}(227.7 \mathrm{~kg})$: recorder: net 95 lbs (40.5 kg), shipping $150 \mathrm{lbs}(67,5 \mathrm{~kg}$): paper take-up: net $28 \mathrm{lbs}(12,6 \mathrm{~kg})$, shipping $35 \mathrm{lbs}(15,8$ kg) ; amplifiers: net $80 \mathrm{lbs}(36 \mathrm{~kg}$), shipping 90 lbs (40.5 $\mathrm{kg})$; porrable cases: ($650-1400$, recorder) : net $45 \mathrm{lbs}(20,4$ $\mathrm{kg})$, shipping 50 Lbs ($22,7 \mathrm{~kg}$); ($858 \cdot \mathrm{l}-100$, amplifier) : ner $40 \mathrm{lbs}(18.2 \mathrm{~kg})$, shipping $45 \mathrm{lbs}(20,4) \mathrm{kg}$.

Accessories: $8^{\prime \prime}$ wide uitraviolet sensitive paper: $200 \cdot \mathrm{ft}$ roll, std. base ($3 \mathrm{~A}-26$), $\$ 22.50 ; 350 \mathrm{fe}$ roll, thin base (3A-27). $\$ 33.75$: 98-1R Dummy Galvanometer with mirroc, \$33; 9B.lW (w/0 mirror), \$9; 650-900 Paper Take.Up. $\$ 570$.

Prices

Complete 8-channel system includes: Sanborn $\ddagger 508.01 \mathrm{~A}$. 8-Galvanometer Block Recotder, \$3200; eighr Sanborn 9B. 1A Galvanometers, $\$ 1000$ ($\$ 125$ each): $8 \cdot$ channel amplifier. $\$ 2200, \$ 2895$ or $\$ 3780$ (see page 382); and Sanborn 658-1400 cabinct, $\$ 550$.

Complete 24- or 25-channel systems include: Sanborn -1524. 01A 25 Galvanometer Block Recorder, $\$ 3400$: 24 or 25 9B-1A Galvanometers, $\$ 125$ each; three 8 -channel amplifiers priced above and on page 382): and Sanborn 658. 2400 cabinet. $\$ 600$.

Porrable carrying cases: Sanborn 650-1400 (recorder), $\$ 190$: Sanborn 858-1400(amplifiec), $\$ 150$; paper take-up (special order), $\$ 200$: one additional case required for 14-channel systems. two for 18,24 or 25 channels.

Optlonal systems: (require 6-channel amplifier): six-channel systems include: Sanborn 4508A-01A 8-Galvanometer Block Recorder, $\$ 3200$; (six) Sanborn 9B-1A Galvanometers. $\$ 750$ ($\$ 125$ each) ; (one) 8-channel amplifier with 6 channels only of electronics, $\$ 2060(658-2000), \$ 2635$ (658.2900), or $\$ 3540$ (658.3400) : and 658.1400 Cabiner, $\$ 550$.

Fourteenchannel systems include: Sanborn 4514-01A, 14. Galvanometer Block Recorder, \$3300; (14) Sanborn 9B. 1A Galvanometer, $\$ 1750$ ($\$ 125$ each): (one) 8-channel amplifier chassis with full 8 channels of electronics (priced above and on page 382), (one) 8 -channel amplifier chassis with 6 channels only of electronics and 658.1400 Cabinet (see optional 6-channel system above).

Eighteen-channel systems include: Sanborn 4518A-01A 18. Galvanometer Block Recorder, \$3300; (18) Sanborn 9B. 1 A Galvanometers, $\$ 2250$ ($\$ 125$ each) ; (three) 8-channel amplifier chassis each with 6 channels only of electronics (see prices above); and 658.2400 Upright Cabinet, $\$ 600$.

3907A, 3914A, $3917 \mathrm{~A}, 3924 \mathrm{~A}$ INSTRUMENTATION MAGNETIC TAPE RECORDERS

Accurate, low-cost standard and extended bandwidth data recording

Advantages:

50 to $100 \mathrm{kc}, 50$ to 250 kc direct bandwidths 0 to $10 \mathrm{kc}, 0$ to 20 kc FM bandwidths Six pushbutton speeds, $17 / 8$ to 60 ips , no capstan changes
40 db or better signal-to-noise ratios 0.2% flutter, 0 to 200 cps at 30 and 60 ips IRIG coropatibility

Uses:

Industcial: telemetry; fight, jet and missile engine, scientific laboratory tests; vibration studies, research; "back-up" or prime monitors in large process and test installations
Medical: physiological, biological research; instruction

Standard bandwidth 3907A, 3914A

Sanborn 3907A, 3914A 7 and 14-channel magnetic tape recorders are excellent, accurate, low-cost systems for both industrial and medical applications. Complex recording requirements, of IRIG telemetry and neuro-physiology can be handled easily with either system. Both systems are identical except for channel capacity. Seven-channel 3907A has a 7 -track head assembly, uses $1 / 2^{\prime \prime}$ wide tape and 7 channels of record/reproduce electronics (FM, Direct, or Pulse modes), and for larger system requirements, the 3914 A has a 14 -track head assembly, uses 1 " tape and two 7-channel racks of record/reproduce electronics.

Frequency response at 60 jps is 100 cps to 100 kc , Direct roode; 0 to $10 \mathrm{kc}, \mathrm{FM}$ mode. Their wide speed range $17 / 8$, $33 / 4,71 / 2,15,30$ and 60 ips is particularly useful when time base expansion or contraction is needed, as it often is, for data analysis.

Low-flutter tape transport

The superior performance of these tape recorders is largely due to the unique tape transport that is rugged yet simple in design. They compete in basic characteristics (flutter, s/n ratio, etc.) with the better servo-controlled systems. The transport incorporates the most advanced, simple, direci damping techniqृues known to minimize flutter, providing as low as $0.2 \% \mathrm{p}-\mathrm{p}$ futter over 0 to 200 cps bandwidth at 30 and 60 ips. The heads also provide extremely low cross-talk levels, which is highly desirable when Direct and FM channels are mixed on the same head stack, and the high output results in excellent Direct record signal-to-noise ratios. All models, except Option 3, have an additional edge track for voice commentaries, or pulsed or timecoded data. The tape guide systern will accept any standard recording tape on $101 / 2^{\prime \prime}$ reels. Other important elements of this carefully designed transport are a built-in footage counter accurate to 99.95%; a very simple snap-on reel holder mechanism, and single-side drive provides for

NEW

3907A Standard Bandwhth Recorder

simple tape threading. All speeds selected electrically by front-panel pushbuttons, which apply voltage directly to the proper winding of one of thee dual-winding drive motors, and the same capstan and idler serve all tape speeds.

Interchangeable electronics

Three modes of operation make $3907 \mathrm{~A}, 3914 \mathrm{~A}$ very versatile and flexible recording instruments. Interchangeable FM, Direct and Pulse record/reproduce inserts, with all solid-state electronics, plug into the insert rack and transfer chassis below the transport on the front panel (two racks are used in the 14 -channel 3914 A). The electronics can be all alike or mixed as required. Frequency compensation for any of the six speeds is available through small plag-in circuits that attach to the FM and Direct reproduce electronics in the inserts ... frequency compensation is not required with Pulse record/reproduce inserts. (The individual reproduce preamplification for each channel is provided through a preamplifier card near the head assembly.)

Time scale expansion/reduction

In addition to their ability to cover accurately a broad range of frequency response requirements, 3900 recorders'
wide speed range can be used to increase or decrease the record/reproduce time scale to a maximum of $32: 1$ to make data analysis more convenient. For instance: a 10 cps signal recorded at $17 / 8$ ips would appear as 320 cps played back at 60 ips increasing the scanning rate 32 times. Conversely, a 320 cps signal recorded at 60 ips could be played back as a 10 cps signal at $17 / 8 \mathrm{ips}$ into any Sanborn heated stylus recorder for a permanent record and immediate analysis (see pages $364 \cdot 379$). Fourreen channels of Direct mode taped data, as high in frequency as 100 kc , can be played back at reduced speeds and immediately read out by traces grearer than $4^{\prime \prime}$ P-p on a Sanborn 4500 optical, multichannel recorder (see pages 381-383) which has 0 to 5 kc frequency response 3 db down. Other readout methods such as Sanborn 5601A multi-channel numerical display which is capable of driving hp 562A Digital Recorder (printout) can be used directly with Sanborn magnetic tape recorders.

Other combinations of input and readout equipment are compatible with Sanborn 3900 Series Instrumentation Tape Recorders; for more data call your local hp sales office.

Optional operating accessories

The versatile 3907 A and 3914 A may be operated at remote locations through Sanborn 3907-11 A Remote Control Panel(s) that include all functions: stop, play, reverse, fast, forward and record; and Sanborn's 3907-06A Voice Channel Amplifier can be added to the cabinet when it is desireable to record commentaries at the same time that data is being recorded; edge tracks are standard in all transparts except Option 3 recorder. Single-ended signals can be connected directly to these recorders, or Sanborn Input Signal Coupler 3907-07A may be used to adapt push-pull output to the signal-ended input to the 3900 systems. Sanborn Tape Adapters ($3907-04 \mathrm{~A}$ for $1 / 2^{\prime \prime}$ tape, $3914-04 \mathrm{~A}$ for $1^{\prime \prime}$ tape) are capable of repetitive playback of tape loops up to 100 feet long.

A complete system

A complete system includes the multi-track tape trans. port, insert rack (s) and transfer chassis, preamplifier rack, power supply, 7 or 14 reproduce preamplifiers and the cabinet. Record/reproduce electronics can be purchased for FM, Direct or Pulse operation in any combination, with speed equalization plug-ins for the speeds at which you wish to record. In Pulse mode plugins are not required.

3917A/3924A Extended Bandwidth Recorders

New Sanborn 3917A, 3924A extended bandwidth 7. and 14-channel magnetic tape systems will record and store information with bandwidths to 250 kc maximum on Direct mode and to 20 kc max in FM mode. These broadband recorders permít the use of lower tape speeds for most data recording purposes or as much as 2.5 to 1 increase over narrow band systems in the quantity of data stored for the same operating speed. Sanborn $3900 \cdot 1$ 2B Direct and 3900-13B FM Record/Reproduce broadband amplifer inserts and compatible speed equalization plug-ins (see page 389) are required-the reproduce preamplifier in these recorders has an additional stage for the higher gain/bandpass product requirements.

Direct mode

When 3900 Recorders are used in Direct mode, data can be recorded and reproduced, from 50 to 100 kc using narrow band 3907A, 3914A Systems; from 50 to 250 ke using extended bandwidth 3917A, 3924A Systems. Printed circuit Direct amplifier inserts with combined Direct record/ reproduce circuits are available for all channels. The record section conditions the input signal to the record heads, applying signals proportional to the ac input signal to each track used on the tape. These signals can be played back through the reproduce section of the amplifier insert and displayed (on suitable equipment) as ac output voltages proportional to the input signal originally secorded. To provide ample gain and assure high signal-to-noise ratios each channel is supplied with a reproduce preamplifier card which precedes the reproduce circuit. Since bandwidth is primarily a function of tape velocity, that part of the re. produce amplifier having to do with bandwidth is made interchangeable for each speed by the use of speed equalization plug-ins (Sanborn 2000-1200-C2 to C7, for 3907A, 3914A; 3900-21A to -26A for 3917A, 3924A).

FM mode

FM record/reproduce amplifer inserts, 3900-13A, 390013 B , convert input signal voltages into frequencies which are proportional to the reference carrier frequency. As such, this mode is ideal for recording data at de levels, low ac

Direct record/reproduce

Figure 1.

frequencies and where accurate preservation of waveshape is desired. The $3907 \mathrm{~A}, 3914 \mathrm{~A}$ narrow band systern's band. pass is 0 to 10 kc and the extended bandwidth 3917 A , 3924 A bandpass extends from 0 to 20 kc . Full-scale output voltage in this mode produces $\pm 40 \%$ deviation in carrier frequency sufficient to give perfect reproduction of the input at the output (a linear frequency-voltage relation. ship). Signals fed to the record head are square waves of current, sufficient in amplitude to cause the tape to saturate on alternate half cycles so that the output appears as alternate positive and negative pulses. On playback the pulses are picked up by the reproduce head, preamplified and then amplified, clipped and demodulated in the reproduce section of the FM inserts. And, as in the Direct mode, that part of the reproduce amplifier having to do with bandwidth is an attaching plug-in to the amplifier insert. There is an FM mode frequency-compensating plugin for each of the six standard speeds which provides suitable modulation and demodulation frequency characteristics and output filtering to assure reproduction proportional to input.

FM record/reproduce

Figure 2.

Pulse mode

Standard 3907A, 3914A recorders also have electronics for recording rectangular pulses from digital output devices through Sanborn 2000-1400-1 Pulse Record/Reproduce Amplifier Inserts. Plugins are not required. Recording at one speed and playing back at another is possible; maximum rise time and minimum inpur pulse duration at the six rape speeds are tabulated in the specifications.

System features

The electronics in the 3900 Reconders can be conveniently and simply aligned, as well as interchanged between FM, and Direct or Pulse (3907A, 3914A only) modes of operation at the front panel. The insert rack and transfer chassis, located directiy below the tape transport, contains the power supply and accommodares seven printedcircuit card record/reproduce amplifier inserts with plug-in speed equalization circuits. An eighth position is reserved for recording systems (all but Option 3) that have provision for voice commentaries through an edge track on the heads. Direct record/reproduce amplifier inserts (with speed equalization plug-ins) are required for voice channels. The reproduce amplifers on the record/reproduce inserts for each channel are subdivided into three sections-preamplifier (fixed), main amplifier on record/reproduce inserts (interchangeable FM, Direct or Pulse), and plug-in bandpass circuits which equalize the system gain, (Direct) or frequency (FM) for all tape speeds. The preamplifiers provide high signal-to noise ratios.

The all solid-state power supply on the insert rack and rransfer chassis delivers regulated operating voltages to all of the electronics in the recorder. Supply voltages can be measured at test points on the front panel, and a built-in alignment meter and channel selector switch makes setting the center frequency and modulation sensitivity of each FM channel a simple procedure.

When it is desirable to cancel the small amount of noise introduced by transport futter in FM operation (see specification on page 388) channel 3 and/or 10 in 14 -channel systems can be reserved to record and play back an unmodulated carrier signal which helps to cancel noise in the output in any of the other channels. Placing the compensation switch on in the rear of the insert rack and transfer chassis applies a negative fed signal to the output of each of the other channels, effectively cancelling the flutter signal and increasing the signal-to-noise ratio over the bandwidth on all tape speeds.

Specifications, tape transport

(all models, unless otherwise specified)
The tape transport provides tape motion for all modes of operation and assures smooth, positive movement of the tape across the head assembly; operating controls are located on the front panel.
Numbsr of tracks: 7 (3907A, 3917A); 14 (3914A, 3924A). Track width: $0.05^{\prime \prime}$.
Track spacing: 0.07" center-to-center.
Mex. interchannel time displacement error: $\pm 1 \mu \mathrm{sec}$ at 60 ips, between two adjacent tracks on same head.
Tape speeds: $60,30,15,71 / 2,33 / 4,17 / 8$ inches per sec.
Tape width: $1 / 2^{\prime \prime}(3907 \mathrm{~A}, 3917 \mathrm{~A}) ; 1^{\prime \prime}(3914 \mathrm{~A}, 3924 \mathrm{~A})$.
Tape thickness: 1 mil.
Tape length: 3600 feet, 1 mil tape.
Reel slze: 101/2" phenolic hub type.
Stark time: approx. 4 sec max.
Stop time: 1 second max.
Rewind time: approx. 150 seconds (3600 feet).
Operating controls: Line (Power), Stop, Play, Reverse, Forward (fast), Record, are pushbutton relays; receptacle at the rear of the transport is provided for remote control operation.

Drive speed accuracy: $\pm 0.25 \%$ of nominal capstan speed with 60 cps line; speed is directly proportional to line frequency.

Speed	Bandwldth	Fluter (p-p)
60 ios	$\begin{aligned} & 010200 \mathrm{cps} \\ & 0 \text { to } 1.5 \mathrm{kc} \\ & 0 \text { to } 10 \mathrm{kc} \end{aligned}$	$\begin{aligned} & 0.2 \% \\ & 0.3 \% \\ & 06 \% \end{aligned}$
30 ips	$\begin{aligned} & 0 \text { to } 200 \mathrm{cps} \\ & 0 \text { 10 } 1.5 \mathrm{kc} \\ & 0 \text { to } 5 \mathrm{kc} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2 \% \\ & 0.5 \% \\ & 0.8 \% \end{aligned}$
15 ips	$\begin{aligned} & 0 \text { to } 200 \mathrm{cps} \\ & 0 \text { to } 1.5 \mathrm{Kc} \\ & 0 \text { to } 2.5 \mathrm{kc} \end{aligned}$	$\begin{aligned} & 0.25 \% \\ & 0.45 \% \\ & 0.6 \% \end{aligned}$
71/2 ips	$\begin{aligned} & 0 \text { to } 200 \mathrm{cps} \\ & 0 \text { to } 1.25 \mathrm{kc} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4 \% \\ & 0.65 \% \\ & \hline \end{aligned}$
31/4ips	$\begin{array}{r} 010200 \mathrm{cps} \\ 010625 \mathrm{cps} \\ \hline \end{array}$	$\begin{aligned} & 0.5 \% \\ & 0.8 \% \end{aligned}$
1/8195	$\begin{aligned} & 010200 \mathrm{cps} \\ & 0 \text { to } 132 \mathrm{cps} \end{aligned}$	$\begin{aligned} & 0.8 \% \\ & 1.2 \% \end{aligned}$

Specifications, 3907A, 3914A Direct Record/Reproduce mode

Record amplifler input: 20,000 ohms resistance, single-ended; 0.5 to 10 volts rms , adjustable.

Reproduce amplifer output: single-ended; 1 v rms to 2.1 v ems at $\pm 3 \mathrm{ma}, 100$-ohm max. source impedance; $d c$ level adjustable $\pm 1.5 \mathrm{v}$.
Third harmonic distortion: typical, 1% at $1 \mathrm{kc}, 60 \mathrm{ips}$.
Direct, standard bandwidth

$\begin{aligned} & \text { Taped } \\ & \text { theod } \\ & \hline \end{aligned}$	Eandwlath	Fraguency rauphty	$\begin{gathered} \text { 8/N natlo } \\ \text { milanman fmas* } \end{gathered}$
60 tps	$\begin{aligned} & 100-100,000 \mathrm{cps} \\ & 300-70,000 \mathrm{cos} \end{aligned}$	$\pm 3 \mathrm{~d}$	$\begin{aligned} & 40 \mathrm{db} \\ & 45 \mathrm{db} \end{aligned}$
30109	$\begin{array}{r} 100-50,000 \mathrm{cos} \\ 300-35,000 \mathrm{cps} \\ \hline \end{array}$	- 3 dh	$\begin{aligned} & 42 \mathrm{db} \\ & 47 \mathrm{db} \\ & \hline \end{aligned}$
15 ips	$\begin{array}{r} 50-25,009 \mathrm{cps} \\ 300-16,000 \mathrm{cps} \end{array}$	$\pm 3 \mathrm{db}$	$\begin{aligned} & 40 \mathrm{db} \\ & 47 \mathrm{db} \\ & \hline \end{aligned}$
71/2 ips	$\begin{array}{r} 50-12,000 \mathrm{cps} \\ 300-7,200 \mathrm{cps} \\ \hline \end{array}$	- 3 db	$\begin{aligned} & 40 \mathrm{db} \\ & 47 \mathrm{db} \end{aligned}$
$3 \% \mathrm{los}$	$\begin{array}{r} 50-5,250 \mathrm{cps} \\ 300-3,800 \mathrm{cps} \end{array}$	$\pm 3 \mathrm{db}$	$\begin{aligned} & 40 \mathrm{db} \\ & 47 \mathrm{db} \end{aligned}$
T/8 ips	$\begin{gathered} 50-3.125 \mathrm{cps} \\ 300-2.200 \mathrm{cps} \end{gathered}$	$\pm 3 \mathrm{db}$	$\begin{aligned} & 40 \mathrm{db} \\ & 45 \mathrm{db} \end{aligned}$

- Measured with bandpass fllter at outDut with an 18 db/actave rolloff.

FM Record/Reproduce mode

Record amplifler input: 20,000 ohms impedance, singleended; ± 2.5 volts de (nominal), adjustabie ± 1.2 to ± 3 volts dc.
Reproduce ampllter output: single-ended; ± 2.5 volts de (nominal) at ± 3 ma max. adjustable ± 1.2 to ± 5 volts de; 100 ohms max. source impedance; de position adjustable ± 2 volts dc.
Drift: $\pm 0.25 \%$ max. for $10^{\circ} \mathrm{C}$ change, 15° to $35^{\circ} \mathrm{C}$; $\pm 0.25 \%$ max. for 10 volt change in line volrage.

FM, standard bandwidth

$\begin{aligned} & \text { Tapa } \\ & \text { uncecd } \end{aligned}$	Eacdwidth	Fraquanty response	FM certar carrlar اтачишлоу (nsminal)	8/N rado*		Tosal huramatio datortion
				Withert huttat come	$\begin{gathered} \text { Whh } \\ \text { wither } \\ \text { comp.** } \end{gathered}$	
60 lps	0-10 kc	+0, -1 db	54 hc	45 db	48 db	. 27
30 lps	$0-5 \mathrm{kc}$	+0, -1 db	27 kc	45 db	49 db	1.2\%
15 ips	$0-2500 \mathrm{cos}$	+0, -1 db	13.5 kc	450	49 db	1.2\%
74. ${ }^{\text {ps }}$	0-1250 cps	+a, -1 db	5.75 kc	42 db	47 db	1.5\%
36. 108	0-625 cps	-0, -1 d6	3.38 kc	42 db	47 db	1.5\%
1/2ips	0-312 cos	+0, -1 do	1.69 kc	40 db	4180	1.5\%

- Over bandwidth, min. rms at zero trequency deviation measured with low-pass
filter at output with an 18 ab/octave rollotf.
** Channel 3 and/or 10 provida fiutter compensators.
Specifications, 3917A, 3924A

Direct Record/Reproduce mode

Record ampliffer Input: 20,000 ohm resistance, single-ended;
0.5 to 10 volts mms , adjustable.

Record ampifier output: single-ended; 1 volt rms to 2.1 volts ems at $\pm 3 \mathrm{ma} ; 100$-ohms max. source impedance; dc level adjustable ± 1.5 volts.
Third harmonic distortion: typical, 1% at $500 \mathrm{cps}, 30 \mathrm{ips}$.
Direct, extended bandwidth

Tapd spepd	Handwidth	Frequency rasppas	s/ rallo fleared*	Mintaum rima unflterad
60 ids	$\begin{aligned} & 300-250 \mathrm{kc} \\ & 300-175 \mathrm{kc} \end{aligned}$	$\pm 30 b$	$\begin{aligned} & 35 \mathrm{db} \\ & 36 \mathrm{db} \end{aligned}$	28 db
30 7ps	$\begin{aligned} & 750-125 \mathrm{kc} \\ & 300-88 \mathrm{kc} \end{aligned}$	$\pm 3 \mathrm{db}$	$\begin{aligned} & 33 \mathrm{db} \\ & 36 \mathrm{db} \end{aligned}$	28 db
15 ips	$\begin{aligned} & 100-62.5 \mathrm{kc} \\ & 300-40 \mathrm{kc} \end{aligned}$	- 306	$\begin{aligned} & 32 \mathrm{db} \\ & 38 \mathrm{db} \end{aligned}$	27 db
7\%\% 108	$\begin{aligned} & 50-31.25 \mathrm{kc} \\ & 300-22 \mathrm{kc} \end{aligned}$	$=3 \mathrm{db}$	$\begin{aligned} & 30 \mathrm{db} \\ & 39 \mathrm{db} \end{aligned}$	26 db
31/2 jps	$\begin{gathered} 50-15.5 \mathrm{kc} \\ 300-11 \mathrm{kc} \end{gathered}$	± 0 do	$\begin{aligned} & 30 \mathrm{dt} \\ & 39 \mathrm{dt} \end{aligned}$	26 db
1/10 [1	$\begin{array}{r} 50-7 k \varepsilon \\ 300-5 \mathrm{kc} \end{array}$	$\pm 3 \mathrm{db}$	$\begin{aligned} & 30 \mathrm{db} \\ & 39 \mathrm{db} \end{aligned}$	25 db

*Measured with bandpass filter at output with an is do/ocfave rolloff.

FM Record/Reproduce mode

Record amplifier input: 20,000 ohms impedance, singleended; ± 2.5 volts dc (nominal), adjustable ± 1.2 to ± 3 voles dc.
Reproduce amplifler output: single-ended; ± 2.5 volts dc (nominal) at ± 3 ma max., adjustable ± 1.2 to 5 volts dc; 100 -ohms max, source impedance; dc position adjustable ± 2 volts dc for positioning optical or directwriting galvanometers.
Drlft $\pm 0.25 \%$ max. for $10^{\circ} \mathrm{C}$ change, 15° to $35^{\circ} \mathrm{C}$; $\pm 0.25 \%$ max. for 10 volt change in line voltage.
FM, extended bandwidth

Trpe 19004	Benduldth	Fyequentory raspores	FM entrof amirtor trequalay (nombinl)	$\begin{aligned} & \text { S/N rallo* } \\ & \text { withour } \\ & \text { niffer } \\ & \text { woimp. } \\ & \hline \end{aligned}$	Folal barmanle distortis.
60 ips	0-20 kc	+0, -100	108 kc	45 db	1.5\%
30 lps	$0-10 \mathrm{kc}$	$+0 .-1 \mathrm{db}$	54 kc	45 db	1.5\%
15 los	0-5 kc	+0. -10	27 kc	45 db	2.5\%
71/2 lps	0-2500 cds	+ $0^{2}-1 \mathrm{db}$	13.5 kc	14 db	L.5\%
31/2 lps	$0-1250 \mathrm{chs}$	+0. -1 db	6.75 kc	42 db	1.5%
1吅 lps	$0-625 \mathrm{cps}$	$+0,-180$	3.38 kc	40 db	1.8\%

* Over bandwidih, min. rms at zero feaquency deviation measured with low.pass fliter at output with an $28 \mathrm{do} / 0 \mathrm{ctave}$ rollolf.

Specifications, 3907A, 3914A

Pulse Record/Reproduce mode

Record ampliffer lnput: rectangular, zero-based negativegoing pulse, -7.5 to -30 volts final amplitude; rise and fall times are not important except when they inRuence timing of recorded signal; no upper limit on pulse duration.
Reproduce amplifler output: rectangular zero-based negativegoing pulse approximately -11.8 volts final amplitude across open circuit; output signal amplitudes, and rise and fall times are not related to input signals except as noted above; single-ended source resistance 1000 ohms max., may be loaded i.e., approximately 6 volts output with 1000 -ohm load.
Pulse, standard bandwidths

Peowerd and Draybed			Acearacy of purn raproduotion (1500)	Tye. mith. haput gule for 1 ITy outpy (1020)
60 ips	4	50	± 5	10
30 ips	4	100	+ 10	15
15 ips	5	260	-20	25
71/7 1ps	10	800	40	35
31/4. lps	20	800	$\cdots 80$	50
13/8 lps	40	1600	$=100$	70

Specifications, all models

Power: 115 volts $\pm 10 \%, 60 \mathrm{cps} \pm 2 \%$; approximately 500 watts.

Dimenslons: in mobile cabinet: $573 / 4^{\prime \prime}$ high, $22^{\prime \prime}$ wide, $26^{\prime \prime}$ deep ($1368 \times 559 \times 660 \mathrm{~mm}$); rack mount Option 1: 24.15/32" high, $19^{\prime \prime}$ wide, $14^{\prime \prime}$ deep ($622 \times 483 \times 356$ mm) transport; $7^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $137 / 8^{\prime \prime}$ deep (178 x $483 \times 352 \mathrm{~mm}$) insert rack and reansfer chassis; portable cabinets Option 2: $25^{\prime \prime}$ high, 195/8" wide, 153/4" deep ($638 \times 500 \times 400 \mathrm{~mm}$) transport; $7-9 / 16^{\prime \prime} \mathrm{high}, 195 / 8^{\prime \prime}$ wide, $141 / 2^{\prime \prime}$ deep ($192 \times 500 \times 368 \mathrm{~mm}$) insert rack and transfer chassis; Sanborn 3907-04A, 3914-04A, 1/2" and $1^{\prime \prime}$ Tape Loop Adapters fit on left side of cabinet.

Welght (approx.)

Typical for 3907A, 3917A: net $310 \mathrm{lbs}(140,7 \mathrm{~kg})$, shipping $500 \mathrm{lbs}(227 \mathrm{~kg})$; rack mount Option 1: net 90 lbs ($31,8 \mathrm{~kg}$), shipping $95 \mathrm{lbs}(43,1 \mathrm{~kg}$) transport; net $30 \mathrm{lbs}(13,6 \mathrm{~kg})$, shipping $35 \mathrm{lbs}(15,9 \mathrm{~kg})$; insert rack and transfer chassis; portable carrying cases Option 2: net $80 \mathrm{lbs}(36,3 \mathrm{~kg})$, shipping $100 \mathrm{lbs}(45,4 \mathrm{~kg})$ transport; net $35 \mathrm{lbs}(15,9 \mathrm{~kg}$), shipping $40 \mathrm{lbs}(18,2$ kg) insert rack and transfer chassis.

Typical for 3914A, 3924A: net $340 \mathrm{lbs}(154,3 \mathrm{~kg}$), shipping $575 \mathrm{lbs}(261,1 \mathrm{~kg})$; rack mount Option 1 : net $75 \mathrm{lbs}(34,2 \mathrm{~kg})$, shipping $100 \mathrm{lbs}(45,4 \mathrm{~kg})$ transport; net $60 \mathrm{lbs}(27,2 \mathrm{~kg})$, shipping $70 \mathrm{lbs}(31,8 \mathrm{~kg}$) insert racks and transfer chassis; portable carrying cases Option 2: net $85 \mathrm{lbs}(38,6 \mathrm{~kg})$, shipping $105 \mathrm{lbs}(47,8$ kg) transport; net $70 \mathrm{lbs}(31,8 \mathrm{~kg})$, shipping 80 lbs ($36,4 \mathrm{~kg}$) insert racks and transfer chassis.

Optional accessory equlpment: 3907-07A Input Signal Coupler, less input cards, $\$ 395$ (adapts equipment with push-pull output to single-ended input of 3900); 390711 A Remote Control Panel (less cable), $\$ 100 ; 3907-06$ A Voice Channel Amplifier (includes microphone), $\$ 250$; can be used on any channel with Option 3 Direct mode record/reproduce inserts and proper speed equalization plug-ins, or with Options 1 and 2 which have edge tracks in heads for voice commentaries but which require one 3900-10A Reproduce Preamplifier, $\$ 40$, one $3900-12 \mathrm{~A}$ Direct Record/Reproduce Insert, $\$ 155$ or $3900-12 \mathrm{~B}$, \$170; and one 3907.04 A Direct Equalization Plug-in (see prices below) for the eighth channel, $\$ 600 ; 3914$ 04 A Tape Loop Adapters for repetitive playback up to 100 feet of $1 / 2^{\prime \prime}$ and $1^{\prime \prime}$ tape respectively, $\$ 750$.

Accessorles

Heavy duty Instrumentation tape: 37T-4, $1 / 2$ " (for 3907A) 1 mil, 3600^{\prime} on phenolic hub reels; 1 to $9, \$ 37.75$ ea., 10 to $49, \$ 35.80$ ea., 50 or over, $\$ 33.80$ ea.; 37 T .9 , $1^{\prime \prime}$ (for 3914 A) $1 \mathrm{mil}, 3600^{\circ}$ on phenolic hub reels; I to $9, \$ 68.75$ ea., 10 to $49, \$ 65.30$ ea., 50 or over, $\$ 61.90$ ea.

High performance Instrumentation tape: (for 3917A and 3924A only) $37 \mathrm{~T}-17,1 / 2^{\prime \prime} 1 \mathrm{mil} 3600^{\prime}$ on phenolic hub reels; 1 to $9, \$ 50.60$ ea., 10 to $49, \$ 49.35$ ea., 50 or over, $\$ 48.18$ ea.; $37 \mathrm{~T}-16,1^{\prime \prime} 1 \mathrm{mil} 3600^{\prime}$ on phenolic
hub reels; 1 to 9, $\$ 91.30$ ea., 10 to $49, \$ 89$ ea., 50 or over, $\$ 86.80$ ea.

Empty reels: 37A-4, $101 / 2^{1 \prime}$ diam, phenolic hub for $1 / 2^{\prime \prime}$ tape, $\$ 6$ ea.; $37 T-15,101 / 2^{\prime \prime}$ diam, phenolic hub for $1^{\prime \prime}$ tape, $\$ 7.50$ ea.

Optional accessorles: $37 \mathrm{~T}-7$ splicing tape, $1 / 2$.' Mylar, 100 + feet, \$1.55; 48A-13 bulk eraser, Cinema Type 9205A, \$100; 48A-14, head demagnetizer, Robins Type HD-6. $\$ 11.50$; 48A-15, $1 / 2$ ' tape splicer, Robins Type TS-500, \$75; 01060-69010 Cabinet Dust Cover, gabardine, $\$ 16$.

Prices: Note 1: Sanbom 3907A (less 7-channels of record/ reproduce amplifer inserts and associated equalization plug-ins), \$6185; Sanborn 3917A (less 7-channels of record/reproduce amplifer inserts and associated equalization plug-ins), \$6935; Sanbom 3914A (less amplifier inserts and plug-ins), \$8415; Sanborn 3924A (less amplifier inserts and plug-ins), \$9915.

Option 1: same as above, less cabinet but including all hacdware for $19^{\prime \prime}$ rack mounting: 3907A Option 1, \$5680; 3914A Option 1, \$7910; 3917A Option 1, \$6430; 3924A Option 1, \$9410.

Optlon 2: same as above but mounted in portable cabinets: 3907A Option 2, \$6185; 3914A Option 2, \$8415; 3917A Option 2, $\$ 6935$; 3924A Option 2, $\$ 9915$.

Option 3: same as above but less monitoring track: deduct $\$ 135$ from standard and optional models prices above.

Electronics standard bandwidth recorders: Sanborn 390012A (Direct record/reproduce insert less plug-in), $\$ 155$ ea; plug-ins: Sanborn 2000-1200-C2 for $17 / 8$ ips, $\$ 35$; 2000-1200-C3 for $33 / 4$ ips, $\$ 30 ; 2000 \cdot 1200-\mathrm{C} 4$ for $72 / 2$ ips, $\$ 30$; 2000-1200-C5 for 15 ips , $\$ 30$; 2000-1200-C6 for $30 \mathrm{ips}, \$ 30 ; 2000-1200-\mathrm{C} 7$ for $60 \mathrm{ips}, \$ 30$; Sanborn 3900-13A (FM record/reproduce insert less plug-in), $\$ 180$ ea; plug.ins: Sanborn 2000-1300-C2 for $17 / 8$ ips, $\$ 60 ; 2000-1300-\mathrm{C} 3$ for $33 / 4 \mathrm{ips}, \$ 40 ; 2000-1300-\mathrm{C} 4$ for $71 / 2 \mathrm{ips}, \$ 40 ; 2000-1300-\mathrm{Cs}$ for $15 \mathrm{ips}, \$ 40: 2000 \cdot 1300$ C6 for 30 ips , 840 ; 2000-1300-C7 for 60 jps , $\$ 40$; Sanborn 2000-1400-1 (Pulse record/reproduce insert no plug-ins required), \$60 ea.

Electronics extended bandwidth recorders: Sanborn 3900 12B (Direct record/reproduce insert less plug-in), \$170 ea; plug-ins: Sanborn 3900-21A for $17 / 8$ ips; $\$ 35 ; 3900$ 22 A for $33 / 4 \mathrm{ips}, \$ 30 ; 3900-23$ A for $71 / 2$ ips, $\$ 30 ; 3900$ 24 A for $15 \mathrm{ips}, \$ 30 ; 3900-25 \mathrm{~A}$ for $30 \mathrm{ips}, \$ 30 ; 3900$ 26A for 60 ips , \$30; Sanborn 3900-13B (FM record/ reproduce insert less plug-in), $\$ 190 \mathrm{ea}$; plug-ins: Sanborn 2000-1300-C3 for 17/8 ips, $\$ 40$; 2000-1300-C4 for $33 / 4$ ips, $\$ 40 ; 2000-1300-\mathrm{Cs}$ for $71 / 2 \mathrm{ips}, \$ 40 ; 2000$ -$1300-\mathrm{C}$ for $15 \mathrm{ips}, \$ 40 ; 2000-1300 \cdot \mathrm{C} 7$ for $30 \mathrm{ips}, \$ 40$; 2000-1300-CI 1 for $60 \mathrm{ips}, \$ 40$.

Note 1: add price of inserts and plug-ins times the number of channels and speeds you require to the basic assembly price above for complete system cost.

360, 361 EVENT RECORDING SYSTEMS

Record wide range of two-state events on $30,60,90$ or 120 channels

Sanborn 360, 361 Recording Systems will monitor the on/off status of multiple events simulianeously, providing iastantencous, permanent, sharp traces on electro-sensitive paper. Pulsed writing provides constant trace density over the full paper speed range, re. duces power consumption and exiends the life of the writing styli. To serve a wide range of input signal modes. levels and applications, Sanborn offers 7 interchangeable 10 -channe) writiag conuols, each of which isolates the input signal from chassis.

Model 361 is a compact 30 -channel recorder with builc-in paper take up and front-panel acress to plug in three plug-in writing control cards. Model 360 can monitor a maximum of 120 channels of data, butalso is offered with one or two 30 -chennel modules removed for 60 - or 90 -chanacl applications. Up to 12 writing control cards fit into optional companion power supply and card rack, Model 360 500.1. Model 360 can be used without writing control or associated power supply by simple contact closure.

Specificatlons

Paper apeeds: (selected by pushbutions) 360:0.5, 1, 2, 5, 10, 20, $50,100,200 \mathrm{~mm} / \mathrm{sec}$; (optional 360.1 Recorder has 9 additional $\mathrm{mm} /$ minute speeds) ; $361: 1,5,20,100 \mathrm{~mm} / \mathrm{sec}$ (other combina. tions on special order) ; provision for optional remote operation in all models.
Paper capacity: 360: 120 -channel roll $16^{\prime \prime}\left(403 \mathrm{~mm}\right.$) wide, 450° (117 m) long; 361: 30-channel roll $4^{\prime \prime}$ (104 mm) wide, 275' (69.9 m) long; footage indicator included in 360 .
Styll (both models): individually replaceable or reversible, mounted in plug-in module holdiag 30 styli.
Signal input cagabllity: see rable.
Tlming (optional): $360,361: 1$ sec timer an be ordered or added in held; time marks can be made on one or more channels; $360-1$ accommodates optional 1 sec and 1 min timers.
Tlme resolution: can respond to events as brief as 1.3 msec , with all Sanborn writing controls, at max. chart speed.
Tlme duration accuracy: combined error. chart drive and paper, does not exceed 1%; all other errors, $\pm 0.5 \mathrm{~mm}$ combined.
Simultaneous events: error typically less than 0.25 mm ; max. between any two channels 1.25 mm .
Operating environment: 0 to $40^{\circ} \mathrm{C}$; 0 to $55^{\circ} \mathrm{C}$ when 360 is used with only 360-3100 writing control cards.
RF shlelding: mect MIL-I-26600/2 Class $1 B$ on conducted and radisted interference.
Power. $360,360-1$: 105 to 125 volts, 60 cps, 3.1 amp (230/115 volts. 50 cps special order); power supply for writing controls

(360-500-1): 103 to 127 volts, 50 to $400 \mathrm{cps}, 150$ watts (230 to 11s volts ac special order) ; 361: 103 to 127 volts, 60 cps (230 to 115 volts, 50 (ps special order).
Dlmenslons: rack mounts: $360,360-1$ recorders: $14^{\prime \prime}$ high. $19^{\prime \prime}$ wide, 21^{μ} deep $(356 \times 483 \times 533 \mathrm{~mm}) ; 360-900-1$ writing control power supply and rack module (for $360,360-1$): $7^{\prime \prime}$ bigh, 19" wide, $17-13 / 16^{\prime \prime}$ deep ($178 \times 483 \times 453 \mathrm{~mm}$) ; 361 recorder: $83 / 4^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $141 / 2^{\prime \prime}$ deep ($222 \times 483 \times 368 \mathrm{~mm}$) ; portables: $360: 153 / 4^{\prime \prime}$ high: $19^{\prime \prime}$ wide, $21^{\prime \prime}$ deep ($400 \times 483 \times 533$ mm) : $360.500 \cdot 1: 7-9 / 16^{\prime \prime}$ high, $22^{\prime \prime}$ wide, $211 / 2^{\prime \prime}$ deep ($193 x$ $559 \times 456 \mathrm{~mm}$) ; $361: 93 / 4^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $151 / 2^{\prime \prime}$ deep ($248 \times$ $483 \times 394 \mathrm{~mm})$.
Welght (approx.): 360, 360-1: net $130 \mathrm{lbs}(98,5 \mathrm{~kg}$), shipping $175 \mathrm{lbs}(78,8 \mathrm{~kg}) ; 360-500-1$: aet $42 \mathrm{lbs}(18,9 \mathrm{~kg})$, shipping 60 ibs (27.0 kg) ; 361 ; net $50 \mathrm{lbs}(22,5 \mathrm{~kg}$), shipping 60 lbs (27 kg) (rack mount) : portable cases, accessory weights on request.
Accessorles avallable: $3 \mathrm{E}-230$-chanocl, 275 ft roli electro-sensirive paper, $\$ 12.20$; $3 E-1$ 120-channel, 450 ft , roll, $\$ 45$; 412.2 electric writing styli, $\$ 4.50$ each. $360-1100$ Upright Cabinet for 360, 360-1, $\$ 350$; carrying cases: $360-1400, \$ 200$ ($360,360.1$ recorder) : $858.1400, \$ 150$ (pow supply and rack module, 360 . 500-1) : $361-1400, \$ 125$ (361 recorder) ; regulator card for 360 , 360-1. 361 power supplies for every three 360-2200, 2500 writing control cards, $\$ 125$; timers, theeshold calibrator, speed kits quored on request.
Prices: Sanbom 360, \$3900; Sanborn 360.1, \$4150; Sanborn $360-$ 500.1 (por supply and rack module for $360,360-1$), $\$ 950$; San. born 361, \$1575; writing control cards as required, see prices in chart.

Banborn medel	Pomhles prot	$\operatorname{mon}_{20-2700^{2}}$	$512-2000$	$\operatorname{lom}_{x+10}$	$\text { Flation } \operatorname{lan}^{2}$		
Max/min. Input signels to resord events	acor oden ckl: $+\infty$ and -15 y dc max.	tract: -6 v de: no tract: more (+) than -Ivocor odanckt.; -40 and $+15 v$ d́ msx.	trace (t Inputs): on even channels when ingut is open or Da- when lnout is above T6 v dc; trace (inguts): on odo chan- nela when ingut is Open or more ($\dot{+}$) on oven chennels with - 6 udger more	--	Traca: leminal B musibe (+) with resoect to a (+3 to -15 to +1 voc wilh respect to A	traces (mods) : voltage smoula be more (1,100 (+ modo):voltage should be more + than thrashold: 100 mu (typ.) chenge or off	(lace: torm)nal $A(+$ wilh resobet to 8 : 50 mu (tyo.) diforentisi required tor race or no traca when either terminal to signal gnd is wilhin $-25 \mathrm{~V}$
linput resistance	$15 \mathrm{~K}($ nom. $)$ to aldnal ground	15 K (nom.) to slanal ground	8 K (nam.) to signal ground	---	27 K (nom.)	40 K (nom.) to signal ground	40 K (nam.) to signal ground
Notos:	seifrtasting switch Dermils "rark" ceat on instaliation	self-terting switch cormits "miatr" lest on instaliation	adjacent channols monltor slagle event, 1 chencel shoula al. ways show trace: two traces or no trace shows talmure: mitich for (+) (-) inoul self-lesting	IO-channei jumpar closures to any group of 10 siyll: max. ex(ermal capacitanco from each stylus load 10 gid. not > 1500 ot at lis yac	provides each chasnnol with true flosting two-wire laput lsolated from chassis: Dwi supply not 36. 500.1	foalcaces when channel voluge is obovit or belaw gra. itl Ihrashold (adj. $=20 \mathrm{dc} \mathrm{y}_{\mathrm{c}}=100 \mathrm{mv}$ (may.) drift tor 25 to $60^{\circ} \mathrm{C}$ change insloe rack	asch channal has two input terminals
Price	\$225	5225	\$125	\$25	1225	\$575	\$575

FUNCTION INDEX

Accessories:
Cable 264
Electronic Counter $60,61,63,64$
Microwave 174
Modular Enclosure 13,14
Oscilloscope 290, 300, 304, 305
Recorder 353.356, 363
Spectum Analyzer 216
Signal Generator $181,183,212,213,263,264$
Volemerer 138.140
AC/DC Range Unit 150
AC Voltmeters 118.130
AC-to-DC Converter 153, 355
AC/Ohms to DC Converter 148
Adapters:
BNC-ro-Banana 305
BNC-to-Binding Post 263
BNC-to-Type N 212
Oscilloscope, Vertical Test 290
Rack (for small modular instruments) 14
Rack (for Harrison Power Supplies) $316,318,329$
Roll Chart 363
Waveguide-ro-Coaxial 174, 240
Waveguide-to-Waveguide 174
X-Y to Strip-Chart Recordes 363
Adjustable Short, Waveguide 245
Aircraft Electronics Test Equipment 204.207
Ammeters 128,134.136
Amplifers
$A C$ Solid State 28, 30
Data 32, 33, 35
Differential 32, 35, 280, 281
Direct Writing Recorder 374-382
Distributed, Wideband 31
DC 29, 32
Fast-Pulse 31
FIFO 32
Galvanometer Driver 382
General-Purpose, Stabilized 28, 29, 30
Guarded Data 148
Guarded Differentia! 281
Narrow band DC 32
Operational 34
Oscilloscope Plug-in 283, 285-287, 291, 298, 304
Power 28, 184
Technical Information 26, 27
Transducer 20
Traveling-Wave Tube 202
Video 50.65
Wideband 31, 32, 35
Analog Measuring Equipment, Technical Information 114.117
Analyzers, Distortion and Waveform: Instruments 37.40
Technical Information 36
Antenna, Loop 103
ATC Transponder Test Set 206, 207
Atomic Frequency Standard 98,99
Artenuators:
Fixed, Waveguide 226
Isolating 212
Oscilloscope Input 290
Precision 263
Variable, Coaxial 227
Variable, Waveguide 225, 226
Audio Frequency Analyzers:Distortion39, 40
Technical information 36
Wave 37, 38
Audio Frequency Oscillators 252.255
Audio Frequency Signal Generators:High Power Audio Tests260
High Quality, High Accuracy Tests 261
Technical Information 248.251
Bandpass Filters 213
Blood Analyzer 17
Bolometer Mounts 233
Bridge, Refection Coefficieat 236
Bridge, Universal 16
Bridge, VHF 112
Cabinets, Modular 13, 14, 87
Cables, Test Leads 212, 264, 305
Calibrators:
Peak Power 223
Power Meter 220, 221
Volrmeter 140
Calorimetric Power Meter 224
Cameras. Oscilloscope 301-303
Capacitive Voltage Dividers 139
Cardiar Outpur Compurer 19
Carriages, Universal Probe 240, 242, 243
Cesium Beam Frequency Standard 98
Character Printer 88. 356
Chart Advance, X-Y Recorders 350
Clamps, Waveguide 174
Clip-on DC Milliammeters 136
Clocks, Digital 79, 83. 104
Clocks, Frequency Dividers 104
Coaxial:
Adapters, Waveguide $111,174,240$
Altenuators 227
Connectors 240
Detector Mounts 240, 242, 243
Directional Couplers 227, 236-239, 241
Directional Detectors 238
Frequency Meters 246
Low. Pass Filters 213
Slide-Screw Tuner 244
Slotted Sections 243
Thermistor Mount 240
Terminations 240, 245
Combining Cases 14
Communications Systems Test Set 127
Comparator, VLF 102, 103
Computer, Cardiac Output 19
Connectors, Coaxial Precision 240Converter:
AC-to-DC 153,355
$A C / O$ hens to $D C$ 148
Digital-to-Analog 79
Frequency $16,49,53,65,211$
Logarithmic 354
Microwave Frequency 53
Peak Voltage to Logarithmic 354
Voltage to Frequency 158
Cooling Kits 13, 14
Counters, Electronic 46, 47, 52, 54.62, 64-68
Couplers, Directional 227, 236-239, 241
Coupling Transformer 109
Cross-Guide Directional Coupler 237
Crystal Detectors 235, 240
Current Probe 136, 140, 304
Data Handling Systems:
Equipment 82.88, 352
Technical Information 81
DC Ammeters 128,136
DC Amplifiers 29, 32
DC Multi-Function Unit 150
DC Null Meter 132, 133
DC Standard 154
DC Voltage Divider 138, 139
DC Voltmeters 128-130, 132-135, 137
Delay Generators, Digital 340
Delay Generators, Oscilloscope Sweep 293
Delay Line 300
Detector
Crystal 235, 240
Directional 238
Microwave 242, 243
Null 356
Scintillation 73, 74
VHF 112
Detector Mounts:
Coaxial 242, 243
Waveguide 233
Differential Amplifiers 32, 35, 280
Differential Voltmeters 154.157
Digital:
Clocks 79, 83, 104
Converter 79
Data Handling Systems 82-88
Delay Generator 340
Printer 75.77
Recorders 75.77
Scanner 78
Thermometer 24
Voltmeters 11, 142-153
Diodes 22, 23
Direct Writing Systems 364-380
Disectional Couplers 227, 236-239, 241
Directional Detectors 238
Display Scanner, Oscilloscope 283, 289
Distortion Analyzers:
Instruments 37.40
Technical Information 36
Distributed Amplifers 31
Dividers, Frequency 104
Doubler Sets, Frequency 198
Dual-Beam Oscilloscope 274, 275
Dual Crowbar Protector 330
Dual-Pulse Unit 340
Dual.Trace Amplifiers $280,281,285,287,297,298$
Dual-Trace Oscilloscope 271
Dual-Trigger Unit 340
E.H Tuner 244
Electrocardiograph 17
Electronic Counters $46,47,52,54-62,64-68$
Electronic Tachometer 69
Enclosures, Modular 13,14
Event Recorders 390
Extender, Oscilloscope Plug.In 290
Extension Slides 14
Fast-Pulse Amplifiers 31
FIFO Amplifiers 32
Filler Panels 13, 14
Filters, Low. Pass 213
Fixed Waveguide Attenuators 226
FM-AM Sigoal Generator 208
FM Stereo Modulator 210
Force Transducers 20, 21
Frequency:
Converters 36, 49, 53, 65, 211
Counters $46,47,54-62,64$
Dividers and Clocks 104
Doubler Sets 198
Meters 69, 246
Response Test Set 140
Standards 98-101
Synthesizer 92.97
Technical loformation 42.45, 90-91
Function Generator 256-259
Gas Pressure Transducer 20, 21
G-band Instrumentation 166
Generators:
Audio Signal 260-263
Digital Delay 340
Pulse 339.339
SHF 194,196
Signal, FM-AM 208, 210
Signal, High Frequency 180, 181
Signal, Low Frequency 260
Spectrum 94
Square Wave 334
Sweep Delay 283, 288, 293
Tachometer 69
Telemetering 209
UHF 187-189, 193
vHf 182, 183
Harmonic Wave Analyzer 37, 38
H -band Instrumentation 168
High Frequency Wave Analyzers 38
High-Power Waveguide Terminations 174
Hot Carrier Diodes 23
ILS Receiver Test Set 204, 205
Impedance Measurements, Technical Information 105, 230-231
Impedance Bridge 15
Impedance Meter $106,107,111,112$
Indicators, Standing Wave 232, 233
Inductance Meters 106, 108, 211
Inductors, Reference 109, 110
Industrial Electronic Counters 68
Infrared Sources 23
Integrating Digital Voltmeter 148, 149
Interdigital Bandpass Filters 213
Interpolation Oscillator 252
Inverters, DC-to-AC 355
J-band Instrumentation 166, 167
K-band Instrumentation 172
Keyboard, X•Y Recorder 356
Klystron Power Supplies 331
Line Follower Systems 353
Line Matching Transformer 263
Linear Motion Transducers 20, 21
Loads, Moving 245
Logarithmic Converter 354
Low Frequency:
Function Generator 259
Oscillators 252.262
Low-Pass Filters 213
Low Power Waveguide Terminations 174
Magnetic Tape Systems 384-389
Magnetometer Probe 136
M-band Instrumentation 170
Medical Instrumentation 17.19
Metabolism Tester 17
Meters:
Ammeters 134-136
Distortion 37.40
Frequency 69,246
Noise $37-40$
Noise Figure 228, 229
Null 132, 133
Ohmmeters 128-130
Power 220.224
Q 105-108, 110
Ratio 234
RX 111
SWR 232, 233
Vector Impedance 106
Voltmeters $118 \cdot 130,132 \cdot 135,137$
Microphone, Crystal 19
Microvolt-Ammeter 135
Microwave:
Accessories 174
Amplifiers 202
Frequency Converter 53
Mixer Diodes 22
Spectrometer 15
Switch 22
Microwave Power Measurements, Technical Information 218, 219
Microwave Test Equipment 160.246
Milliammeter, Clip-on DC 136
Millivoltmeter, RF 123-125
Mixer, Harmonic 63
Modulators:
FM Stereo 210
PIN 190, 191
Motion Transducer 20, 21
Moving Loads 245
Multi-Hole Couplers 236-238
Narrow Band DC Amplifier 32
Noise:
Analyzers 37-40
Figure Meter 228,229
Meter 37-40
Sources 229
Noise Figure Measurements, Technical Information 228
Nuclear Instrumentation: Instruments 71-74
Technical Information 70
Null Detector 356
Null Voltmeter, DC 132, 133
Numerical Readout, Medical 19
Ohmmeters 128-130, 134
Optical Line Follower 353
Optical Recorder 381-383
Optical Tachometer Pickup 69
Opto-Electronic Devices 23
Oscillator Synchronizer 192
Oscillators:
Audio and Ultrasonic 252-255,261, 262
Carrier Test 127
High Quality Audio Tests 261
Interpolation and Frequency Measurement 252, 253
Portable 254
Quartz 100, 101
Sweep 199.201
Technical Information 248.251
Telemetry 252, 253
Transfer 53, 63
VHF 186
Wide-Range, Video Tests 252, 262
Oscillographs, Multi-channel 364, 380
Oscilloscope Camera 301-303
Oscilloscope Probes 305
Oscilloscopes:
Instruments 270-300
Medical 19
Technical Information 266-269, 276, 294
Oscilloscope Testmobile Cart 304
Osmometers 15
Pacemaker 18
Patient Monitoring Modules 18
P-band Instrumentation 171
Peak Power Calibrator 223
Period Multiplies 65
Permapaper 364-380
Phase Measurements, Technical Information 105
Phase Meter 106, 207
Phase Shifter 246
Phase Test Set 204
Phase Unit 65
Phototransistors 23
PIN Diodes 22
PIN Modulators 190, 191
Plethysmograph 18
Plotters, X-Y 342-352
Plug-in Extender, Oscilloscope 290
Portable Test Set 127
Power Amplifier 28, 184
Power Meters 220-224
Power Meter Calibrator 220, 221
Power Supplies: (complete power supply index on pages 310.314) General-Purpose, DC 307-330, 332
Inverter 355
Klystron 331
Scintillation Detector 73
Standby 104
Technical Information 308, 309
Preamplifiers, Recording System 364.390
Prescaler. Counter 51
Preser Counter 58
Pressure Transducers 19-21
Primary Standard 98, 99
Printer, Characrer 88, 356
Printer, Digital
76, 77
Instruments
75
Technical Information
Probe Carriages, Universal 240, 242, 243
Probes:
$136,140,304$
Current
136
Magnetometer
240, 242, 243
Microwave
297. 304, 305
Oscilloscope
24
Quartz Thermometer138.140
330
Protector, Dual CrowbarVoltmeter
306, 335-339
Instruments
333
Technical Information
190, 191
Pulse Modulators
306
Pulser
255
Pushbutton Oscillator
Q Meters:
Q Meters:
Instruments 106-108, 110
Technical Information 105
Q Standards 109
Quartz Oscillators 100, 101
Quattz Thermometers 24
Ratio Meter 234
R.band Instrumentation 173
Reaction Meter, Frequency 246
Receiver, VLF Comparator 102, 103
Recorder Accessories 353-356, 363
Recorders:
75-77
Digital
364.380
Direct Writing Systems, Therma!
390
Event
384.389
Magnetic Tape
19
19
Medical Instrumentation Systems
381-383
Optical
290
Oscilloscope Trace
359
Sampling
Strip-Chart $79,359.362$
X-Y 342.352
Reference Inductors 109, 110
Reflection Coefficient Bridge 236
Refiection Coefficient Measurement, Technical Information 230-231
Reflections, Standard 245
Reflectomerer, Time Domain 278, 279
Regulated Power Supplies 307-332
Resistive Voltage Divider 138
Resistors, Shunt 138
RF Test Sets 203
RF Voltmeter 123-125
RMS Voltmeter 122
Roll Chart Adapter 363
Rotary Phase Shifters 246
RX Meter 111
Sampling Oscilloscope 295-300
Sampling Recorder 359
Sampling Voltmeter 124, 129
S-band Instrumentation 165
Scaler-Timers 71,72
Scanner, Digital 78
Scanner, Oscilloscope Display 283, 289
Scintillation Detectors 73, 74
SHF Test Set 203
Shorting Switch, Waveguide 174
Shorts, Waveguide, Adjustable 245
Shunt Resistors 138
Signal Generators:
Aircraft Test 204-207
AM.FM 208, 210
Audio-Frequency 260.262
HF 180, 181
SHF 194, 196
Sweep 185-197
Technical Information 175
Telemetering 209, 211
UHF 187-189, 193
VHF 182, 183
Signal Generator Power Amplifier 184
Slide-Screw Tuners 240, 244
Slides, Extension 14
Slotted Line Measurements, Technical Information 230
Slotted Sections 240, 242-244
Spectrometer, Microwzve 15
Spectrum Analyzer 216
Spectrum Generator 94
Square-Wave Generators: Instruments 334
Technical Information 333
Stand, Waveguide 174
Standard Reflections, Waveguide 245
Standards, Frequency and Time: Instruments 98-101
Technical Information 90, 91
Standards:
Inductance 109
Q 109
Voltage 131
Standing Wave Indicator 232, 233
Step Recovery Diodes 22
Stereo Modulation Generator 210
Stethoscope, Acoustic 17
Strip-Chart Recorder 79, 359.362
Srueep Delay Generators, Oscilloscope 288, 293
Sweep Drive 37
Sweep Oscillators 199-201
Sweep Signal Generator 185
Swept-Frequency Measurements:
Instruments 216, 278, 279
Technical Information 230, 231
Switching Time Tester 299
SWR Meters:
Instruments 232, 233
Technical Information 230, 231
Synchronizer, Frequency Standard 192
Synchronizers, Oscillator 192
Syndhesizer. Frequency 92-97
Systems:
Data Handling 82.88
Instrument Calibration 140
Tachometer
69
69
Generator 69
Pickup, Optical 69
Telemeter Oscillator 252, 253
Telemetering Signal Generator 209
Telephone Test Set 127
Terminations:
Coaxial 240, 245
Feed-Through 305
Waveguide 174
Test Leads 264
Test Oscillators, Audio and Ulerasonic 254, 261, 262
Test Sets:
ATC Transponder 206
Broadcast FM Stereo 210
Communications Systems 127
DME Transponder 206
Frequency Response 140
H-band 203
ILS Receiver 204, 205
Phase 204
RF 203
SHF 203
Transistor 299
Transmission Line 127
VOR Receiver 204
X-band 203
Testmobile, Oscilloscope 87, 304
Thermistor Mounts 220.222, 240
Thermometers, Quartz 24
Time Base Plug-ins, Oscilloscope 282
Time Comparator 102, 103
Time Domain Reffectometer 278, 279
Time Interval Counters $46,47,50,54 \cdot 62,64-68$
Time Interval Units 50
Time Mark Generators, Oscilloscope 283, 289
Time Measuring Instrumentation, Technical Information 42.45
Time Standards, Technical Information 90.91
Trace Recorder, Oscilloscope 290
Transducers 18-21, 69
Transfer Oscillators 53, 63
Transfer Standard 131
Transformer Line Matching 263
Transistor Test Ser 299
Translator, Waveform 355
Transmission Line Test Set 127
Traveling-Wave Tube Amplifiers 202
Trigger Countdown 300
Tuners, Coaxial 244
Tuners, Waveguide 244
Universal Probe Carriages 242, 243
Univerter 211
Untuned Probes 242, 243
Vacuum Tube Voltmeters $118,119,123,129$
Vapor Pressure Osmometer 15
Variable Attenuators 125.127
Vector Impedance Meter 106
VHF Detector 112
VHF Oscillator 186
VHF Vacuum Tube Voltmeter 123, 129
Video Amplifiers 50, 65
Video Test Oscillator 262
Viewing Hood, Oscilloscope 305
Viscometer, Auto 15
Viso-Scope 19
VLF Comparator 102. 103
Voltage Dividers $138,139,305$
Voltage / Frequency Converters 158
Voltmeter Accessories 138.140
Voltmeter Calibration System 140
Voltmeters:
AC 118.130
Automatic 130
Bartery Operated 126
DC 128-130,132-135,137
Differential 154.157
Digital 51,146.153
RF, VHF 123-125
Sampling 124, 125
Technical information 114-117,141-145
VOR Receiver Test Ser 204
Warranty 12
Wave Analyzers:
Instruments 37, 38
Technical Information 36
Waveform Translator 355
Waveguide:
Adapters 174, 240
Adjustable Shorts 245
Atteruators 225, 226
Bridge 236
Broadband Probes 242, 243
Clamps 174
Detector Mounts 242, 243
Directional Couplers 236, 237
Frequency Meters 246
Loads, Moving 245
Low-Pass Filters 213
Noise Sources 229
Phase Shifter 246
Probe Carriagas 242-243
Shorting Switch 174
Slotted Sections 242-245
Standard Reflections 245
Stands 174
Terminations 174, 245
Thermistor Mounts 222
Tuners 244
X-band Instrumentation 169
X -Y Recorders: Instruments $342 \cdot 35$
Technical Information 341

NUMERICAL INDEX

For information on models not indexed here please contact your Hewlett-Packard field engineer.

0112 Step Recovery Diodes (hpa) 22
0114 Step Recovery Diodes (hpa) 22
0251 Step Recovery Diodes (hpa) 22
0253 Step Recovery Diodes (hpa) 22
0403-0050 Extension Slides 14
0403-0051 Extension Slides 14
0403-0052 Adapters, Brackets 14
0403-0054 Adapters, Brackets 14
2D-2 X.Y Recorders (Moseley) 347
2D-3 X-Y Recorders (Moseley) 347
2D-4 Two-Pen X.Y Recorders (Moseley) 348
2FRA Two-Pen X-Y Recorders (Moseley) 349
3LV1 LVsyn Transducers (Sanborn) 20
3LVA5 LVsyn Transducers (Sanborn) 20
6LV1-4 LVspn Transducers (Sanborn) 20
6SA X-Y Recorders (Moseley) 350
7 X-Y Recorders (Moseley) 350
7LV6,9,20 LVsyn Transducers (Sanbom) 20
7DCDT Transducers (Sanborn) 20
10 Metabolism Tester (Sanborn) 17
22 DC Servo Voltmeter (Moseley) 137
24 Microwave Waveguide Stand 174
24DCDT Transducers (Sanborn) 20
25 Microwave Waveguide Clamps 174
40D Keyboard (Moseley) 356
53 Battery Convester (Sanborn) 373
60D Logarithmic Coaverters (Moseley) 354
74 Hemo-Diluter (Sanborn) 17
75 Cell Counter (Sanborn) 17
100E Quartz Oscillator 100
101A Quartz Oscillator 100
101 Waveform Translator (Moseley) 355
103A Inductors (Boonton) 109
106A,B Quartz Oscillators 100
107AR,BR Quartz Oscillators 100
113A-16E Cable 104
115BR,CR Frequency Dividers and Clocks 104
117A VLF Comparator I02
120B 450 KC Oscilloscope 270
122A Dual-Trace 200 KC Oscilloscopes 271
130 Cardiac Output Computer (Sanborn) 19
130C $200 \mu \mathrm{v} / \mathrm{cm}$ Oscilloscope 272
132A Dual-Beam Oscilloscope 274
135 Series X-Y Recorders (Moseley) 343
135C X-Y Recorders (Moseley) 344
136A Two-Pen X.Y Recorders (Moseley) 345
140A Oscilloscope 277
AN/USM 140B, 141A Oscilloscopes 292
162C Dual-Trace Amplifier 292
166E Sweep Delay Generator 293
166F Auxiliary Plug-in 293
170B,BR Oscilloscopes 292
175A so MC Oscilloscopes 283
H30-175 A High-Writing-Rate Oscilloscope 291
185B Sampling Oscilloscope 295
186A Switching Time Tester 299
187C Dual-Trace Amplifier 297
188A Dual-Trace Amplifier 298
190A Q Meter (Boonton) 110
196A, B Oscilloscope Cameras 302
197A Oscilloscope Camera 302
200AB Audio Oscillator 252
200CD Wide-Range Oscillator 252
200] Interpolation Oscillator 252
200SR VTVM Calibration System Oscillator 140
200T Telemetry Oscillator 252
201 C Audio Oscillator 252
202 Clot Timer (Sanborn, Mechrolab) 17
202A Low-Frequency Function Generator 259
202C Low-Frequency Oscillator 252
202H FM.AM Signal Generator (Boonton) 208
202J Telemetering Signal Generator (Boonton) 209
203A Variable-Phase Function Generator 258
204B Portable Oscillator 254
205AG Audio Signal Generator 260
206A Audio Signal Generator 260
207H Univerter (Boonton) 211
208A Test Oscillator 254
211A Signal Generator (Boonton) 204
211A Square-Wave Generator 334
212A Pulse Generator 335
213A Phase Test Set (Boonton) 204
213B Pulse Generator 335
214A Pulse Generator 337
215A Pulse Generator 338
216A Pulse Generator 339
218AR Digital Delay Generator 340
219A FM Stereo Modulator (Boonton) 210
219A Dual Trigger Unit for 218AR 340
219B Dual Pulse Unit for 218AR 340
219C Digital Pulse Duration Unit for 218AR 340
222A Pulse Generator 336
230A Signal Generator Power Amplifier (Boonton) 184
232A Glide Slope Signal Generator (Boonton) 205
240A Sweep Signal Generator (Boonton) 185
241A Pushbutton Oscillator 255
250A RX Meter (Boonton) 111
260A Q Meter (Boonton) 108
267A,B Fluid Pressure Transducers (Sanborn) 19
268A,B Fluid Pressure 'Transducers (Sanbom) 19
270 Pressure Transducer (Sanbom) 20
280 Acoustic Stethoscope (Sanborn) 17
281A Microwave Adapters 174
281B Waveguide-to Coax Adapters 240
292A,B Microwave Adapters 174
297A Sweep Drive 37
299 Portable Thermal Writing Recorders (Sanborn) 371
300 Auxiliary Sample Chamber (Mechrolab) 15
301 Portable Thermal Writing Recorder (Sanbom) 371
301 A Vapor Pressure Osmometer (Mechrolab) 15
302 Vapor Pressure Osmometer (Mechrolab) 15
302A Wave Analyzer 37
310A Wave Analyzer 38
311A Transducer Amplifier Indicator (Sanborn) 20
320 Portable Thermal Writing Recorder (Sanborn) 372
321 Portable Thermal Writing Recorder (Sanborn) 372
322A Portable Thermal Writing Recorders (Sanborn) 372
$3308, C, D$ Distortion Analyzers 40
331A Distortion Analyzer 39
332A Distortion Analyzer 39
340B Noise Figure Meter 228
342A Noise Figure Meter 228
343A Noise Source 228
345B Noise Source 228
347A Noise Sources 228
349A Noise Source 228
350C, D Attenuators 263
350-2 High-Gain DC Preamplifier (Sanborn) 376
350.2A High-Gain DC Preamplifier (Sanborn 376
350.4 High Gain DC Preamplifier (Sanbom) 376
350-12E,ET Phase-Sensitive Demodulator Preamplifers (Sanborn) 377
350-1000 Medium-Gain DC Preamplifier (Sanborn) 376
350.1100B Carrier Preamplifier (Sanborn) 377
350-1300Z Low-Gain DC Preamplifier (Sanborn) 376
350.1400 Logarithmic Preamplifier (Sanborn) 378
350-1500 High-Gain DC Preamplifier (Sanborn) 376
350-1700-C10 Crystal Microphone (Sanborn) 19
350.2300 AC Watmeter Preamplifier (Sanborn) 378
350.2500 RMS Volt/Ammeter Preamplifier (Sanborn) 378
350-2600 400 cps Frequency Deviation Preamplifier (Sanborn) 379
350-2800 Frequency Meter Preamplifier (Sanborn) 379
350.3900 Accelerometer Preamplifier (Sanbom) 379
353 A Patch Panel 127
355C,D Variable Coaxial Attenuators 227
360 Event Recording Systems (Sanborn) 390
360A-D Low-Pass Filters 213
361 Event Recording Systems (Sanborn) 390
362A Low-Pass Filters 213
370 Waveguide Attenuators 226
372 Waveguide Attenuators 226
375A Waveguide Attenuators 226
382A,B,C Variable Attenuators 225
393A Variable Coaxial Attenuator 227
394A Variable Coaxial Attenuator 227
400D, H,L Vacuum Tube Voltmeters 118
400E, EL AC Voltmeters 120
403A, B AC Voltmeters 126
405BR,CR Digital Voltmeters 153
410B Vacuum Tube Voltmeter 129
410C Electronic Voltmeter 128
411A RF Millivoltmeter 123
412A DC Voltmeter-Ohmmeter-Ammeter 134
413 A DC Null Voltmeter 133
414A Autovoltmeter 130
415B Standing Wave Indicator 233
415D SWR Meter 232
416B Ratio Meter 234
417A VHF Detector 112
419A DC Null Meter 132
420A,B Crystal Detectors 235
422A Crystal Detector 235
423A Crystal Detector 235
424A Crystal Detectors 235
425A DC Microvolt-Ammeter 135
428B Clip-on DC Milliammeter 136
430C Microwave Power Meter 222
431 B Power Meter 220
434A Calorimetric Power Meter 224
440A Detector Mount 242
442B Detector Probe 243
444A Untuned Probe 243
446B Broadband Detector, Probe 243
447A Untuned Probe 240
450A Stabilized Ampliner 29
456A AC Current Probe 140
457A AC-DC Converter 153
460AR,BR Wideband Amplifiers 31
461A Amplifier 30
462A Amplifier 30
465A Solid-State Amplifier 28
466A AC Amplifer 29
467A Solid-State Amplifier 28
476A Bolometer Mount 233
477B Thermistor Mount 222
478A Thermistor Mount 220
485B Detector Mounts 233
486A Thermistor Mounts 220
4878,C Thermistor Mounts 222
489A Traveling-Wave Tube Amplifers 202
491 C Traveling-Wave Tube Amplifiers 202
493A Traveling-Wave Tube Amplifiers 202
495A Traveling-Wave Tube Amplifiers 202
500 Viso-Cardierte Electrocardiograph (Sanborn) 17
500B,C Frequency Meters 69
500-1100 Mobile Cart 17
501 High-Speed Membrane Osmometer (Mechrolab) 15
501B Output Cable (Boonton) 212
502 High-Speed Membrane Osmometer (Mechsolab) 15
502B Patching Cable (Boonton) 212
503 High -Speed Membrane Osmometer (Mechrolab) 15
504 A Adapter (Boonton) 212
505A Power Supply (Harrison) 324
505B Attenuator (Boonton) 212
506A Optical Tachometer 69
506B Patching Cable (Boonton) 212
507B Adapter (Boonton) 212
508A, B,C,D Tachometer Generators 69
5088 Adapter (Boonton) 212
509 B Attenuator (Boonton) 212
510A Power Supply (Harrison) 324
sloB Attenuator (Boonton) 212
513A Q Standard (Boonton) 109
514B Output Cable (Boonton) 212
515A Coaxial Adapter Kit (Boonton) 111
517B Output Cable (Boonton) 212
518 A Q Standard (Boonton) 109
520A Power Supply (Harrison) 324
521A, C, D,E,G Industrial Counters 68
522B Electronic Counter 66
523C Electronic Counter 66
524C.D Electronic Counters 64
525A,B,C Counter Plug-ins 64
525D Frequency Converter 16
526A,B,C,D Counter Plug-ins 64
532A,B Frequency Meters 246
536A Frequency Meter 246
540B Transfer Oscillator 63
560A Digital Recorder 77
561 B Digital Recorder 77
562A Digital Recorder 76
564A Coupling Unit (Boonton) 109
565A Digital Recorder 77
570A Digital Clock 79
571B Digital Clock 79
580A Digital-to-Analog Converter 79
581 A Digital-to-Analog Converter 79
585DT Línearsyn Transducers (Sanborn) 20
s86DT Linearsyn Transducers (Sanborn) 20
590A1-G Inductors (Boonton) 110
592-300 Transducer Excitation Source (Sanborn) 20
599DT Linearsyn Transducers (Sanborn) 20
606A HF Signal Generator 180
608C,D VHF Signal Generators 182
612A UHF Signal Generator 187
614A UHF Signal Generator 193
616B UHF Signal Generator 193
618B SHF Signal Generator 194
620A SHF Signal Generator 194
623 B RF Test Set 203
624C RF Test Set 203
62GA SHF Signal Generator 196
628A SHF Signal Generator 196
650A Test Oscillator 262
651 A Test Oscillator 261
$658-2000 \mathrm{Ga}$ vanometer Driver Amplifier (Sanborn) 382
658-2900 Low-Gain Amplifier (Sanborn) 382
658-3400 Medium-Gain Amplifier (Sanborn) 382
680-683 Series Strip-Chart Recorders (Moseley) 360
691A,B Sweep Oscillators 199
692A, B Sweep Oscillators 199
H01-692A.B Sweep Oscillators 199
693A,B Sweep Oscillators 199
Ho1-693A, B Sweep Oscillators 199
694A,B Sweep Oscillators 199
Hol-694A,B Sweep Oscillators 199
695A Sweep Oscillator 199
696A Sweep Oscillator 199
697A Sweep Oscillator 199
711A DC Power Supply 330
712B Power Supply 330
715A Klystron Power Supply 331
716B Klystron Power Supply 331
721A Power Supply 319
723A Power Supply 319
724BR Standby Power Supply 104
725AR Standby Power Supply 104
726AR Power Supply 322
735A Transfer Standard 131
738BR, 739AR VTVM Calibration System 140
740A DC Standard, Differential Voltrneter 154
741 A AC-DC Differential Voltmeter, DC Standard 156
750 Directional Couplers 236
752 Directional Couplers 236
7641 Medical Recording System (Sanborn) 19
764.2 Medical Recording System (Sanborn) 19
769 A Viso-Scope (Sanbom) 19
774D-777D Dual-Directional Couplers 238
780 Series Directional Detectors 238
780A Viso Monitor (Sanborn) 18
780.1 Resuscitation Cart (Sanborn) 18
780.2A Defibrillator Synchronizer (Sanborn) 18
780-3 Viso-Scope (Sanborn) 18
780-4 Pacemaker (Sanborn) 18
780-5 Signal Delay (Sanborn) 18
780.6 Viso-Scope (Sanborn) 18
780.7 Patient Monitor (Sanborn) 18
780.8 Patient Monitor (Sanborn) 18
780-9 Patient Moniror (Sanbom) 18
780-10 Mobile Cart (Sanborn) 18
780-11 Patient Selector (Sanborn) 18
780-12 Remote Alarm Indicator (Sanborn) 18
780-14 Respiration Transducer (Sanborn) 18
780-15 Wall Mount Bracket (Sanbom) 18
780-16 Ear Plethysmograph (Sanborn) 18
780-17 Remote Automatic Switching Unit (Sanborn) 18
$780 \cdot 800 \mathrm{~A}$ Remote Indicator (Sanborn) 18
790 Series Directional Couplers 238
800A-2 Power Supply (Harrison) 318
800B-2 Power Supply (Harrison) 318
801 Auto-Viscometer (Mechrolab) 15
801C Power Supply (Harcison) 318
802B Power Supply (Hartison) 318
803A VHF Bridge (Boonton) 112
805 Constant Temperature Bath (Mechrolab) 15
805C,D Slotted Lines 244
805E Slotted Line 240
806B Slotted Section 242
808A Power Supply (Hacrison) 322
809A Power Supply (Harrison) 322
8098 Probe Carriage 242
S810A Slotted Section 242
810 B Power Supply (Harrison) 322
810B Slotted Sections 242
814A Power Supply (Harrison) 322
814B Probe Carriage 242
815B Slotted Sections 242
816A Carriage, Slotted Line 240
851A, 8551A Spectrum Analyzer 216
855C DC Power Supply (Harrison) 332
860-4000 FIFO Differential DC Amplifier (Sanborn) 32
860-4200 Floating Wideband DC Amplifer (Sanborn) 32
860-4300 Narrow-Band Differential DC Amplifier (Sanborn) 32
865C DC Power Supply (Harrison) 332
870A Slide-Screw Tuner 244
872A Coaxial Slide-Screw Tuner 244
873A Slide-Screw Tuner 240
880 E.H Tuners 244
880 Power Supply (Harrison) 318
881 A Power Supply (Harcison) 322
885A Waveguide Phase Shifters 246
890A MVR Power Supply (Harrison) 327
895A MVR Power Supply (Harrison) 327
896A MVR Power Supply (Harrison) 327
906A Coaxial Sliding Load 245
907A Sliding Load 240
908A Low-Reflection Termination 245
909A Coaxial Termination 240
910 Terminations 245
X913A Microwave Termination 174
914 Moving Loads 245
X916 Standard Rebections 245
920A,B Waveguide Shorts 245
X930A Microwave Shorting Switch 174
P932A Mixer 63
938A Frequency Doubler Set 198
940A Frequency Doubler Set 198
958-1500 High-Gain DC Preamplifier (Sanborn) 38 380
958-2900 Medium-Low-Gain DC Preamplifier (San- born) 380
958-3400 Medium-Gain DC Preamplifer (Sanborn) 380
958-3600 Low Gain DC Preamplifier (Sanborn) 380
1051A Combining Case 13
1052A Combining Case 13
1100A Delay Line for 185B 300
1102B Accessory Kit for 185B 300
1103A Trigger Countdown for 185B 300
1110A AC Current Probe 304
1111A Amplifier 304
1116A Testmobile 304
1)17B Testmobile 304
1250.XXXX GPC. 7 Precision Connectors and Fittings 241
1400A Differential Amplifier for 140A 280
1401A Dual-Trace Amplifier for 140A 280
1402A Dual.Trace Amplifier for 140A 280
1403A Guarded Differential Amplifier for 140A 281
1405A Dual-Trace Amplifier for 140A 281
1415A Time Domain Reflectometer for 140A 278
1416A Swept Frequency Indicator for 140A 278
1420A Time Base for 140A 282
1421A Time Base/Delay Generator for 140A 282
1750B Dual-Trace Amplifier for 175A 285
1751 A Single. Channel Amplifier for 175A 285
1752A High-Gain Amplifier for 175A 286
1752B High-Gain Amplifier for 175A 286
1754A Four Channel Amplifier for 175A 287
1755A Dual-Trace Amplifier for 175A 287
K01. K02-1759A Single-Channel Plug-ins for H30- 175A Oscilloscope 291
1780A Auxiliary Plug-in for 175A 288
1781B Sweep Delay Generator for 175A 288
1782A Display Scanner for 175A 289
1783A Time Mark Generator for 175A 289
1784A Recorder for 175A 290
2000 Series Hot Carrier Diodes (hpa) 23
2010 Series Data Acquisition Systems (Dymec) 82
2013 Series Data Acquisition Systems (Dymec) 86
2017 Series Linearizing Systems (Dymec) 84
2031 Series Digital Plotting Systems (Dymec) 88
2100 Series Hot Carrier Diodes 23
2150 Microwave Mixer Diodes (hpa) 22
2200 Series Hot Carrier Diodes (hpa) 23
2201 Hot Carrier Diodes (hpa) 23
2202 Hot Carrier Diodes (hpa) 23
2203 Hot Carrier Diodes (hpa) 23
2212A Voltage-to-Frequency Converter (Dymer) 158
2401C Integrating Digital Voltmeter (Dymec) 83, 148
2410 B AC /Ohms Converter (Dymec) 83, 148
2411A Guarded Data Amplifier (Dymec) 83, 148
2417A Data Linearizer (Dymec) 83
2460A Solid-State Operational Amplifier (Dymec) 34
2461A Amplifier Plug-ins (Dymec) 34
2470A Data Amplifier (Dymec) 35
2509A Digital Clock (Dymec) 83
2514 A Digital Scanner (Dymec) 78
2526 Coupler (Dymec) 83
2539A Digital Comparator (Dymec) 83
2540 Coupler (Dymec) 87
2545 Coupler (Dymec) 83
2545C Coupler (Dymec) 83
2546 Coupler (Dymec) 83
2560A Programmer (Dymec) 83
2590A Microwave Frequency Converter 53
2650A. Oscillator Synchronizer (Dymec) 192
2654A Frequency Standard Synchronizer (Dymec) 192
2701A, 2702A Translators (Dymec) 88
2733A Character Printer (Dymec) 88
2734 B Tape Editor (Dymec) 88
2800A Quartz Thermometer (Dymec) 24
2801A Quartz Thermometer (Dymec) 24
2830 A Sensor Oscillator (Dymec) 24
2850B, C Temperature Probes (Dymec) 24
2900B Scanner (Dymec) 87
2901 A Input Scanner (Dymec) 82
2902 Slave Unit (Dymec) 82
2911 Guarded Crossbar Scanner (Dymec) 83
2911 C Programmer (Dymec) 83
3001 PIN Diodes (hpa) 22
3002 PIN Diodes (hpa) 22
3200A VHF Oscillator (Boonton) 186
3300A Function Generator 256
3301 A Auxiliary Plug in for 3300A 256
3302A Trigger/Phase-Lock Plug-in for 3300A 256
3303A Divider Plog-in for 3300A 256
3400A RMS Voltmeter 122
3406A Sampling Voltmeter 124
3440A Digital Voltmerer 150
3441A Range Selector for 3440A 150
3442A Automatic Range Selector for 3440A 150
3443A High-Gain / Auto Range Unit for 3440A 150
3444A DC Multi-Function Unit for 3440A 150
3445A AC/DC Range Unit for 3440A I 50
3460A Digital Voltmeter 146
3500A Recorder 359
3501 Microwave Switch/Variable Attenuator (hpa) 22
3501 A Range Unit for 3500A 359
3510A Auxiliary Unit for 3500A 359
3528A Large Aperture Current Probe 136
3529A Magnetometer Probe 136
3550A Portable Test Set 127
3907A Magnetic Tape Recorder (Sanborn) 384
3914A Magnetic Tape Recorder (Sanborn) 384
3917A Magnetic Tape Recorder (Sanborn) 384
3924A Magnetic Tape Recorder (Sanborn) 384
4104 Gallium Arsenide Infrared Sources (hpa) 23
4201 PIN Photodiodes (hpa) 23
4202 Phototransistors (hpa) 23
4260A Universal Bridge 16
4301 Wideband Photon-Coupled Isolators (hpa) 23
4302 Photon.Coupled Amplifiers (hpa) 23
4500 Multi-Channel Optical Recording Systern (San- born) 381
4568 Poly-Beam Recording System (Sanborn) 19
4800 A Vector Impedance Meter (Boonton) 107
5020.0497 Probe Tip5 297
5060A Cesium Beam Frequency Standard 98
5060-0215, 0216 Joining Brackets 14
5060-0797 Rack Adapter Frame 14
$5060-0808$ Rack Adapter Frame 14
5060.0826-0831 Control Panel Covers 14
5060-2445, 2446, 2451 Cabinets 87
5060-3760 Testmobile 87
5100A, 5110A Frequency Synthesizer 92
5102A Frequency Synthesizer 96
5103A Frequency Synthesizer 96
32011 Scaler-Timer 71
5202L Scaler-Timer 71
5203 L Scaler-Timer 71
s2IIA,B Electronic Counters 56
5212A Electronic Counter 56
5214L Preset Counter 58
5223L Electronic Counter 54
5232A Electronic Counter 56
5233L Electronic Counter 54
5244L Electronic Counter 52
52451 Electronic Counter 46
5251A Frequency Converter 49
5252A Prescaler 51
5253B Frequency Converter 49
5254A Frequency Converter 49
5259A Frequency Converter 16
5261A Video Amplifier 50
5262A Time Interval Unit 50
5264A Preset Unit 48
5265A Digital Voltmeter 51
5275A Time Interval Counter 62
5512A Electronic Counter 56
5532A Electronic Counter 56
s551 A Power Supply 73
s601 A Numerical Readout (Sanborn) 19
5636 RF Test Set (Dymec) 203
R6200-1,-2 Rack Adapter (Harrison) 316
6200A LAB Power Supply (Harrison) 315
6201A LAB Power Supply (Harrison) 315
6202A LAB Power Supply (Harrison) 315
6203A LAB Power Supply (Harrison) 315
6204A LAB Power Supplies (Harrison) 315
6206 A LAB Power Supplies (Harrison) 315
6207A LAB Power Supply (Harrison) 315
6224A Power Supply (Harrison) 319
6226A Power Supply (Harrison) 319
6242A Power Supply (Harrison) 322
6244A Power Supply (Harrison) 322
6263 A LVR Power Supply (Harrison) 320
6264A LVR Power Supply (Harrison) 320
6265A LVR Power Supply (Harrison) 320
6266A LVR Power Supply (Harrison) 320
6267A LVR Power Supply (Harrison) 320
6271 A IVR Power Supply (Harrison) 320
R-6340-3 Mounting Assembly (Harrison) 329
R-6340-5 Mounting Assembly (Harrison) 329
6343 A MOD Power Supply (Harrison) 328
6344A MOD Power Supply (Harrison) 328
6345A MOD Power Supply (Harrison) 328
6346A MOD Power Supply (Harrison) 328
6347A MOD Power Supply (Harrison) 328
6348A MOD Power Supply (Harrison) 328
6354 A MOD Power Supply (Harrison) 328
6357 A MOD Power Supply (Harrison) 328
6363 A LVR Power Supply (Harrison) 320
6364 A LVR Power Supply (Harrison) 320
6365A LVR Power Supply (Harrison) 320
6366A IVR Power Supply (Harrison) 320
6367A LVR Power Supply (Harrison) 320
6371 A LVR Power Supply (Harrison) 320
6427A SCR.1P Power Supply (Harrison) 325
6428A SCR-1 P Power Supply (Harrison) 325
6433 A SCR-1P Power Supply (Harrison) 325
6438A SCR-1P Power Supply (Harrison) 325
6439A SCR-1P Power Supply (Harrison) 325
6443 A SCR-1P Power Supply (Harrison) 325
6450A SCR-3 Power Supply (Harrison) 326
6453 A SCR-3 Power Supply (Harrison) 326
6455A SCR. 3 Power Supply (Harrison) 326
6456A SCR. 3 Power Supply (Harrison) 326
6459A SCR. 3 Power Supply (Harrison) 326
6521 A HVR Power Supply (Harrison) 327
6522A HVR Power Supply (Harrison) 327
6525A HVR Power Supply (Harrison) 327
6910A Crowbar Power Supply (Harrison) 330
6916A Crowbar Power Supply (Harrison) 330
7000A X-Y Recorders (Moseley) 346
7030A X-Y Recorders (Moseley) 342
7050A X-Y Recorder (Moseley) 351
7100A Strip-Chart Recorders (Mosejey) 362
7101A Strip-Chart Recorders (Moseley) 362
7500A Line Follower System (Moseley) 353
7501A Line Follower System (Moseley) 353
7990A Automatic Data Plotting Systems (Moseley) 352
7701 A, AX Recording Systems (Sanborn) 370
7702A Oscillographic Recording System (Sanborn) 369
7704A Oscillographic Recording System (Sanbom) 368
7706A Oscillographic Recording Systems (Sanborn) 366
7708A Oscillographic Recording Systems (Sanbom) 366
7712A Oscillographic Recording System (Sanborn) 369
7714A Oscillographic Recording System (Sanborn) 368
7716A Oscillographic Recording Systems (Sanborn) 366
7718A Oscillographic Recording Systems (Sanbom) 366
7726A Oscillographic Recording Systems (Sanborn) 366
7728A Oscillographic Recording Systems (Sanborn) 366
8000A Pulser 306
8400A Microwave Spectrometer 15
8402A Power Meter Calibrator 221
8403A Modulator 190
8430A Interdigital Bandpass Filters 213
8431A Interdigital Bandpass Filters 213
8432A Interdigital Bandpass Filters 213
8433A Interdigital Bandpass Filters 213
8434A Interdigital Bandpass Filters 213
8435A Interdigital Bandpass Filters 213
8436A Interdigital Bandpass Filters 213
X8440A Reflection Coefficient Bridge 236
8470A Crystal Detector 240
8480A Coaxial Thermistor Mount 240
8551A, 851A Spectrum Analyzer 216
8614A Signal Generator 188
86148 Signal Source 188
8616A Signal Generator 188
86168 Signal Source 188
8710.0037 GPC-7 Tool Kit 241
8730 Series PIN Modulators 190
8774D-8777D Dual-Directional Couplers 241
8786D-8789C Directional Detectors 241
8796D-8798C Flat Directional Couplers 241
8801 A Low-Gain DC Preamplifier (Sanborn) 374
8802A Medium-Gain DC Preamplifier (Sanborn) 374
8803A High-Gain DC Preamplifier (Sanborn) 374
8805A Carrier Preamplifier (Sanborn) 375
8806A Phase-Sensitive Demodulator Preamplifier (San- born) 375
8807A AC-DC Converter Preamplifier (Sanborn) 375
8809A Special-Purpose Preamplifier (Sanborn) 374
8900B Peak Power Calibrator (Boonton) 223
8925A DME/ATC Test Set (Boonton) 206
10000A,C Voltage Divider Probes 305
10001B,D Voltage Divider Probes 305
10002A, B, C,D Voltage Divider Probes 305
10003A, B Voltage Divider Probes 305
10010C BNC Tip 305
10025A Voltage Probe 305
10035A Probe Tip Kit 305
10100A,B Terminations 305
10110A, 10111 A BNC-to-Binding-Post Adapters 263, 305
10120A-28A Cables 305
10121 A Coaxial Cable 287
10122A Cable 338
10175A, B Viewing Hoods 305
10204A Blocking Capacitor 338
10213-62102 Ground Clips 297
10214A 10:1 Divider 297
10216A Isolator 297
10217A Blocking Capacitor 297
10218A BNC Adapter 297
10219A GR Adapter 297
10220A Microdot Adapter 297
10221A 50-Ohm Tee 297
10225A, 10226A, 10227A Oscilloscope Accessories 299
104008 Plug-in Extender 290
10402A Plug in Extender 290
10403A Alignment Attenuator 290
10404A Vertical Test Adapter 290
10405A Vertical Response Tester 290
10451A Multipulser 338
10475A, 10476A Testmobile Drawers 304
10501A Cable Assembly 264
10502A Cable Assembly 264
10503A Cable Assembly 264
10509A Loop Antenna 103
10511A Spectrum Generator 92
10512A Antenna Cable 103
10601A Scintillation Detector 73
10602A Scintillation Detector 73
10611A Scintillation Detector 73
10612A Scintillation Detector 73
11000A Cable Assembly 264
11001A Cable Assembly 264
11002A Test Leads 264
11003A Test Leads 264
11004A Line-Matching Transformer 263
11005A Line-Matching Transformer 263
11006A-11017A Amplifier Accessories 31
11018A Adapter 138
11021A Probe 138
11022A-26A Probe Tips I23, 138
11027A Probe Kit 123
11028A Divider 138
11029A-34A Shunt Resistors 138
11035A Cable Assembly 264
11036A Probe 128, 138
11037A Cable Assembly 264
11038A Transformer 30
11039A Capacitive Voltage Divider 139
11040A Capacitive Voltage Divider 139
11041A Capacitive Voltage Divider 139
11042A Probe Coaxial T Connector 139
11043A Probe Coaxial N Connector 139
11044A DC Voltage Divider 139
11045A Divider 139
11046A Combining Case 139
11047A Output Divider Load 263
11048B 50-Ohm Feed-Thru Termination 263
11054A, 11059A Terminal Boxes 155
11056A Handle Kit 13, 264
11057A Handle Kit 13, 264
11500A Cable Assembly 264
11501A Cable Assembly 264
11505A Bench Stand 38
11507A Output Termination 181
11508A Output Cable 183
11509A Fuse Holder 183
11512A Shorting Plug 112
11515A, 11516A Adapters 235
11517A.11521A Spectrum Analyzer Accessories 216
13510A Transistor Test Jig (Boonton) 111
27002A Inverter Power Supply (Moseley) 355
620060, 620070 LAB Power Supply Carrier and Handle (Harrison) 316
A.I AC-DC Converter (Moseley) 355
Coaxial instruments using GPC-7 Precision Coax Connectors 240
D-1B, D. 2 Character Printers (Moseley) 356
F.3B Line Follower System (Moseley) 353
FTA Microforce Transducers (Sanborn) 20
G-2 Null Detector (Moseley) 356
GR-874.W'50 50-Ohm Load 297
GT Dimensional Gaging Transducers (Sanborn) 20
HVR Series Power Supplies (Harrison) 327
K07-999 Coaxial Evaluation Set 241
LAB Series Power Supplies (Harrison) 315
LVR Series Power Supplies (Harrison) 320
LVDT Differential Transformer
Transducers (Sanbom) 20
MOD Series Power Supplies (Harrison) 328
MVR Series Power Supplies (Harrison) 327
Q-1, Q-2, Q-3 Roll Chart Adapters (Moseley) 363
S-1000 Blood Analyzer (Sanbom) 17
SCR Series Power Supplies (Harrison) 325
TPS10, 11, 12 Power Supplies (Sanborn) 20
T41-1I Power Supply (Sanborn) 20
For information on models not indexed here please contact your Hewlett.Packard field engineer.

SALES AND SERVICE OFFICES IN THE U．S．AND CANADA

ALABAMA
Humtsville，35801
Hewlett－Packard
Southern Salas Division
Holiday Office Cti．，Sulte 18
（205） $881-4591$
TWX：510－579－2204
ARIZONA
Scotes 的有， 8.5258
Hewlett－Packard
Neely Sales Division
3009 No．Scottsdale Rd．
（602） 945 －780
TWX：602－949－0111
Tucsan， 85718
Hewlett• Packard
Nealy Sales Division
232 So．Tucson Blvd．
（602）623－2564
TWX：602．792．2759
CALIFORNIA
Les Angetas Arss
Hewlett－Packard
Neely Sales Division
3939 Lankershim Blvd．
North Hollywood 91604
（213） 877.1282 ard 766－3811
TWX：910－4992170
Sacramento，g5821
Hewlett－Packsrd
Neely Sales Division
2591 Garlsbad Ave．
（916） $482 \cdot 1463$
IWX：916－444．8683
Sar Diego， 92100
Hewlett Packard
Neely Sales Division
1055 Shafter Street
（714） 223.8103
TMX．714－276－4283
San Frarcisce Area
Howlett－Packard
Neely Sales Division
1101 Embarcadero goad
Palo Alto 94303
（415）327－6500
TWX：910－373－1280
COLORADO
Enffewood， $80 \$ 10$
Hewlelt－Packard
Neely Sales Olvision
7965 East Prentlce
（303）771－3455
TWX： 303.771 －3056
CONNECTICUT
Middlatawn， 08458
Hewlett．Packard
Yewell Sales Oivision
589 Saybrook Rd
（203） $346-6611$
THX：710－428－2036
FLORIDA
Mlanf， 33125
Hewilett－Packard
florida Sales Division
2907 Northwest 7th St．
（305）635－6461
Orlando． 32803
Hewlott－Peckard
Florida Sales Division
621 Commonwealth Ave．
（305） 425.5541
TWX：305－275－1234
St．Piterstorg， 33708
Hewlett．Packard
Florida Sales Division
410－150th Ave．Madeira Beach
（813）391－0211
MX： $813.391-0666$

GEORGIA
Atanta， 30305
Hewlett－Packard
Southerr Sales Dtvision
3110 maale Orive，N．E
（404） 233.1141
TWX：810．751．3283
ILLINOIS
Chicago， 60645
Hewlett－Packard
Crossley Szles Division
2501 West Peterson Ave．
（312） 275.1600
TWX：910－221－0277
INDIANA
indianapolis， 48205
Hewlett－Packard
Crosslay Sales Division
3919 Meadows Dr．
（317）546－4891
TWX：317．635．4300
KENTUCKY
Loulsvilke， 40218
Hewlett－Packard
Southern Salas Division
Suite 4， 3411 gardstown Rd，
（502）459－4140
TWK：810．535－3128
MARYLAND
Baltimere， 21207
Gewlett－Packard
Horman Sales Division
6660 Security Blvd．
（3011 944．5400
Washington，D．C．Aut
Hewlett－Packard
Horimin Sales Divislon
941 Rollins Avenus
Rockville 20852
（301） 477.7560
TWX：710－828．5884
MASSACHUSETTS
Bostor Area
Hewlett－Packard
Yewell Sales Division
Middlesex Yumpike
Burlington 01804
（617）272－9000
TWX：210－332－0382
MICHIGAN
Delroit， 48235
Kewlett－Packard
Crosslay Sales Division
14425 West Eight Mile Road
（313） 342.5700°
TWX：313－342．0702
MINNESOTA
St．Paul，5S114
Hewlett－Packard
Crossley Sales Division
842 Aaymond Avenus
（612） $646-7881$
TWX：612551．0055
MISSOURI
Ransas City， 84931
Harris－Hanson Company
7916 Paseo Street
（816） 444.9494
TWX： 816.556 .2423
St．Lauls，63144
Harris－Hanson Company
2814 South Brentwood 8lud．
（314） $647-4350$
TWX：314．962．3933
NEW JERSEY
Asbury Park Araz
Howlett－Packard
Robinson Sales Division
Shrowsbury
（201）747－1060

Enelawaot， 07831
Hewlert．Packard
RMC Sales Olvision
391 Grand Avenue
（201） 567.3933
（nome for Englewood）
NEW MEXICO
Albuquerge日， 87108
Hewlett．Packaró
Neely Sales Olvision
6501 Lomas Bivd．，N．E
（505）255－5586
IWX： 505.243 .8314
Las Cruces，B8001
Hewlett．Packard
Neely Sales Division
114 S．Water Street
（505）526－2486
TWX：505．524－2671
NEW YORK
Naw York， 10021
Hewlett－Packard
RMC Sales Olvision
236 East 75th Street
（212） $879-2023$
TWK：710．581－4376
Rechestar， 14825
Hewlott－Packard
Syracuse Salas Division
800 Linden Avenue
（715） 381.4120
TWX：716－221．1514
Pourahagosice， 12801
Hewlell－Packard
Syracuse Sales Olvision
82 Washington St．
（914）454－7330
TWX：510－248－0012
Syracuse 13211
Hewleth Packard
Syracuse Sales Oivision
Pickard Blde．，E．Molloy Ro．
（315）454－2486
TWX：710．541－0482
NORTH CAROLINA
Hlgh Pamnt， 27262
Hewlett－Packals
Southern Sales Olvision
1923 N．Main Street
（919） 882.6873
TWX：510－926．1516
OHIO
Clevoland， 44129
Hewleit．Packard
Crossley Sales Division
5579 Pearl Road
（216） $884-9209$
TWX：216－888－0715
Dayton， 45409
Hewlett－Packard
Crossley Sales Division
1250 W．Dorothy Lane
1513） 299.3594
TWX：513－944－0090
PENNSYLVANIA
Camg Hill
Howlett－Packard
Gobinson Sales Oivision
（717）737－6791

Phladeiphla Aras
Hewlett－Packard
Robinson Salas Division
144 Elizajoth Street
West Conshohocken 19428
（215） $248-1600$ and $828-6200$
NWX：215－828－3847
Plitishurgh Area
hawlett－Yackard
Crossley Sales Division
2545 Moss Slde Blyd．
Monroeville 15146
（412） $271-5227$
TWX：710．797．3650

TEXAS

Dalias，75209
Kewlett－Packsrd
Southwest Sales Division
P．O．80x 7156， 3605 Inwood Rd
（214）357－1881 and 332.6687
THX：910－861－4081
Houstor， 77027
Hewlett．Packard
Southwest Soles Division
P．O．Box 22813， 4242 Richmond Ave．
713） $667-2407$
TWx：713．571．1353
UTAH
Silt Lake city， 84115
Hewlett－Packard
Neely Sales Division
1482 Major St．
801） $486-8166^{\circ}$
TWX：801．521－2604
VIRGINIA
Ricknond， 23230
Hewlett－Fackard
Southern Sales Division
2112 Spencer Road
（703）282．5451
TWX：710－956－0157
WASHINOTON
Sastila draa
Hewlett－Packard
Neely Sales Division
11656 N．E．8th St．
Bellavua 98004
206）GL43971
TWX：910－443．2303

CANADA

Montraal，Quabac
Hewlett－Packard（Caneda）Ltd．
8270 Mayrsnd Street
8270 Mayrsnd
（514） 735 － 2273
（514） 735.2273
TWX： $810-4213484$
Ottana，Opiario
Hewlett－Packard（Canada）Ltd．
1762 Carling Avenue
（ 8131722.4223
TWX：610．562－1952
Toronto，Ontailo
Hewlett－Packard（Canada）Ltd．
1415 Lawrence Avenue，West
（416） 2499196
TWX：610－492－2382

HEWLETT hp PACKARD

1501 Page Mill Road，Palo Alto，Californiz 94304

INTERNATIONAL SALES AND SERVICE OFFICES

ARGENTINA
Mauricio A. Szurgz
Telecomunicaciones
Carlos Calvo 224, Buenos Alres
Tel: 30-6312
AUSTRALIA
Sample Electronics Nic.) Pty. Udo.
9. 11 Cremorne Streat

Richmond E. L, Victoris
Tel: 424757 (3 lines)
Sample Eiectronics (N.S.W.) Pty. Lid.
4 Grose Street Glebe, Syoney
Naw South Walas
Tel: $89-6338$ (6 lines)
AUSTRIA
Unilabor
Wissenschatliche Instrumente
Handelsgaselischaft m.b.H.
Rummelhardtgasse $6 / 3$
Rienna $1 \times / 71$
Tel: 42 6) 81
BELGIUM
Hewlett-Packard Benelux S.A.
20-24 Rue de l"Hopital, Brussels
Tel: 11.22.20
ERAZIL
Cientai Importacao E Comarcio Ltds.
Rus Cons. Crispiniano, 89, 8. EAnd.
Conj. 81. Sad Paulo
Tel: 32-4332
CANADA
Hewlett-Packard (Canadz) (td.
8270 Mayrand Street
Montreal, Qusbec
(514) $735-2273$

Hewlatt-Packard (Carada) Lid.
1762 Carling Avenue
Ottawa, Ontario
(613) $722-8162$

Hewlett-Packard (Canada) Ltd.
1415 Lawrence Avense W.
Toronto, Ontario
(416) 249.9196

CHILE
Hector Calcagn
Casilia 13942
Santlago
Tel: 6.42.26
DENMARK
Tage Olsen A/S
Ronnegade 1
Copenhagen 0
Tel: 29.48.00
FINLAND
INTO O/Y
P. 0 . Box 153

MerItullinxatu 11, Helsinki
Tel; 66.39 .09 and 35.125
FRANCE
Howlett-Packard france
150 Boulagard Massena
Paris 130
Tel: 707.97.19
GERMANY
Hewiett.Packard V.m.b.H
Steindamim 35, Hamburg
Jel: 24.05 .51

Hewlett-Packard V.m.b.H.
Kuthessensirasse 95
Frankfurt am Main
rel: 52.00 .36
Hewlett-Packard V.m.b.H.
Reginfriedstrasse 13
Munich 9
Tel: 49.51.21/22
Hewlett-Packard V.m.b.H.
Technisches BPro
Herrenbergerstrasse 110
703 Bäblingen, Wüttamberg
(e): 6971

OREECE
K. Karayannis

Klatimonos Square, Athans 124
Tel: 230.301 (5 lines)
INDIA
The Sclentific Instrument Company, Ld.
6. Tei Bahadur Sapru Road, Allahabad 1

Fel: 2451
The Scientific Instcument Company, Ld.
240, Dr. Dadabhal Naoroji Road,
Bombay 1
Tel: 26-2642
The Sclentific Instrument Company, Ld.
11, Esplanade East, Calcutta 1
Tel: 23-4129
The Scientific Instrument Company, Ld.
30. Mount Road, Madras 2

Tel: 85339
The Scientilic Instrument Company, Ld.
8-7, Ajmerl Gate Extn., New Delhi:
Tel: 271053
IRAN
Telecom Lid.
P. 0.80×1812, Tehran

Tel: 43850, 48111
ISRAEL
Electronics \& Enginzering Lid.
16 Xremenetski St., Tel Aviv
Tel: 35021 (3 lines)
ITALY
Hewlett-Packard Italiana S.D.A.
Viale Luniglana 46, Milan
Tel: 69.15.84/5/6
Hewlett.Pachard Italizna S.p.A.
Piazza Marconi. 25
Roma-Ful
Tel: $59.25 .44 / 5$
JAPAN
Yoxogawa. Hewlett-Pschard Ltd.
2270 I shixawa-cho
Hachiofi, Tokyo
Tel: Hachiofi 0426-3. 1231 (19 Ines)
Yokogawa Hewlett-Packaró Lto.
No. 3, 6-chome, Aoyama-Kutamachi
Akasaka, Minato-ku, Tokyo
Tel: 403-0073, 403-0074, 403.0075
Yokogawa Hewlett-Packerd Lto.
No. 8 Umeda, Kita-ku, Osska City
Tel: $361.3084,341$-2095
Yokogawa Hewlett-Packard Lid.
No. 4. 3.chome, Mimelkedori,
Chigusanku, Nagoya Clity
Tel: 75.8545
KOREA
American Trading Company, Korea, Lid.
112.35 Sokong. Dong, Jung-xu

Seoul P O. Box 1103
Seoul
Sel: 37049, 37613

NETHERLANDS
Hewlett-Packard Benelux N.V.
23 Burg Roallstraat, Amsterdam W.
Tel: (020) 13.28 .98 and 13.54 .99
NEW ZEALAND
Sample Eiectronics (N. Z.) Lid.
8 Matipo Street
Onehunge S. E, 5, Auckland
Tel: 565.361
NORWAY
Morgenstierne \& Co. A/S
Ingeniorfirma
6 Wessels Gate, Oslo
Tel: 201635
PORTUGAL
Telectra
Rua Rodrigo da Fonseca 103
P. 0.80×2531

Lisbon 1
Tel: 685072 and 686073 and 686074
PUERTO RICO \& VIRGIN ISLANDS
San Juan Elgetronics, Inc.
150 Ponce de Leon, Stop 3
P. O. ©0× 5167

Pta. de Tiarra Sta, San Juan 00906
Tel: 722-9342, 724-4406
SPAIN
ATAIO, Ingenieros
A. Agulisia, No. 8. Madrid 15

Tel, 223.27.42, 223.41.71, and 224.84.97
SOUTH AFRICA
F. H, Flanter \& Co. (Pty.), Lid.

Rosella House
Buitencingle Street, Cape Town Tel: 3-3817
SWEOEN
M.P instrument $A B$

Contraivagen 28, Solna Centrum
Tel: 08-83.08.30 and 10.83.08.30
SWITZERLAND
Max Paul frey
Wankdorffoldstrasse 65. Berne
Tel: (031) 42.00 .78
TAIWAN (FORMOSA)
Hwa Sheng Elactronic Co., Ltd.
2! Nanking West Road, Taipel
Tel: 46076. 45936
TURKEY
TELEKOM Engineering Bureau
9.0. Box 376-Galata, Istarbul

TEI; 49.40.40
UNITED KINGDOM
Hewiett-Packard Lid
Dallas Road
Bedford. England
Tel: Bedford 68052
VENEZUELA
Citec, C. A.
Edif. Arlsan:of \# 4
Avda. Francisco óo Miranda-Chacalto
Adartado del Este 10.837. Caracas
Tel: 71.88 .05
yugoslaivia
Belram S.A.
83 av. des Mimosas
Brussels 15. Belgium
Tel: 35.29.58

For Sales and Service Assistance In Areas Not Listed Contact:

IN EUROPE
Hewlett-Packard. S. A.
54 Roule des Acacias
Geneva, Switzerland
Telephone: (022) 42.81 .50
Telex: 2.24 .86
Cable: HEWPACKSA

IN LATIN AMERICA
Howlett-Packard Inter-Americas
1501 Page Mill Road
Palo Alto, California 94304, U.S.A.
Telephone: (415) 326-7000
TWX: $910-373.1267$
Telex: 033812 Gable: HEWPACK

ELSEWHERE
Hewiott-Packard
International Marketing Department
1501 Page Mill Road
Palo Alto, California 94304, U.S.A.
Telephone: (415) 326.7000
TWX:910-373-1267
Telex: 033811 Cable: HEWPACK

[^0]: *These diodes are too fast to measure in conventional circults utilizing standard reverse recovery lime measuraments. Thereiore, the affective m|nority carrlal ilfetima is spacifled as x instand of T_{p}. Davices are hermetically sealad in a minlature glass package $0.160^{\prime \prime}$ long, 0.070° in diameter, colop coded.

[^1]: *Specifications based on source impedances to 1000 ohms end ambieat temperatures from $15^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$. Amplifiers will operate in ambients to $60^{\circ} \mathrm{C}$. Rate of ambient temperature variation not to exceed $10^{\circ} \mathrm{C}$ / hour. Amplifiers will operare with bigher source impedaaces; perfomance degradiztion will be in gain accuracy, noise specification and temperature coefficient of gain.

[^2]: *See Hexletc-Packard Application Note 1s, "Distorrion and lneermodelation." for a more complete discussion.

[^3]: 1"Measuring Frequency from VHF up to and above 18 gc with Transfer Oscillator/ Counter Techniques," Hewlett-Packard Apfication Note No. 2.

[^4]: * When used with hp 524SL Electronic Counter.

[^5]: *When used with hp S245L Electronic Counter.

[^6]: * When used with hp s2dsL Electronic Counter

[^7]: * $\Delta \mathrm{E}$ is differential between $\mathrm{E}_{\text {min }}$ and $\mathrm{E}_{\text {max }}$
 $\mathrm{E}_{\mathrm{m} f \mathrm{~m}}$ is level set by Lower Level Discriminator (LLD)
 $\mathrm{E}_{\text {max }}$ is level set by UPper Level Discriminator (ULD)

[^8]: * Useful operation is obtained for input frequencies from 10 mc to 75 mc .

[^9]: *A 3-digit direct-reading 0 to $1000 \mu \mathrm{v}$ offset voltage.

[^10]: * 1-2-2-4 available with 3460A, Option 01.

[^11]: - Patent applied for

[^12]: * Clrcular fiange udapter (UG-381/U) ha 12516A, \$40 tach.

[^13]: * frequency interval between points 3 db down from max. response
 ** for 10 volts output into 50 ohms

[^14]: \dagger up to s volt max. carrier output for up to 100% AM

[^15]: * Add $\$ 100$ for 10 to 200/100 to 2000 watts dual range.

[^16]: tafter one-hour warm-up.
 *across external su-chin load at pand jack.
 **wh 0.1 vinpul and 300.0 mm ourput load.
 تfor input levels < 0.05 voles.

[^17]: -Clircular flange adapters; K-band (UG-425/U) 11515A, $\$ 35$ each; R-band (UG-381/

[^18]: For ali models
 Max Imum Input: 100 mw peak or average.
 Output polarly: negalive (positive output available with 423A, 424A; specity Option 03.; no additional charge).
 Ortput oonnoctor: 8 NC female.
 Detector slement: subolied.

[^19]: for all models: rt connectors; prlmary line: precision yype N, one male (input), one female; auxiliary arm: precision Type N female.
 'Dlfference in db between power cut of orimary the and auxiliary arm.
 2Swept-frequency tested.
 sing apparent swr at the outpul port of a directional coupler when it is used in a closod-loop teveling system.

 - Includes loss due to coupling.

[^20]: *Amphenol RF Division, a Division of Amphenol-Borg Electronics Corporation, Danbury, Connecticut,

[^21]: * 3300 A requires a plug.in to operate

[^22]: Abbreviations: $C=$ convection, $F \cdot A .=$ forced air, $B=$ bottom, $R=$ rear, $S=$ sides, $T=$ top.
 IConform to EIA standards for rack mounts.
 2 This is the recommended volume of air, at normal ambient temperature, that should be supplied to the rack mounted instrument for cooling; the following expression may be used as a "rule of thumb" to establish the volume of air required by the entire enclosure. $\mathrm{Q}=176 \times \mathrm{P}(\mathrm{kw})$ where $Q=$ Cfm (val. of air): ? (kw) =kw of input power to the enclosure; additional air should be supplied if the intake air is not-distributed proportionally to each instrument or it it is at a high ambient temperature.

[^23]: ${ }^{1 F o r}$ a direct-reading method of phase shift measurement, the reader is referred to "A Convenient Method for Measuring Phase Shift," hp Application Note No. 29, free on request.

[^24]: - Installed in 140A Oscilloscope.

[^25]: * Further information may be obtained by contacting your regional
 field engineer or Hewlett-Packard directly, c/o Oscilioscope Div.

[^26]: * Installed in hp 175A Oscilloscope.

[^27]: * Installed in hp 175A Oscilloscope

[^28]: * installed ia 170B Oscillascope

[^29]: * installed in 170B Oscilloscope

[^30]: Figure 1. Upper trace shows step response with 100% sampling efficlency; lower with 20%. Rise times are 70 psec and 60 psec, respectively: sweep speed, $50 \mathrm{psec} / \mathrm{cm}$.

[^31]: "Polayoid" by Polaroid Corporation

[^32]: * $\mathrm{cv}=$ constant voltage; $\mathrm{cc}=$ constant current.

[^33]: -cc = constant current, $\mathrm{cv}=$ constant voltage

[^34]: 'See Hewletr-Packard Application Note 17, "Square Wave and Pulse Testing."

[^35]: * Measured on a 50 mc oscillascope.

